留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收

张洋 张隽爽 马崇攀 孙忠霄 王宇

张洋, 张隽爽, 马崇攀, 等. 碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收[J]. 复合材料学报, 2023, 40(9): 5026-5034. doi: 10.13801/j.cnki.fhclxb.20221111.001
引用本文: 张洋, 张隽爽, 马崇攀, 等. 碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收[J]. 复合材料学报, 2023, 40(9): 5026-5034. doi: 10.13801/j.cnki.fhclxb.20221111.001
ZHANG Yang, ZHANG Junshuang, MA Chongpan, et al. Chemical degradation and recovery of carbon fiber reinforced epoxy resin matrix composites containing ester bond[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5026-5034. doi: 10.13801/j.cnki.fhclxb.20221111.001
Citation: ZHANG Yang, ZHANG Junshuang, MA Chongpan, et al. Chemical degradation and recovery of carbon fiber reinforced epoxy resin matrix composites containing ester bond[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5026-5034. doi: 10.13801/j.cnki.fhclxb.20221111.001

碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收

doi: 10.13801/j.cnki.fhclxb.20221111.001
基金项目: 国家自然科学基金(52102033);装备预研教育部联合基金(6141 A02033231)National Natural Science Foundation of China (52102033); Joint Fund of Ministry of Education for Equipment Research (6141 A02033231)
详细信息
    通讯作者:

    王宇,博士,副教授,硕士生导师,研究方向为聚丙烯腈基碳纤维及其复合材料 E-mail:wangy@mail.buct.edu.cn

  • 中图分类号: TQ342.31;TB332

Chemical degradation and recovery of carbon fiber reinforced epoxy resin matrix composites containing ester bond

  • 摘要: 随着环氧树脂基碳纤维复合材料的广泛应用,其废旧产品的回收成为低碳发展的重要问题。采用GC-MS、FTIR、XPS、SEM等表征方法研究了含酯键的环氧树脂基碳纤维复合材料的树脂降解机制及降解过程对回收碳纤维结构和性能的影响。研究结果表明:在苯甲醇用量120 mL、质量比W(NaOH)∶W(ZnCl2)=1∶1和降解温度190℃的前提下,最佳降解时间为1 h,较优的降解配方为NaOH和树脂均为1 g。降解得到的产物静置分层,上层清液的苯甲醇含量达99%;环氧树脂的降解机制为苯甲醇在碱性环境下电离生成苄氧基,苄氧基进攻环氧树脂中的酯键,发生酯交换反应,使酯键断裂实现降解,生成苯甲醇酯及醇阴离子,苯甲醇酯在碱性环境下发生皂化反应重新生成苯甲醇,酯交换反应和皂化反应重复进行,直至最终降解完成;回收碳纤维与原始碳纤维的表面O/C、表面光洁程度均在一个水平,回收碳纤维的强度保留率达97%。

     

  • 图  1  降解时间对环氧树脂基体降解率的影响

    Figure  1.  Effect of degradation time on degradation rate of epoxy resin matrix

    Benzyl alcohol 120 mL, mass ratio W(NaOH)∶ W(ZnCl2)=1∶1, NaOH 1 g, ZnCl2 1 g, composite materials 2 g

    图  2  NaOH加入量对环氧树脂基体降解率的影响

    Figure  2.  Effect of NaOH dosage on degradation rate of epoxy resin matrix

    图  3  回收所得上清液与纯苯甲醇的FTIR图谱

    Figure  3.  FTIR spectra of recovered supernatant and pure benzyl alcohol

    图  4  降解后溶液下层的胶状产物的液质联用测试结果: (a) 正离子;(b) 负离子

    Figure  4.  Results of LC-MS of degraded and recovered colloid: (a) Positive ion; (b) Negative ion

    m/z—Mass-to-charge ratio

    图  5  降解回收胶体与纯环氧树脂的FTIR图谱

    Figure  5.  FTIR spectra of degraded and recovered colloid and pure epoxy resin

    图  6  环氧树脂基体降解过程机制图

    Figure  6.  Schematic diagram of degradation process of epoxy resin matrix

    图  7  原始碳纤维和降解回收碳纤维的表面形貌对比图

    Figure  7.  Comparison diagram of surface morphology of original carbon fiber and degraded carbon fiber

    表  1  碳纤维复合材料环氧树脂降解后所得碳纤维力学性能和表面理化结构与原始碳纤维对比表

    SampleTensile strength of monofilament/GPaElement contentsurface morphology
    C/%O/%C/O
    Initial carbon fibers3.44±0.0884.6513.260.157
    Recycled carbon fibers3.34±0.1084.5113.360.158
    下载: 导出CSV

    表  1  碳纤维复合材料降解1 h后上清液的GC-MS结果

    Table  1.   GC-MS results of supernatant after 1 h degradation of carbon fiber composite

    Sequence numberRetention time/minComponents’ nameMolecular structureContent mol/%
    18.460Benzaldehyde0.101
    29.842Benzyl alcohol99.878
    Others0.021
    下载: 导出CSV

    表  2  降解前后碳纤维表面的元素含量

    Table  2.   Element content of carbon fiber surface before and after degradation

    SampleDegradation rate/%C/%O/%C/O
    Initial carbon fibers84.6513.260.157
    Recycled carbon fibers (W(NaOH):W(Resin)=1∶1)10084.5113.360.158
    Recycled carbon fibers (W(NaOH):W(Resin)=0.1∶1) 75.780.4017.340.216
    下载: 导出CSV

    表  3  原始碳纤维和降解回收碳纤维的单丝拉伸强度对比

    Table  3.   Comparison of tensile strength of carbon fiber monofilament before and after degradation

    SampleDegradation rate/%Tensile strength of monofilament/GPa
    Initial carbon fibers3.44±0.08
    Recycled carbon fibers
    (W(NaOH)∶W(Resin)=1∶1)
    1003.34±0.10
    下载: 导出CSV
  • [1] 肖杰, 施涵, 余许多, 等. 碳纤维增强环氧树脂基复合材料轴管的低速冲击失效机制及剩余压缩性能[J]. 复合材料学报, 2021, 38(11):3640-3651.

    XIAO Jie, SHI Han, YU Xuduo, et al. Failure mechanisms and residual compression performance of carbon fiber reinforced epoxy composite shaft tubes subjected to low velocity impact[J]. Acta Materiae Compositae Sinica,2021,38(11):3640-3651(in Chinese).
    [2] YANG Jie, LIU Jie, LIU Wenbin, et al. Recycling of carbon fiber reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2015,112:253-261. doi: 10.1016/j.jaap.2015.01.017
    [3] 李望南, 卢少娟, 蔡洪能, 等. 碳纤维增强树脂基复合材料组分疲劳强度表征[J]. 复合材料学报, 2018, 35(2):356-363.

    LI Wangnan, LU Shaojuan, CAI Hongneng, et al. Characterization of the constituent fatigue strength of carbon fiber reinforced polymer composite[J]. Acta Materiae Compo-sitae Sinica,2018,35(2):356-363(in Chinese).
    [4] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316.

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese).
    [5] 赵晓青. 碳纤维复合材料回收再利用的现状分析[J]. 化工设计通讯, 2020, 46(10):30-31. doi: 10.3969/j.issn.1003-6490.2020.10.019

    ZHAO Xiaoqing. Analysis of the status quo of recycling and reuse of carbon fiber composite materials[J]. Chemical Engineering Design Communications,2020,46(10):30-31(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.10.019
    [6] 胡侨乐, 端玉芳, 刘志, 等. 碳纤维增强聚合物基复合材料回收再利用现状[J]. 复合材料学报, 2022, 39(1):64-76. doi: 10.13801/j.cnki.fhclxb.20210615.003

    HU Qiaole, DUAN Yufang, LIU Zhi, et al. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing[J]. Acta Materiae Compositae Sinica,2022,39(1):64-76(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210615.003
    [7] MAY D, GOERGEN C, FRIEDRICH K. Multifunctionality of polymer composites based on recycled carbon fibers: A review[J]. Advanced Industrial and Engineering Polymer Research,2021,4(2):70-81.
    [8] WANG Yunfeng, WANG Yiwei, XU Lianghua, et al. Radial adjustment of PAN preoxygenated structure and its effect on the properties of carbon fibers[J]. New Carbon Materials,2021,36(4):827-834. doi: 10.1016/S1872-5805(20)60516-9
    [9] RUAN Ruyu, YE Lianwei, FENG Hai, et al. High tempera-ture evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mecha-nical properties[J]. New Carbon Materials,2020,35(3):295-306. doi: 10.1016/S1872-5805(20)60491-7
    [10] LIU Yuyao, HE Jia, LI Yidong, et al. Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite[J]. Compo-sites Communications,2020,22:100445. doi: 10.1016/j.coco.2020.100445
    [11] 叶联葳, 王宇. 超临界流体法降解碳纤维复合材料概述[J]. 化工新型材料, 2019, 47(S1):11-15.

    YE Lianwei, WANG Yu. Degradation of carbon fiber composite by supercritical fluid[J]. New Chemical Materials,2019,47(S1):11-15(in Chinese).
    [12] LI Wenbin, XIAO Laihui, HANG Jinrui, et al. Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship[J]. Composites Science and Technology,2022,227:109575. doi: 10.1016/j.compscitech.2022.109575
    [13] YAMAGUCHI A, HASHIMOTO T, KAKICHI Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: Synthesis, properties, and chemical recycling[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2015,53(8):1052-1059. doi: 10.1002/pola.27575
    [14] LI Pengyun, MA Songqi, WANG Binbo, et al. Degradable benzyl cyclic acetal epoxy monomers with low viscosity: Synthesis, structure-property relationships, application in recyclable carbon fiber composite[J]. Composites Science and Technology,2022,219:109243. doi: 10.1016/j.compscitech.2021.109243
    [15] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706.

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese).
    [16] 曹辉, 王勇. 浅谈碳纤维在复合材料行业中应用前景[J]. 信息系统工程, 2017(9):107. doi: 10.3969/j.issn.1001-2362.2017.09.083

    CAO Hui, WANG Yong. Application prospect of carbon fiber in composite material industry[J]. China CIO News,2017(9):107(in Chinese). doi: 10.3969/j.issn.1001-2362.2017.09.083
    [17] HUANG Yongxin, ZHAO Luzi, XIE Man, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials,2019,31(21):e1808393. doi: 10.1002/adma.201808393
    [18] 李大伟. 碳纤维复合材料回收利用现状[J]. 当代化工研究, 2022(12):40-42. doi: 10.3969/j.issn.1672-8114.2022.12.014

    LI Dawei. Status quo of recycling and utilization of carbon fiber composites[J]. Modern Chemical Research,2022(12):40-42(in Chinese). doi: 10.3969/j.issn.1672-8114.2022.12.014
    [19] 张建川. 聚合物基碳纤维复合材料废弃物的几种处理方法分析[J]. 材料科学与工程学报, 2011, 29(4):577-585.

    ZHANG Jianchuan. Analysis of treatment methods for carbon fiber reinforced polymer composite wastes[J]. Jour-nal of Materials Science and Engineering,2011,29(4):577-585(in Chinese).
    [20] KIM K W, JEONG J S, AN K H, et al. A low energy recycling technique of carbon fibers-reinforced epoxy matrix composites[J]. Industrial& Engineering Chemistry Research,2018,58(2):618-624.
    [21] 李丽英, 尹先鹏, 汪东, 等. 碳纤维增强树脂基复合材料回收技术研究进展[J]. 化工新型材料, 2021, 49(9):20-22, 27.

    LI Liying, YIN Xianpeng, WANG Dong, et al. Research progress on recovery technology of carbon fiber reinforced plastic[J]. New Chemical Materials,2021,49(9):20-22, 27(in Chinese).
    [22] JIANG Jianjun, DENG Guoli, CHEN Xing, et al. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition[J]. Composites Science and Technology,2017,151:243-251. doi: 10.1016/j.compscitech.2017.08.007
    [23] WANG Yuqi, CUI Xiaojing, YANG Qiqi, et al. Chemical recycling of unsaturated polyester resin and its composites via selective cleavage of the ester bond[J]. Green Che-mistry,2015,17(9):4521-4532.
    [24] DORIGATO A. Recycling of thermosetting composites for wind blade application[J]. Advanced Industrial and Engi-neering Polymer Research,2021,4(2):116-132.
    [25] 惠林海, 张璐, 李华, 等. 碳纤维增强树脂复合材料废弃物回收技术研究现状[J]. 工程塑料应用, 2020, 18(8):149-152. doi: 10.3969/j.issn.1001-3539.2020.08.028

    HUI Linhai, ZHANG Lu, LI Hua, et al. Research status of waste recovery technology of carbon fiber reinforced resin composites[J]. Application of Engineering Plastics,2020,18(8):149-152(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.08.028
    [26] 张亚东. 碳纤维复合材料的回收与再利用技术研究[J]. 广东化工, 2022, 49(10):26-27, 52. doi: 10.3969/j.issn.1007-1865.2022.10.009

    ZHANG Yadong. Study on recycling and reuse technology of carbon fiber reinforced plastic[J]. Guangdong Chemical,2022,49(10):26-27, 52(in Chinese). doi: 10.3969/j.issn.1007-1865.2022.10.009
    [27] MARION P, CYRIL A, ANNE L S, et al. Environmental feasibility of the recycling of carbon fibers from CFRPs by solvolysis using supercritical water[J]. American Chemical Society,2014,2(6):1498-1502.
    [28] 黄海鸿, 赵志培, 成焕波, 等. 超临界流体对碳纤维/环氧树脂复合材料的降解作用[J]. 复合材料学报, 2016, 33(8):1621-1629.

    HUANG Haihong, ZHAO Zhipei, CHENG Huanbo, et al. Degradation of carbon fiber/epoxy resin composites by supercritical fluid[J]. Acta Materiae Compositae Sinica,2016,33(8):1621-1629(in Chinese).
    [29] 张璐, 王海常, 李华, 等. 超临界流体回收碳纤维树脂复合材料[J]. 应用化学, 2020, 37(12):1357-1363. doi: 10.11944/j.issn.1000-0518.2020.12.200173

    ZHANG Lu, WANG Haichang, LI Hua, et al. Progress of recycling of carbon fiber/resin composites via supercritical fluid[J]. Chinese Journal of Applied Chemistry,2020,37(12):1357-1363(in Chinese). doi: 10.11944/j.issn.1000-0518.2020.12.200173
    [30] YE Lianwei, WANG Ke, FENG Hai, et al. Recycling of carbon fiber-reinforced epoxy resin-based composites using a benzyl alcohol/alkaline system[J]. Fibers and Polymers,2021,22(3):811-818. doi: 10.1007/s12221-021-0266-9
    [31] WANG Yu, YAN Tao, WU Shuai, et al. Stretching deformation mechanism of polyacrylonitrile-based carbon fiber structure at high temperatures[J]. Fibers and Polymers,2018,19(4):751-759. doi: 10.1007/s12221-018-7988-3
    [32] 中国国家标准化管理委员会. 碳纤维增强塑料树脂含量试验方法: GB/T 3855—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Test method for resin content of carbon fiber reinforced plastics: GB/T 3855—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [33] 中国国家标准化管理委员会. 碳纤维单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2014.
    Standardization Administration of China. Determination of tensile properties of carbon fiber monofilament: GB/T 31290—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1024
  • HTML全文浏览量:  360
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-10-29
  • 录用日期:  2022-11-06
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回