留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP-ECC复合约束混凝土圆柱反复受压力学性能

惠迎新 王文炜 朱忠锋

惠迎新, 王文炜, 朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 惠迎新, 王文炜, 朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能[J]. 复合材料学报, 2022, 40(0): 1-14
Yingxin HUI, Wenwei WANG, Zhongfeng ZHU. Cyclic compression behavior of FRP-ECC confined concrete cylinder[J]. Acta Materiae Compositae Sinica.
Citation: Yingxin HUI, Wenwei WANG, Zhongfeng ZHU. Cyclic compression behavior of FRP-ECC confined concrete cylinder[J]. Acta Materiae Compositae Sinica.

FRP-ECC复合约束混凝土圆柱反复受压力学性能

基金项目: 国家自然科学基金 (52108230;51878156);宁夏自治区重点研发计划项目(2020 BFG02005)
详细信息
    通讯作者:

    朱忠锋,博士,研究方向为纤维混凝土及FRP复合材料在桥梁结构中的研究与应用 E-mail: zhongfeng.zhu@szu.edu.cn

  • 中图分类号: TB528;TU599

Cyclic compression behavior of FRP-ECC confined concrete cylinder

Funds: National Natural Science Foundation of China (52108230;51878156); Key Research & Development Plan Project of Ningxia Hui Autonomous Region of China (2020BFG02005)
  • 摘要: 考虑核心柱混凝土强度等级、碳纤维增强树脂复合材料(FRP)网格层数、反复荷载形式等因素,对FRP网格与工程水泥基复合材料(ECC)复合增强混凝土圆柱进行了轴向受压试验,研究约束圆柱的承载力和变形能力。试验结果表明,约束柱的破坏形态表现为FRP柔性网格断裂;随着网格层数的增加,约束柱的极限荷载和变形性能分别提高2%~35%和77%~145%;随着核心混凝土强度等级的提高,复合约束柱的极限承载力提高幅度降低。此外,根据试验结果并结合FRP约束混凝土的应力-应变关系模型,本文针对FRP-ECC复合约束圆柱在反复荷载作用下提出了相应的强度模型和应力-应变关系包络线模型。分析结果表明,模型所得轴向应力-轴向应变以及轴向应力-环向应变关系曲线均与试验值吻合良好。

     

  • 图  1  荷载形式

    Figure  1.  Load schemes

    图  2  CFRP-ECC轴拉应力-应变曲线[28]

    Figure  2.  Stress-strain curves of CFRP-ECC[28]

    图  3  圆柱增强过程(a)模具;(b)预处理;(c)缠网格;(d)增强柱

    Figure  3.  Strengthening of cylinder (a) Mould; (b) Pretreatment; (c) Wrapping textile; (d) Strengthening cylinder

    图  4  试验测试装置

    Figure  4.  Test setup

    图  5  CFRP-ECC复合约束混凝土圆柱破坏形态:(a) 无约束柱;(b) 2层增强;(c)3层增强;(d)主裂缝

    Figure  5.  Failure mode of CFRP-ECC confined column: (a) Unconfined column; (b) 2 layers strengthening; (c) 3 layers strengthening; (d) Main crack

    图  6  CFRP-ECC复合约束混凝土圆柱荷载-位移曲线

    Figure  6.  Load-deformation curves of CFRP-ECC confined column

    图  7  CFRP-ECC复合约束混凝土圆柱应力-应变曲线

    Figure  7.  Stress-strain curves of CFRP-ECC confined column

    图  8  CFRP-ECC复合约束混凝土圆柱应力-应变关系

    Figure  8.  Stress-strain relationship of CFRP-ECC confined column

    图  9  CFRP-ECC复合约束混凝土圆柱单调荷载下模型与试验对比[33]

    Figure  9.  Comparison between model and test results of CFRP-ECC confined cylinders under monotonic loading

    图  10  CFRP-ECC复合约束混凝土圆柱极限应力/应变分析

    Figure  10.  Analysis of CFRP-ECC confined cylinders’ ultimate stress/strain

    图  11  CFRP-ECC复合约束混凝土圆柱截距应力$ {f_0} $

    Figure  11.  Intercept stress $ {f_0} $ of CFRP-ECC confined cylinders

    图  12  CFRP-ECC复合约束混凝土圆柱峰值后曲线斜率$ {E_3} $

    Figure  12.  Slope of post-peak curve $ {E_3} $ of CFRP-ECC confined cylinders

    图  13  CFRP-ECC复合约束混凝土圆柱轴向-环向应变关系

    Figure  13.  Axial-lateral strain relationship of CFRP-ECC confined cylinders

    图  14  CFRP-ECC复合约束混凝土圆柱再加载应力与初始卸载点应力关系

    Figure  14.  Initial unload stress vs. reload stress of CFRP-ECC confined cylinders

    图  15  CFRP-ECC复合约束混凝土圆柱残余应变与初始卸载点应变关系

    Figure  15.  Initial unload strain vs. residual plastic strain of CFRP-ECC confined cylinders

    图  16  CFRP-ECC复合约束混凝土圆柱应力-应变关系对比

    Figure  16.  Comparison of stress-strain curves of CFRP-ECC confined cylinders

    表  1  ECC配合比

    Table  1.   Mix proportion of ECC kg/m3

    WaterCementSandWater reducerFly ashFiberSilica fume
    3303513174.510522640
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Expremental program

    IDNumber in
    each group
    CFRP
    layer
    ECC
    Thick-ness /mm
    2 CFRP-ECC-C35(A)3210
    3 CFRP-ECC-C35(A)33
    1 CFRP-ECC-C35(B)31
    2 CFRP-ECC-C35 (B)32
    3 CFRP-ECC-C35 (B)33
    1 CFRP-ECC-C55(B)31
    2 CFRP-ECC-C55 (B)32
    3 CFRP-ECC-C55 (B)33
    Notes:For the ID: the first number represents the layer of CFRP textile; CFRP-ECC represents the strengthening CFRP-ECC composite layer; C35 and C55 represent the strength grade of core concrete; A and B represent the loading scheme.
    下载: 导出CSV

    表  3  素混凝土强度

    Table  3.   Compressive strength of plain concrete

    ID$ \varepsilon _{{\text{co}}}^{{'}} $
    /%
    $ f_{{\text{co}}}^{{'}} $
    /MPa
    Average150 mm cube strength
    $ \varepsilon _{{\text{co}}}^{{'}} $/%$f_{ {\text{co} } }^{{'} }$/MPa
    C350.3525.750.3228.7436.38C35
    0.2831.44
    0.3229.03
    C550.2448.410.2446.6759.08C55
    0.2844.61
    0.2146.99
    Notes:$ \varepsilon _{{\text{co}}}^{{'}} $and$ f_{{\text{co}}}^{{'}} $are the peak strain and stress of plain concrete; the conversion ratio between cylinder and cube is 0.79[43].
    下载: 导出CSV

    表  4  CFRP-ECC复合约束混凝土圆柱试验数据

    Table  4.   Test results of CFRP-ECC confined columns

    ID$ \varepsilon _{\text{l}}^{} $
    /%
    $ \varepsilon _{{\text{cc}}}^{} $
    /%
    $f_{ {\text{cc} } }^{{'} }$
    /MPa
    Average$\dfrac{ {\varepsilon _{ {\text{cc} } }^{} } }{ {\varepsilon _{ {\text{co} } }^{ {'} } } }$$\dfrac{ {f_{ {\text{cc} } }^{ {'} } } }{ {f_{ {\text{co} } }^{ {'} } } }$
    $ \varepsilon _{\text{l}}^{} $
    /%
    $ \varepsilon _{{\text{cc}}}^{} $
    /%
    $ f_{{\text{cc}}}^{} $
    /MPa
    1 CFRP-ECC-C35(B)-11.060.7033.11.070.5631.11.771.08
    1 CFRP-ECC-C35(B)-21.010.3929.1
    1 CFRP-ECC-C35(B)-31.130.6031.0
    2 CFRP-ECC-C35(B)-10.960.7130.11.060.6731.22.121.09
    2 CFRP-ECC-C35(B)-21.160.6332.3
    3 CFRP-ECC-C35(B)-10.780.7337.20.860.7637.72.401.31
    3 CFRP-ECC-C35(B)-20.950.6036.4
    3 CFRP-ECC-C35(B)-30.850.9539.5
    2 CFRP-ECC-C55(B)-10.2547.80.970.4649.11.891.05
    2 CFRP-ECC-C55(B)-21.150.6749.8
    2 CFRP-ECC-C55(B)-30.780.4649.6
    3 CFRP-ECC-C55(B)-10.880.5147.30.880.5147.52.101.02
    3 CFRP-ECC-C55(B)-20.2945.4
    3 CFRP-ECC-C55(B)-30.880.5149.8
    2 CFRP-ECC-C35(A)-10.800.7034.61.010.5834.11.831.19
    2 CFRP-ECC-C35(A)-21.090.5634.1
    2 CFRP-ECC-C35(A)-31.150.4833.8
    3 CFRP-ECC-C35(A)-10.710.7938.11.010.7838.72.451.35
    3 CFRP-ECC-C35(A)-21.300.7639.3
    下载: 导出CSV

    表  5  CFRP-ECC复合约束混凝土圆柱模型和试验结果对比

    Table  5.   Comparison of model and test results of CFRP-ECC confined cylinders

    IDTestPredictionPrediction/Test
    $ \varepsilon _{{\text{cc}}}^{} $
    /%
    $f_{ {\text{cc} } }^{{'} }$
    /MPa
    $ \varepsilon _{{\text{cc}}}^{} $
    /%
    $f_{ {\text{cc} } }^{{'} }$
    /MPa
    $ {\varepsilon _{{\text{cc}}}} $$f_{ {\text{cc} } }^{{'} }$
    1 CFRP-ECC-C35(B)0.5631.060.5331.720.941.02
    2 CFRP-ECC-C35(B)0.6731.190.6534.840.971.12
    3 CFRP-ECC-C35(B)0.7637.680.7838.331.031.02
    2 CFRP-ECC-C55(B)0.4649.070.4548.980.981.00
    3 CFRP-ECC-C55(B)0.5147.500.5351.131.041.08
    2 CFRP-ECC-C35(A)0.5834.130.6534.841.131.02
    3 CFRP-ECC-C35(A)0.7838.700.7838.331.010.99
    Mean1.011.04
    SD0.060.03
    CoV0.0550.034
    Note: Mean is the average value; SD is the standard deviation; CoV is the coefficient of variation.
    下载: 导出CSV
  • [1] TAELJSTEN B, BLANKSVAERD T. Mineral-Based Bonding of Carbon FRP to Strengthen Concrete Structures[J]. Journal of Composites for Construction,2007,11(2):120-128. doi: 10.1061/(ASCE)1090-0268(2007)11:2(120)
    [2] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction Building Materials,2018,158:217-227. doi: 10.1016/j.conbuildmat.2017.10.040
    [3] POURFALAH S. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J]. Construction Building Materials,2018,158(jan.15):921-937.
    [4] ZHOU Y W, XI B, YU K Q, et al. Mechanical properties of hybrid ultra-high performance engineered cementitous composites incorporating steel and polyethylene fibers[J]. Materials (Basel),2018,11(8):1448. doi: 10.3390/ma11081448
    [5] ZHOU Y, ZHENG Y, SUI L, et al. Behavior and modeling of FRP-confined ultra-lightweight cement composites under monotonic axial compression[J]. Composites Part B:Engineering,2019,162:289-302. doi: 10.1016/j.compositesb.2018.10.087
    [6] 徐世烺, 蔡新华. 超高韧性水泥基复合材料碳化与渗透性能试验研究[J]. 复合材料学报, 2010, 27(3):177-183.

    XU Shilang, CAI Xinhua. Experimental studies on permeability and carbonation properties of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica,2010,27(3):177-183(in Chinese).
    [7] MA H, ZHANG Z G. Paving an engineered cementitious composite (ECC) overlay on concrete airfield pavement for reflective cracking resistance[J]. Construction and Building Materials,2020,252:119048. doi: 10.1016/j.conbuildmat.2020.119048
    [8] LIU Y M, ZHANG Q H, BAO Y, et al. Static and fatigue push-out tests of short headed shear studs embedded in Engineered Cementitious Composites (ECC)[J]. Engineering Structures,2019,182:29-38. doi: 10.1016/j.engstruct.2018.12.068
    [9] LIU H Z, ZHANG Q, LI V, et al. Durability study on engineered cementitious composites (ECC) under sulfate and chloride environment[J]. Construction and Building Materials,2017,133:171-181. doi: 10.1016/j.conbuildmat.2016.12.074
    [10] QIU J S, YANG E H. Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC)[J]. Cement and Concrete Research,2017,95:65-74. doi: 10.1016/j.cemconres.2017.02.029
    [11] SINGH M, SAINI B, CHALAK H D. Performance and composition analysis of engineered cementitious composite (ECC) – A review[J]. Journal of Building Engineering,2019,26:100851. doi: 10.1016/j.jobe.2019.100851
    [12] ZHANG D, YU J, WU H, et al. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC)[J]. Composites Part B:Engineering,2020,184:107741. doi: 10.1016/j.compositesb.2020.107741
    [13] 刘少龙. 级配复合水泥基 ECC 的设计制备及其微观力学与拉伸行为的研究 [D]. 中国; 华南理工大学, 2020.

    LIU Shaolong. On the design and preparation, microstructure and tensile behaviors of gap-graded cement-based engineered cementitious composite [D]. China, Souht China University of Technology, 2020 (in Chinese).
    [14] 徐世烺, 刘问. 超高韧性水泥基复合材料疲劳损伤模型试验 [J]. 中国公路学报, 2011, 24(6): 1-8.

    XU Shilang, LIU Wen. Fatigue damage model test of ultra-high toughness cmentitious composites [J]. China Journal of Highway and Transport, 24(6): 1-8 (in Chinese).
    [15] CHEN Y, YAO J, LU Z, et al. Experimental study on the shrinkage reduction of high strength strain-hardening cementitious composites[J]. Cement and Concrete Composites,2019,104:103416. doi: 10.1016/j.cemconcomp.2019.103416
    [16] DING Y, YU J T, YU K Q, et al. Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa[J]. Composite Structures,2018,185:634-645. doi: 10.1016/j.compstruct.2017.11.034
    [17] DING Y, YU K Q, YU J T, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study[J]. Construction and Building Materials,2018,177:102-115. doi: 10.1016/j.conbuildmat.2018.05.122
    [18] GUO M H, ZHONG Q L, ZHOU Y W, et al. Influence of flexural loading and chloride exposure on the fatigue behavior of high-performance lightweight engineered cementitious composites[J]. Construction and Building Materials,2020,249:118512. doi: 10.1016/j.conbuildmat.2020.118512
    [19] HUANG B T, LI Q H, XU S L, et al. Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression[J]. Materials & Design,2018,157:457-468.
    [20] LI X, ZHOU X, TIAN Y, et al. A modified cyclic constitutive model for engineered cementitious composites[J]. Engineering Structures,2019,179:398-411. doi: 10.1016/j.engstruct.2018.09.030
    [21] ZHANG Z G, YANG F, LIU J C, et al. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research,2020:137.
    [22] TIAN J, WU X, ZHENG Y, et al. Investigation of damage behaviors of ECC-to-concrete interface and damage prediction model under salt freeze-thaw cycles[J]. Construction and Building Materials,2019,226:238-249. doi: 10.1016/j.conbuildmat.2019.07.237
    [23] TIAN J, WU X, ZHENG Y, et al. Investigation of interface shear properties and mechanical model between ECC and concrete[J]. Construction and Building Materials,2019,223:12-27. doi: 10.1016/j.conbuildmat.2019.06.188
    [24] BOSHOFF W P, NIEUWOUDT P D, FILHO R T, et al. Tensile crack widths of strain hardening cement-based composites [J]. Materials & Structures, 2011.
    [25] 朱忠锋, 王文炜. 玄武岩格栅增强水泥基复合材料单轴拉伸力学性能试验及本构关系模型[J]. 复合材料学报, 2017, 34(10):2367-2374.

    ZHU Zhongfeng, WANG Wenwei. Experiment on the uniaxial tensile mechanical behavior of basalt grid reinforced engineered cementitious composites and its constitutive model[J]. Acta Materiae Compositae Sinica,2017,34(10):2367-2374(in Chinese).
    [26] CHEN C, CAI H Y, LI J J, et al. One-dimensional extended FEM based approach for predicting the tensile behavior of SHCC-FRP composites[J]. Engineering Fracture Mechanics,2020,225:106775. doi: 10.1016/j.engfracmech.2019.106775
    [27] 朱忠锋, 王文炜, 郑宇宙, 等. 基于非接触式观测技术的FRP_ECC复合材料反复受拉本构关系模型[J]. 土木工程学报, 2019, 52(10):36-45,55.

    ZHU Zhongfeng, WANG Wenwei, ZHENG Yuzhou, et al. The constitutive model of FRP/ECC composite materials under uniaxial cyclic tensile loading based on the digital image correlation technique[J]. China Civil Engineering Journal,2019,52(10):36-45,55(in Chinese).
    [28] ZHU Z F, WANG W W, HARRIES K A, et al. Uniaxial Tensile Stress–Strain Behavior of Carbon-Fiber Grid–Reinforced Engineered Cementitious Composites [J]. Journal of Composites for Construction, 2018, 22(6).
    [29] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12):3220-3228.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica,2020,37(12):3220-3228(in Chinese).
    [30] 夏立鹏, 张黎飞, 郑愚. CFRP增强工程水泥基复合材料桥面连接板的结构和性能[J]. 复合材料学报, 2019, 36(4):848-859.

    XIA Lipeng, ZHANG Lifei, ZHENG Yu. Structural performance of CFRP reinforced ECC link slabs in jointless bridge decks[J]. Acta Materiae Compositae Sinica,2019,36(4):848-859(in Chinese).
    [31] 朱忠锋, 王文炜. FRP编织网/ECC复合加固钢筋混凝土圆柱力学性能的试验[J]. 东南大学学报(自然科学版), 2016, 46(5):1082-1087.

    ZHU Zhongfeng, WANG Wenwei. Experimental study on mechanical behaviour of circular reinforced concrete columns strengthened with FRP textile and ECC[J]. Journal of Southeast University (Natural Science Edition),2016,46(5):1082-1087(in Chinese).
    [32] YUAN F, CHEN M C, PAN J L. Experimental study on seismic behaviours of hybrid FRP–steel-reinforced ECC–concrete composite columns[J]. Composites Part B:Engineering,2019:176.
    [33] ZHU Z F, WANG W W, HUI Y X, et al. Mechanical behavior of concrete columns confined with CFRP grid-reinforced engineered cementitious composites [J]. Journal of Composites for Construction, 2022, 26(1).
    [34] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by extile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese).
    [35] HUANG B T, LI Q H, XU S L, et al. Development of reinforced ultra-high toughness cementitious composite permanent formwork: Experimental study and Digital Image Correlation analysis[J]. Composite Structures,2017,180:892-903. doi: 10.1016/j.compstruct.2017.08.016
    [36] ZHENG Y Z, WANG W W, BRIGHAM J C. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC[J]. Construction Building Materials,2016,115(jul.15):424-437.
    [37] ZHENG Y Z, WANG W W, MOSALAM K M, et al. Mechanical behavior of ultra-high toughness cementitious composite strengthened with Fiber Reinforced Polymer grid[J]. Composite Structures,2018,184:1-10. doi: 10.1016/j.compstruct.2017.09.073
    [38] HU B, ZHOU Y W, XING F, et al. Experimental and theoretical investigation on the hybrid CFRP-ECC flexural strengthening of RC beams with corroded longitudinal reinforcement[J]. Engineering Structures,2019,200:109717. doi: 10.1016/j.engstruct.2019.109717
    [39] QIN F J, ZHANG Z G, YIN Z W, et al. Use of high strength, high ductility engineered cementitious composites (ECC) to enhance the flexural performance of reinforced concrete beams[J]. Journal of Building Engineering,2020,32:101746. doi: 10.1016/j.jobe.2020.101746
    [40] YUAN F, CHEN M C, PAN J L. Flexural strengthening of reinforced concrete beams with high-strength steel wire and engineered cementitious composites[J]. Construction and Building Materials,2020,254:119284. doi: 10.1016/j.conbuildmat.2020.119284
    [41] LIN Y W, WOTHERSPOON L, SCOTT A, et al. In-plane strengthening of clay brick unreinforced masonry wallettes using ECC shotcrete[J]. Engineering Structures,2014,66(MAY):57-65.
    [42] DENG M K, DONG Z F, MA P. Cyclic loading tests of flexural-failure dominant URM walls strengthened with engineered cementitious composite[J]. Engineering Structures,2019,194:173-182. doi: 10.1016/j.engstruct.2019.05.073
    [43] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081-2002 [S]. 中国, 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete. [S]. China. China Architecture & Publishing Press, 2003 (in Chinese).
    [44] ZHOU Y W, WU Y F. General model for constitutive relationships of concrete and its composite structures[J]. Composite Structures,2012,94(2):580-592. doi: 10.1016/j.compstruct.2011.08.022
    [45] ZHOU Y, LIU X, XING F, et al. Axial compressive behavior of FRP-confined lightweight aggregate concrete: An experimental study and stress-strain relation model[J]. Construction and Building Materials,2016,119:1-15. doi: 10.1016/j.conbuildmat.2016.02.180
    [46] LI P D, WU Y F, ZHOU Y W, et al. Stress-strain model for FRP-confined concrete subject to arbitrary load path[J]. Composites Part B:Engineering,2019,163:9-25. doi: 10.1016/j.compositesb.2018.11.002
    [47] LI P D, SUI L L, XING F, et al. Stress–strain relation of FRP-confined predamaged concrete prisms with square sections of different corner radii subjected to monotonic axial compression[J]. Journal of Composites for Construction,2019,23(2):04019001. doi: 10.1061/(ASCE)CC.1943-5614.0000921
    [48] LAM L, TENG J. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns[J]. Journal of reinforced plastics composites in construction,2003,22(13):1149-1186. doi: 10.1177/0731684403035429
    [49] WU Y F, YUN Y C, WEI Y Y, et al. Effect of predamage on the stress-strain relationship of confined concrete under monotonic loading[J]. Journal of Structural Engineering,2014,140(12):04014093. doi: 10.1061/(ASCE)ST.1943-541X.0001015
    [50] TENG J G, HUANG Y L, LAM L, et al. Theoretical Model for Fiber-Reinforced Polymer-Confined Concrete [J]. 2007, 11(2): 201-210.
    [51] DAI J, BAI Y, TENG J G. Behavior and Modeling of Concrete Confined with FRP Composites of Large Deformability[J]. Journal of Composites for Construction,2011,15(6):963-973. doi: 10.1061/(ASCE)CC.1943-5614.0000230
    [52] SHAO Y, ZHU Z, MIRMIRAN A. Cyclic modeling of FRP-confined concrete with improved ductility[J]. Cement and Concrete Composites,2006,28(10):959-968. doi: 10.1016/j.cemconcomp.2006.07.009
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 录用日期:  2022-04-29
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-05-28

目录

    /

    返回文章
    返回