Fe3O4纳米材料在印染废水处理中的研究进展

宋杰枫, 李皓天, 聂子聪, 李心如, 肖远淑

宋杰枫, 李皓天, 聂子聪, 等. Fe3O4纳米材料在印染废水处理中的研究进展[J]. 复合材料学报, 2025, 42(6): 3039-3051.
引用本文: 宋杰枫, 李皓天, 聂子聪, 等. Fe3O4纳米材料在印染废水处理中的研究进展[J]. 复合材料学报, 2025, 42(6): 3039-3051.
SONG Jiefeng, LI Haotian, NIE Zicong, et al. Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3039-3051.
Citation: SONG Jiefeng, LI Haotian, NIE Zicong, et al. Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3039-3051.

Fe3O4纳米材料在印染废水处理中的研究进展

基金项目: 新疆维吾尔自治区重点研发任务专项(2022B01045-4);新疆维吾尔自治区高校基本科研业务费科研项目(XJEDU2022P005)、(XJEDU2024P028);2023年国家级大学生创新训练计划项目(202310755020)
详细信息
    通讯作者:

    肖远淑,讲师,硕士研究生,研究方向为清洁染整与功能纺织品开发。 E-mail:xiaoyuanshu122@xju.edu.cn

  • 中图分类号: TB333

Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment

Funds: The Key Research and Development Special Task Project of Xinjiang (No. 2022B01045-4); Xinjiang Uygur Autonomous Region Colleges and Universities Basic Research Operating Expenses Scientific Research Projects (No.XJEDU2022P005)、(No.XJEDU2024P028);2023 National Innovative Training Program for College Students Project (202310755020)
  • 摘要:

    印染废水成分复杂,其中存在大量的有机染料和其他污染物,对环境和人体健康造成极大危害。传统的废水处理方法往往难以有效去除这些有机污染物,近年来,人们开始关注利用纳米材料来解决这一问题。Fe3O4纳米材料因具有磁性、生物相容性和光学特性等优异性能,已逐渐成为废水处理中具有巨大应用前景的新型材料。本文阐述了利用物理、化学、生物等方法制备出高质量Fe3O4纳米材料的过程,介绍了利用有机材料、无机材料、框架材料等对其进行改性的方法,用以解决材料易团聚的问题并提高其稳定性。综述了Fe3O4纳米材料在印染废水处理领域的最新应用研究进展,最后,对Fe3O4纳米材料的制备方法和应用研究进行了讨论,旨在为促进Fe3O4纳米材料的推广应用提供理论参考。

     

    Abstract:

    Printing and dyeing wastewater has a complex composition, in which there are a large number of organic dyes and other pollutants, causing great harm to the environment and human health. Traditional wastewater treatment methods are often difficult to effectively remove these organic pollutants, and in recent years, people have begun to pay attention to the use of nanomaterials to solve this problem. Fe3O4 nanomaterials have gradually become a new type of wastewater treatment materials with great prospects for application due to their excellent properties such as magnetism, biocompatibility and optical properties. This paper describes the process of preparing high-quality Fe3O4 nanomaterials using physical, chemical, and biological methods, and introduces the methods of modifying them organic, inorganic, and framework materials, etc. to solve the problem of easy agglomeration and improve their stability. The latest research progress on the application of Fe3O4 nanomaterials in the field of printing and dyeing wastewater treatment is summarized, and finally, the preparation methods and application studies of Fe3O4 nanomaterials are discussed, aiming to provide theoretical references to promote the popularization and application of Fe3O4 nanomaterials.

     

  • 航空航天工程、清洁电力等领域的飞速发展对大量采用的树脂基复合材料提出越来越高的性能要求。碳纤维(CF)具有高比强度、高比模量、化学稳定性好、耐候性佳等优点,是制造高性能、轻质量树脂基复合材料的重要增强体[1-2]。多壁碳纳米管(CNTs)的强度约为CF的15倍,比表面积约为CF的390倍,是树脂基体更理想的增强材料[3-4]。但CF和CNTs表面呈化学惰性,难以与聚合物基体实现有效的界面结合[5],且CNTs还易团聚,难以均匀分散在基体中[6],因此CF和CNTs的增强效果有限。近年来,将纳米尺度的CNTs接枝在微米尺度的CF表面形成CNTs-CF多尺度增强体,可以同时解决CNTs团聚及CF与基体接触面积小的问题,进而改善增强体与聚合物的界面结合,最终提高复合材料的整体性能[7]

    迄今为止,CNTs-CF多尺度增强体的制备方法主要有化学气相沉积法(CVD)、电泳沉积法、涂层法和化学接枝法[8-13]。其中,CVD工艺条件苛刻,成本较高,且制备过程中的高温环境和金属催化剂扩散都会导致CF强度降低[14];电泳沉积法制备的CNTs-CF多尺度增强体中CNTs仅以弱的范德华力接枝在CF表面,无法发挥出多尺度结构的优势[15];涂层法是先将CNTs分散在某种材料中,然后涂覆在CF上,因此无法有效解决CNTs的团聚问题,导致复合材料的性能提升不佳[16]。化学接枝法是通过化学键把CNTs接枝到CF表面,克服了其他方法中CNTs和CF结合弱的缺点,且工艺条件简单、成本低、对CF结构损伤小,成为制备CNTs-CF多尺度增强体的热门研究方向之一[17-20]。当前的化学接枝法中主要通过以下步骤获得CNTs-CF多尺度增强体:采用浓H2SO4和浓HNO3的混合酸等氧化剂改性CNTs和CF,但会损伤CNTs和CF的表面结构,降低CNTs-CF多尺度增强体的强度,且还存在强酸废液的处理问题;之后通过某种介质,如聚酰胺-胺树状大分子(PAMAM)[21]、六亚甲基二异氰酸酯(HDI)[22]、硅烷偶联剂KH-550[23]、聚丙烯亚胺(PPI)[24]等,桥接CNTs和CF,但大部分介质昂贵不易得。

    本文通过稀土Ce将多壁CNTs化学接枝在CF表面制备CNTs-CF多尺度增强体,实验方法简单清洁,成本低廉。稀土元素具有高的化学活性和大的配位数,结合之前的研究发现,稀土可使CF官能化[25],可以通过形成配位键成为硅基底与CNTs结合的中间介质[26-27]。本文采用CeCl3处理制备CNTs-CF多尺度增强体,以环氧树脂(EP)为基体,通过模压法得到CNTs-CF/EP复合材料,分析其力学性能和断口形貌,探讨CNTs-CF多尺度增强体对CNTs-CF/EP复合材料界面性能的影响。

    聚丙烯腈基无胶短碳纤维(CF),直径约为7.3 μm,长度约为0.5 mm,上海新兴炭素有限公司;多壁碳纳米管(CNTs),直径约为8 nm,长度约为20 μm,中国科学院成都有机化学有限公司;马来酰亚胺,上海阿拉丁生化科技有限公司;环氧树脂双酚A二缩水甘油醚(E-44)、固化剂聚酰胺树脂650,湖南八雄地新材料有限公司;无水CeCl3,纯度为99.99%,上海麦克林生物化学有限公司;甲苯、乙醇,分析纯,国药集团化学试剂有限公司。

    配制浓度为0.13 mol/L的马来酰亚胺甲苯溶液,然后将CNTs加入到马来酰亚胺甲苯溶液中,在100℃下加热反应3 h后,通过聚四氟乙烯(PTFE,0.22 μm)滤纸过滤,用无水乙醇洗涤数次,最后在60℃的烘箱中干燥12 h,获得马来酰亚胺官能化的CNTs(M-CNTs)。

    配制浓度为0.015 mol/L的CeCl3醇溶液,先将CF加入到CeCl3醇溶液中搅拌一段时间后,再加入M-CNTs,将上述混合物超声处理后在室温下静置数小时。反应完成后过滤,用无水乙醇多次洗涤,以去除过量的M-CNTs,最后在60℃的烘箱中干燥过夜,获得CNTs-CF多尺度增强体。同时,以不添加M-CNTs作为对照组,得到CeCl3改性的CF增强体(RECF)。

    按3∶97的质量比将CNTs-CF多尺度增强体和EP在容器中混合,以500 r/min的速度机械搅拌30 min后,再在70℃水浴中超声处理30 min。之后加入与EP质量比为1∶1的固化剂,快速搅拌均匀后,倒入PTFE拉伸测试样品模具中。将模具放置在真空度为−1 bar的烘箱中30 min,以排空气泡,然后在60℃的烘箱中放置8 h,取出模具冷却后获得CNTs-CF/EP复合材料。为了进行比较,以相同方法制备了EP、CF/EP复合材料和RECF/EP复合材料。

    采用日本岛津生产的IRAffinity-1型FTIR表征马来酰亚胺官能化的CNTs (扫描范围为400~4000 cm−1),分析改性前后CNTs表面官能团变化,样品采用KBr压片制样法制备。

    采用美国Thermo Fisher Scientific公司生产的ESCALAB 250Xi型XPS分析增强体的表面元素组成、含量和化学状态的变化,X射线源为AlKα (hv=1486.6 eV),阳极电压为12.5 kV,284.8 eV结合能的C1s峰用于校准所有元素的峰。

    采用美国FEI公司生产的NOVA NanoSEM 450型SEM分析增强体的表面形貌变化及EP复合材料拉伸断裂截面的形态,本实验样品导电性较差,测试前先进行喷金处理。

    根据GB/T 1040—2006[28],在德国Zwick公司生产的Zwick Z100型通用试验机上对EP复合材料进行拉伸实验,得到样品的拉伸强度和拉伸模量,所有值均为至少5次测量的平均值。

    CNTs可以充当二烯或亲二烯体被各种不同的官能团官能化[29-30],本文利用马来酰亚胺与CNTs发生Diels-Alder反应来改性CNTs,反应机制如图1所示。图2(a)为改性前后CNTs的FTIR图谱。可知,与未处理的CNTs相比,M-CNTs在1710 cm−1附近出现一个十分明显的吸收峰对应C=O[31];在1150 cm−1附近出现的吸收峰主要是由C—O和N—H引起[27];在1350 cm−1附近出现的小吸收峰对应C—N[27]。结果表明,马来酰亚胺官能化使CNTs表面接枝了含O、含N基团。图2(b)为改性前后CNTs的XPS图谱。可知,M-CNTs表面O元素相对含量从CNTs的1.91%增加到10.82%,同时其表面N元素相对含量达2.99%。XPS结果再次验证M-CNTs表面已接枝含O、含N官能团,它们将成为CNTs接枝在CF表面的反应活性点。

    图  1  多壁碳纳米管(CNTs)与马来酰亚胺的Diels-Alder反应
    Figure  1.  Diels-Alder reaction of multi-walled carbon nanotubes (CNTs) with maleimide
    图  2  CNTs和马来酰亚胺官能化CNTs(M-CNTs)的FTIR和XPS图谱
    Figure  2.  FTIR and XPS spectra of CNTs and maleimide functionalised CNTs (M-CNTs)

    课题组之前的研究已经说明稀土元素对碳材料化学惰性表面的改性效果,稀土元素优秀的化学活性和高的配位数促使含O、含N基团引入碳材料非极性表面,提高增强体表面O、N含量[25-27]表1为CF、RECF和CNTs-CF多尺度增强体表面元素种类和原子分数。可知,原始无胶CF表面含有一定量的O,这是由于CF表面缺陷较多,较容易被氧化,在生产和保存过程中会引入含O官能团,还有可能是测试时空气中水的影响;另外原始CF表面还有少量的N,可能来源于CF生产过程中不完全碳化的聚丙烯腈前驱体。经CeCl3处理得到的RECF表面O含量较CF提高了71.43%,与之前研究结果一致[25-27],再次说明稀土元素对非极性碳材料表面的改性作用;稀土原子还可与CF表面的O和N配位键合,因此RECF表面存在一定量的Ce元素。与CF相比,CNTs-CF多尺度增强体表面O含量提高了45.12%,但与RECF相比,CNTs-CF多尺度增强体表面O含量有所降低,说明表面O含量相对较低的M-CNTs已成功吸附在CF表面;接枝在CF表面的M-CNTs同时也使CNTs-CF多尺度增强体表面N含量略微降低。M-CNTs吸附在CF表面,使CF表面粗糙度增加,有利于提高CNTs-CF多尺度增强体与树脂基体的机械啮合能力;CNTs-CF多尺度增强体表面极性官能团和稀土元素可与EP形成化学结合,从而改善复合材料的界面结合[32]

    表  1  CF、CeCl3改性的CF (RECF)和CNTs-CF多尺度增强体表面元素种类和原子分数
    Table  1.  Types and atomic fractions of surface elements of CF, CF modified by CeCl3 (RECF) and CNTs-CF multi-scale reinforcement at%
    ElementCFRECFCNTs-CF
    C 85.59 71.90 77.49
    N 3.21 5.91 3.39
    O 11.06 18.96 16.05
    Ce 0.14 3.23 3.07
    下载: 导出CSV 
    | 显示表格

    图3为CF、RECF和CNTs-CF多尺度增强体的O 1s的XPS图谱。图4为RECF 和CNTs-CF多尺度增强体的Ce与O成键示意图。由图3(a)可知,原始无胶CF表面O 1s曲线存在两个特征峰,532.91 eV处是C—O中O 1s的特征拟合曲线,C=O中O 1s的特征拟合曲线出现在531.74 eV处。由图3(b)可知,RECF表面O 1s曲线有三个特征峰,533.46 eV和532.53 eV处分别对应C—O和C=O中O 1s的特征拟合曲线,而529.94 eV处新出现的拟合峰来自Ce—O中O元素的贡献[33],说明稀土元素通过化学键吸附在CF表面;且氧单键和氧双键的特征峰结合能相对CF分别提高了0.55 eV和0.79 eV,这是由于O原子受到Ce的影响,孤对电子有远离的倾向,因此O原子外层电子云密度降低,O 1s峰位向高能处移动[34],推测Ce—O键的存在形式如图4(a)所示。由图3(c)可知,CNTs-CF表面O 1s结合能的移动变化与RECF一致,氧单键和氧双键的特征峰结合能较CF分别提高了0.82 eV和0.89 eV,但与RECF相比,结合能529.85 eV处的Ce—O中O元素特征峰的面积明显增加,相对含量达到10.54%,这是由于CNTs-CF表面Ce元素不仅与CF表面的O配位,还与M-CNTs表面的O配位键合,其结构如图4(b)所示,Ce作为中介介质,一端与M-CNTs表面O原子相连,另一端连接CF表面O原子,使M-CNTs通过化学键吸附在CF表面,从而形成CNTs-CF多尺度增强体。

    图  3  CF、RECF和CNTs-CF多尺度增强体的O 1s的XPS图谱
    Figure  3.  XPS spectra of O 1s of CF, RECF and CNTs-CF multi-scale reinforcement
    图  4  RECF 和CNTs-CF多尺度增强体的Ce与O成键示意图
    Figure  4.  Schematic diagram of Ce and O bonding of RECF and CNTs-CF multi-scale reinforcement

    图5为CF、RECF和CNTs-CF多尺度增强体的SEM图像。由图5(a)可以看到,原始无胶CF表面有沟槽,整体较为平整光滑,但带有少量碎屑,这是由于所用CF是由CF丝磨切而成;这些沟槽可以略微增加CF与EP的接触面积,有利于提高CF与EP的机械啮合,但CF表面极性官能团较少,最终只能与基体形成弱的界面结合,不利于载荷从基体转移到增强体,因此无法有效发挥出高强度和高模量CF的增强效果。由图5(b)可以看到,与原始无胶CF相比,经反应后多次洗涤得到的RECF表面碎屑已经洗去,除此之外,RECF表面形貌几乎没有变化;但由XPS分析结果可知RECF表面化学状态已发生改变,这些变化将有益于RECF与EP之间的界面结合。由图5(c)图5(d)可以看到,经CeCl3处理后,M-CNTs均匀地接枝在CF表面,根据FTIR和XPS测试结果可以推测出,含O基团通过马来酰亚胺官能化接枝到CNTs上,为M-CNTs与其他活性化学物质反应提供了可能;经CeCl3处理后,含O基团被引入CF表面,然后Ce通过配位化学反应与CF和M-CNTs表面的O结合;通过Ce的桥接效应,M-CNTs可以均匀地分布在CF表面,从而形成CNTs-CF多尺度增强体。M-CNTs化学吸附在CF表面,不仅能增加增强体的表面积,加强CF与树脂基体的机械结合,CNTs-CF多尺度增强体表面大量的含O和含N官能团及稀土元素还可以强化增强体与基体之间的化学结合,因此CNTs-CF将有效改善复合材料的界面性能,从而获得综合性能优异的CNTs-CF/EP复合材料。

    图  5  CF、RECF和CNTs-CF多尺度增强体的SEM图像
    Figure  5.  SEM images of CF, RECF and CNTs-CF multi-scale reinforcement

    图6(a)为纯EP、CF/EP、RECF/EP和CNTs-CF/EP复合材料的拉伸强度。可知,短纤维增强树脂复合材料的力学性能是低强度、低模量基体与高强度、高模量增强体的复合表现,增强体通过帮助基体承担载荷和抵抗弹塑性变形来强化树脂基体[35-36],因此CF/EP、RECF/EP和CNTs-CF/EP复合材料的拉伸强度均高于纯EP。与纯EP相比,CF/EP复合材料的拉伸强度仅提高了10.03%,一方面是由于CF含量很少(3wt%),能够帮助EP基体承担载荷的能力小;另一方面是由于原始无胶CF表面积较小,极性官能团不多,因此与基体机械咬合面积较小,润湿性较差,有限的CF数量和不良的界面结合,最终导致CF/EP复合材料拉伸强度提高较小。经CeCl3醇溶液处理后得到的RECF表面极性官能团增多,RECF/EP复合材料的拉伸强度较纯EP提高了20.60%,较CF/EP复合材料提高了9.60%。但RECF/EP复合材料性能提高也比较有限。在CF表面化学吸附M-CNTs,使CNTs-CF/EP复合材料的拉伸强度较纯EP提高了50.49%,较CF/EP复合材料提高了36.76%,较RECF/EP复合材料提高了24.79%。

    图  6  环氧树脂(EP)、CF/EP、RECF/EP和CNTs-CF/EP复合材料的力学性能
    Figure  6.  Mechanical properties of epoxy (EP), CF/EP, RECF/EP and CNTs-CF/EP composites

    图6(b)为纯EP、CF/EP、RECF/EP和CNTs-CF/EP复合材料的杨氏模量。可知,杨氏模量表征EP复合材料抵抗弹性变形的能力,短纤维增强体的加入能显著提高EP基体的刚性[37],因此CF/EP、RECF/EP和CNTs-CF/EP复合材料的杨氏模量均高于纯EP,且变化趋势与拉伸强度一致,EP、CF/EP、RECF/EP、CNTs-CF/EP复合材料的杨氏模量依次增大。添加高模量增强体CF后,CF/EP复合材料的杨氏模量较纯EP提高了32.47%,但由于原始无胶CF表面粗糙度较低,且呈化学惰性,与EP基体形成的界面性能较差,不利于载荷从基体向CF转移,因此CF/EP复合材料的杨氏模量提高有限。经稀土处理得到的RECF表面含有更多的极性官能团和稀土Ce,可通过化学键与EP分子中的活性基团结合,进而改善与EP基体的黏结性能,使RECF/EP复合材料的杨氏模量较纯EP提高了49.35%,较CF/EP复合材料提高了12.75%。CNTs-CF多尺度增强体同时解决了CF/基体界面结合弱和CNTs易团聚的问题,进一步提高了增强体与基体间的界面结合性能,有利于载荷从低强度、低模量的EP基体转移到高强度、高模量的CNTs-CF多尺度增强体上。与CF和RECF相比,CNTs-CF多尺度增强体可进一步发挥出对EP基体的增强作用,因此CNTs-CF/EP复合材料的杨氏模量较纯EP提高了127.27%,较CF/EP复合材料提高了71.57%,较RECF/EP复合材料提高了52.17%。

    图7为CF/EP、RECF/EP和CNTs-CF/EP复合材料拉伸断裂截面的SEM图像。由图7(a)可以看到,原始无胶CF与EP之间存在明显孔洞,在拉伸断裂过程中,CF直接从树脂基体中拉出,且其表面几乎没有残留的EP,说明表面积较小、极性官能团较少的CF难以与基体形成有效的界面结合,导致CF/EP复合材料的拉伸性能和拉伸模量增加较小[38],与复合材料力学性能分析结果一致。由图7(b)可以看到,由于RECF表面极性官能团增加,因此较原始无胶CF,RECF与EP之间界面结合得到改善,不仅可以看到RECF根部与基体结合紧密,还可发现RECF表面有少量树脂基体黏结,因此RECF/EP复合材料的力学性能得到改善。由图7(c)可以看到,在CNTs-CF/EP复合材料断裂截面中,CF牢固黏结在EP基体中难以拔出,且纤维表面有大量的EP残留物,表明CNTs-CF/EP复合材料的界面结合得到很大改善。复合材料拉伸断裂截面形貌分析结果表明,与CF和RECF相比,CNTs-CF与EP的界面结合最佳,与力学性能测试结果一致,CNTs-CF/EP复合材料的力学性能最佳。

    图  7  CF/EP、RECF/EP和CNTs-CF/EP复合材料拉伸断裂截面的SEM图像
    Figure  7.  SEM images of tensile fracture cross section of CF/EP, RECF/EP and CNTs-CF/EP composites

    图8为CF/EP、RECF/EP和CNTs-CF/EP复合材料的断裂机制模型。可知,原始CF由于表面极性官能团较少、表面积较小,与EP基体的连接处存在间隙和气泡;当CF/EP复合材料承受载荷时,这些界面缺陷处会形成应力集中,促使裂纹的产生及扩展;裂纹沿界面扩展,最终导致CF与EP之间脱黏,甚至使CF从EP基体中拔出(如图8(a)所示),因此CF/EP复合材料的力学性能较差。经稀土处理得到的RECF表面已有大量含O和含N官能团,能跟EP发生化学反应,通过化学键使增强体与基体结合起来;除此之外,RECF表面的Ce也可通过配位键与EP基体中的O和N结合,进一步加强RECF与EP之间的化学结合,改善RECF/EP复合材料的界面结合,阻碍裂纹在界面处扩展,避免RECF从基体中拔出,进而能有效发挥RECF在基体中承担载荷的作用,提高了RECF/EP复合材料的力学性能。在拉伸断裂过程中,RECF/EP复合材料的失效方式部分转为EP基体的内聚破坏,表现为RECF表面有EP基体的黏附;但RECF与EP之间的化学结合有限,RECF仍会从基体中拔出(如图8(b)所示)。经过CeCl3处理后,M-CNTs均匀地化学吸附在CF表面,从而增加CF表面的粗糙度,促进CNTs-CF与EP之间的机械啮合;另一方面,CNTs-CF表面极性官能团和Ce可与EP基体发生化学反应,进一步改善CNTs-CF/EP复合材料的界面结合。因此当CNTs-CF/EP复合材料受到拉应力时,CF不再直接从EP基体中拔出,CNTs-CF/EP复合材料的失效破坏很大可能发生在M-CNTs和EP基体之间的界面处(如图8(c)所示),因此CNTs-CF/EP复合材料的力学性能最佳。

    图  8  CF/EP、RECF/EP和CNTs-CF/EP复合材料的断裂机制模型
    Figure  8.  Fracture mechanism models of CF/EP, RECF/EP and CNTs-CF/EP composites

    (1) Ce具有大的配位数且对O有特殊的亲和性,可以同时与碳纤维(CF)和马来酰亚胺官能化的碳纳米管(M-CNTs)上的O配位键合,通过Ce的桥接作用将M-CNTs化学吸附在CF表面,生成CNTs-CF多尺度增强体。

    (2)与CF/EP复合材料相比,CNTs-CF/EP复合材料的拉伸强度和杨氏模量分别提高了36.76%和71.57%;与CeCl3改性CF(RECF)/EP复合材料相比,CNTs-CF/EP复合材料的拉伸强度和杨氏模量分别提高了24.79%和52.17%。

    (3) M-CNTs的加入增加了CF表面粗糙度,且CNTs-CF表面的极性基团和Ce可与EP基体发生化学反应,从而促进CNTs-CF/EP复合材料的界面结合,有利于外部载荷转移到高强度、高模量的增强体上,因此提高了CNTs-CF/EP复合材料的力学性能。

    (4)通过简单清洁、成本低廉的方法成功制备出用以提高树脂材料性能的CNTs-CF多尺度增强体,为制造高性能、轻质量的树脂基复合材料提供理论和技术支持。

  • 图  1   不同制备方法得到的Fe3O4纳米材料的SEM或TEM图像(a)机械球磨法(1、干法[16],2、湿法[17]);(b)物理气相沉积[19];(c)化学气相沉积(插图为AFM 图像)[20];(d)共沉淀法[22];(e)水热法[24];(f)溶剂热法[26];(g)热分解法[28];(h)溶胶-凝胶法[30];(i)微乳液法[31];(j)声化学法[33];(k)电沉积法[34];(l)微生物合成法[35];(m)植物合成法[37];(n)仿生合成法[38]

    Figure  1.   SEM or TEM images of Fe3O4 nanomaterials obtained by different preparation methods (a) Mechanical ball milling (1, dry[16], 2, wet[17]); (b) Physical vapor deposition[19]; (c) Chemical vapor deposition(AFM image in the inset)[20]; (d) Co-precipitation[22]; (e) Hydrothermal[24]; (f) Solvent-thermal[26]; (g) Thermal decomposition[28]; (h) Sol-gel[30]; (i) Microemulsion[31]; (j) Acoustic chemical[33]; (k) electrodeposition[34]; (l) microbial synthesis[35]; (m) phytosynthesis[37]; (n) biomimetic synthesis[38]

    图  2   (a)Al2O3上Fe3O4材料示意图[20];(b)黑色区域为Fe3O4纳米材料,棕色区域为活性污泥[25];(c) 聚醇法制备示意图[27];(d)溶胶-凝胶爆炸辅助法制备Fe3O4纳米材料的机理[30];(e)多相分段流动反应合成过程示意图[31];(f)微乳液法合成Fe3O4纳米材料(W/O)[32];(g)超声合成Fe3O4[33];(h)异质结构前驱体Fe3O4/FexSy的合成过程示意图[34];(i)传统合成与仿生合成Fe3O4NPs[38]

    Figure  2.   (a) Schematic diagram of Fe3O4 film on Al2O3[20]; (b) black area is Fe3O4 nanoparticles and brown area is activated sludge[25]; (c) Schematic diagram of the preparation by the polyol method[27]; (d) Mechanism of Fe3O4 nanoparticles prepared by the sol-gel explosion-assisted method[30]; (e) Schematic diagram of the synthesis process of multiphase segmented flow reaction [31]; (f) Synthesis of Fe3O4 nanoparticles (W/O) by the microemulsion method[32];(g ) synthesis of Fe3O4 by ultrasound[33]; (h) schematic of the synthesis process of the heterostructured precursor Fe3O4/FexSy[34]; (i) conventional synthesis and biomimetic synthesis of Fe3O4NPs[38]

    图  3   (a) Fe3O4球体与Fe3O4/POA核壳球体的TEM图像[39];(b) Fe3O4/CS@Ag磁性材料的制备及SMSPE-SERS从预处理到检测过程示意图[40];(c) PAQR/Fe3O4复合纳米材料的合成过程[41];(d) Fe3O4@SiO2的合成工艺[43];(e) Fe3O4@Bi2S3的合成过程[47];(f) Au-Fe3O4纳米材料合成过程示意图[49];(g)以有机原料为基础的一步和两步AC制备示意图[50];(h) Fe3O4@CNTs示意图[51];(i) Cu-MOF和Cu-MOF@Fe3O4的合成流程示意图[53];(j)核壳结构 FPy-COF@PDA@Fe3O4 纳米球的合成流程示意图[54];(k) COF基纳米复合材料的合成工艺[55]

    Figure  3.   (a) TEM images of Fe3O4 spheres and Fe3O4/POA core-shell spheres[39]; (b) preparation of Fe3O4/CS@Ag magnetic microspheres and schematic diagram of the process of SMSPE-SERS from pretreatment to detection[40]; (c) synthesis process of PAQR/ Fe3O4 nanocomposites[41]; (d) synthesis process of Fe3O4@SiO2[43]; (e) synthesis process of Fe3O4 @Bi2S3 synthesis process[47]; (f) Schematic of the synthesis process of Au- Fe3O4 nanoparticles[49]; (g) Schematic of one-step and two-step AC preparations based on organic feedstocks[50]; (h) Schematic of Fe3O4@CNTs[51]; (i) Schematic of the synthesis process of Cu-MOF and Cu-MOF@ Fe3O4[53]; and (j) Schematic of the nucleoshell structure FPy-COF@PDA@ Fe3O4 nanorods[54]; (k) Schematic flow of the synthesis of COF-based nanocomposites[55]

    图  4   (a) Fe3O4MNPs的吸附效率与时间的关系[56];(b)外加磁场下BF染料在Fe3O4@Cd磁性微球吸附剂上的吸附−解吸过程[57];(c)亚甲基蓝、亚甲基绿和罗丹明B的分子吸收光谱[58];(d)不同因素对Fe3O4/Ti3C2纳米复合材料去除MG的影响[59];(e) Fe3O4NPs和Fe3O4/TiO2NCs在阳光直射下对MB的降解效果[60];(f) rGO/Fe3O4/ZnSe纳米催化剂降解MB[61];(g) rGO/Fe3O4/ZnSe纳米催化剂降解RB和MO[61];(h) Fe3O4/CuO投加量与COD去除率的关系[62];(i) MB吸光度分析[63]

    Figure  4.   (a) Adsorption efficiency of Fe3O4MNPs versus time[56]; (b) Adsorption-desorption process of BF dye on Fe3O4@Cd magnetic microsphere adsorbent under applied magnetic field[57]; (c) Molecular absorption spectra of methylene blue, methylene green and rhodamine B[58]; (d) Effect of different factors on the removal of MG by Fe3O4/Ti3C2 nanocomposites MB under direct sunlight[59]; (e) degradation of MB by Fe3O4NPs and Fe3O4/TiO2NCs under direct sunlight[60]; (f) degradation of MB by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (g) degradation of RB and MO by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (h) relationship between Fe3O4/CuO dosage and COD removal[62]; and (i) adsorption of MB by Photometric analysis[63]

    表  1   各种制备方法优缺点

    Table  1   Advantages and disadvantages of various preparation methods

    Production method Raw materials Reaction
    Temperature /°C
    Reaction
    time
    Solvent Particle size/nm Advantages Disadvantages References
    Mechanical ball milling shot (in shotgun) Room temperature
    (RT)
    <20H H2O 11.1 Simple operation Easy to introduce impurities, not suitable for the preparation of different morphology of Fe3O4 nanocrystals [16][17]
    Physical vapor deposition Fe3O4、Si/MgO RT-500 / / 34-54 High purity, controllable, high efficiency Expensive equipment, high energy consumption, harsh reaction conditions [18]
    Chemical Vapor Deposition Fe(acac)3, MeOH 400 / / 110 High efficiency, easy to control Complex reaction process, requiring specific gases and reagents [20][21]
    Precipitation FeCl3·6H2O,
    FeSO4·7H2O
    60 2H H2O/
    EtOH
    10-32 Easy to implement, less hazardous Wide grain size distribution, need to control the conditions accurately [22][23]
    Hydrothermal FeCl3·6H2O,TEA 180 2-8H H2O 11.8 Strong magnetism at high temperatures, high product purity, easy to operate, low contamination High energy consumption, long reaction time, high equipment requirements [24]
    Solvent Thermal Method FeCl3·6H2O 200 4H EG 10-150 High purity, controllable size,
    fast reaction speed
    Limited choice of solvents, high temperature and pressure conditions [25]
    Thermal decomposition Fe(acac)3 200-270 20-55 min Octadecene, Oleylamine, Dioctyl Ether 9-19 Uniformity of nanoparticles, high saturation magnetization rate Requires high temperature conditions, difficult to control the reaction process [28]
    Sol-gel method Fe(NO3)3 220-320 1H H2O 37.2-
    43.5
    Controllable size and morphology, high uniformity, low temperature preparation High operating technology requirements, high equipment costs [29]
    Microemulsion FeCl2,FeCl3,HCl RT-50 25 min NH4OH solution 10 Controlled nucleation and growth, effectively avoiding agglomeration between particles Low yield, high cost [31]
    Acoustic Chemistry Fe 60 15 min Na2SO4 solution 50 Easier to achieve uniform mixing of media, high reaction rate Sensitive to reaction conditions, high energy consumption [33]
    Electrodeposition FeSO4·7H2O,Na2S2O3 RT 5 min deoxygenated water / Good biocompatibility Slower growth rate, high operation technology requirements [34]
    Microbial synthesis Fe2(SO4)3、S2 strain RT 5H H2O 20-70 Environmentally friendly, good biocompatibility, sustainability Long production cycle, low product purity, difficult to control [35]
    Phytosynthesis Fe(NO3)·9H2O、Natural tannins (green tea) / / / 23.4 Environmentally friendly, good biocompatibility, resourcefulness Complex extraction process, low product purity, difficult to control [36]
    Biomimetic synthesis FeSO4·7H2O、KOH、KNO3、Mms6-28 RT-90 -5H / / Controlled particle size, environmentally friendly, structural complexity Higher cost, more demanding reaction conditions [38]
    下载: 导出CSV

    表  2   Fe3O4纳米材料最大吸附量的比较

    Table  2   Comparison of maximum adsorption capacity of Fe3O4 nanomaterials

    AdsorbentDyeDye amount/
    (mg·g−1)
    Adsorbent amountTemperaturePHTime/minAdsorption capacity/(mg·g−1)Removal/
    adsorption rate
    Fe3O4(Elham Ghoohestan)MB120.5 mg/mLRT7.56017.7989%
    Fe3O4@CdBF25100 mgRT76023.5>95%
    Fe3O4
    (Hoang Anh Thid)
    MB50020 mg/
    25 mL
    RT790268.64~97%
    Fe3O4/Ti3C2MG105 mgIncreased removal rate at higher temperaturesIncreased
    removal rate at
    elevated pH
    604.6899%(100 mg of adsorbent)
    Notes: MB: Methylene Blue; BF: Basic Fuchsin; MG: Malachite Green.
    下载: 导出CSV
  • [1]

    EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. DOI: 10.1016/j.jwpe.2022.103273

    [2]

    SLAMA H B, CHENARI Bouket A, POURHASSAN Z, et al. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods[J]. Applied Sciences, 2021, 11(14): 6255. DOI: 10.3390/app11146255

    [3] 阮瑜迪, 孟宪双, 董岳龙, 等. 纺织化学品中有害物质检测方法研究进展[J]. 印染, 2024, 50(4): 66-71+91. DOI: 10.3969/j.yinran.202404014

    RUAN Yudi, MENG Xianshuang, DONG Yuelong, et al. Research progress in detection methods for harmful substances in textile chemicals[J]. China Dyeing & Finishing, 2024, 50(4): 66-71+91(in Chinese). DOI: 10.3969/j.yinran.202404014

    [4] 张智琦, 鲁慧云, 薛星韬, 等. 典型印染废水处理工艺中重金属污染物的分布与去除[J]. 印染, 2022, 48(12): 62-65. DOI: 10.3321/j.issn.1000-4017.2022.12.015

    ZHANG Zhiqi, LU Huiyun, XUE Xingtao, et al. Distribution and removal of selected heavy metal pollutants in typical dyeing wastewater treatment processes[J]. China Dyeing & Finishing, 2022, 48(12): 62-65(in Chinese). DOI: 10.3321/j.issn.1000-4017.2022.12.015

    [5]

    LIU Z, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresource Technology, 2022, 354: 127168. DOI: 10.1016/j.biortech.2022.127168

    [6]

    ZHENG H, YANG X, MENG K, et al. Textile Dyes Alter the Bacterial Community Structure in Contaminated Soil[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2599-2609. DOI: 10.1007/s42729-023-01216-4

    [7]

    DUTTA P, RABBI M, ABU Sufian M, et al. Effects of textile dyeing effluent on the environment and its treatment: A review[J]. Eng. Appl. Sci. Lett, 2022, 5(1): 1-1.

    [8]

    STERNIK D, WASILEWSKA M, DERYLO-MARCZEWSKA A, et al. Studies on the process of basic dyes adsorption on uniform spherical carbons[J]. ChemPhysChem, 2024, 25(8): e202300825. DOI: 10.1002/cphc.202300825

    [9]

    SANTANA I L S, SILVA M G, OUREM G P, et al. Degradation of direct black 22 textile dye using the photo-Fenton and electro-Fenton processes: a comparative study[J]. Chemical Papers, 2024: 1-10.

    [10]

    HUANG H, WEN Y, HUANG Y, et al. Separation and Photodegradation of Dye-Containing Oil/Water Mixtures with a Photothermally Responsive PNIPAm-MXene/PAN-PNIPAm Nanofibrous Hydrogel Membrane[J]. ACS Applied Nano Materials, 2024, 7(7): 7562-7572. DOI: 10.1021/acsanm.4c00235

    [11]

    CHEN Z, FENG M, WANG Y, et al. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes[J]. Ecotoxicology and Environmental Safety, 2024, 275: 116226. DOI: 10.1016/j.ecoenv.2024.116226

    [12]

    NASEEM K, ABRAR E, HAIDER S, et al. Polyurethane-based nanocomposite for catalytic reduction of toxic dyes[J]. Polymers for Advanced Technologies, 2024, 35(4): e6372. DOI: 10.1002/pat.6372

    [13]

    SHABIL Sha M, Anwar H, Musthafa F N, et al. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)[J]. Scientific Reports, 2024, 14(1): 3608. DOI: 10.1038/s41598-024-53626-8

    [14]

    GANAPATHE L S, MOHAMED M A, MOHAMAD Yunus R, et al. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation[J]. Magnetochemistry, 2020, 6(4): 68. DOI: 10.3390/magnetochemistry6040068

    [15]

    ZHAI W, HE J, HAN P, et al. Adsorption mechanism for tetracycline onto magnetic Fe3O4 nanoparticles: Adsorption isotherm and dynamic behavior, location of adsorption sites and interaction bonds[J]. Vacuum, 2022, 195: 110634. DOI: 10.1016/j.vacuum.2021.110634

    [16]

    JALIL Z, RAHWANTO A , MUSTANIR, et al. Magnetic behavior of natural magnetite (Fe3O4) extracted from beach sand obtained by mechanical alloying method[C]//American Institute of Physics Conference Series. AIP Publishing LLC, 2017. DOI:10.1063/1.4991127.

    [17]

    LIANG Y , YUAN Y , HUANG Y , et al. Effect of Ball Milling on the Absorption Properties of Fe3O4[J]. Materials, 2020, 13(4): 883.

    [18]

    CAO L, GUO Q, LIANG J, et al. Preparation of sputtered Fe3O4 thin film[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(18): 23645-23653. DOI: 10.1007/s10854-021-06858-7

    [19]

    ZHANG Z, LU X, YAN Y, et al. Direct observation of spin polarization in epitaxial Fe3O4 (001)/MgO thin films grown by magnetron sputtering[J]. Applied Physics Letters, 2022, 120(18).

    [20]

    FEIFEI L , RUI Z , ZIYUE Q , et al. Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films[J]. Crystals, 2022, 12(4): 485-485.

    [21]

    KAN D, SUGANO S, KOSUGI Y, et al. Selective growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 at low temperatures and under ambient pressure[J]. Japanese Journal of Applied Physics, 2019, 58(9): 095504. DOI: 10.7567/1347-4065/ab39d1

    [22]

    M. M A B , ABDELBAKI B , DINA E , et al. Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application[J]. JOM, 2022, 74(9): 3531-3539.

    [23] 杨金子, 张春燕, 李进京等. 磁性Fe3O4纳米粒子的制备[J]. 精细化工中间体, 2020, 50(4): 50-53. DOI: 10.19342/j.cnki.issn.1009-9212.2020.04.013

    YANG Jinzi, ZHANG Chunyan, LI Jinjing, et al. Preparation of Magnetic Fe3O4 Nanoparticles[J]. FINE CHEMICAL INTERMEDIATES, 2020, 50(4): 50-53. DOI: 10.19342/j.cnki.issn.1009-9212.2020.04.013

    [24]

    XU Y , ZHANG Y , SONG X , et al. Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor[J]. Functional Materials Letters, 2019, 12(2): 4.

    [25]

    LIANG Y, JIANG L, XU S, et al. Synthesis and Characterization of Fe3O4 Nanoparticles Prepared by Solvothermal Method[J]. Journal of Materials Engineering and Performance, 2023: 1-12.

    [26]

    A A N , V I S , YU N T , et al. Synthesis of Iron Oxide Nanoclusters by Thermal Decomposition.[J]. Langmuir : the ACS journal of surfaces and colloids, 2018, 34(15): 4640-4650.

    [27]

    OH A H, PARK H Y, JUNG Y G, et al. Synthesis of Fe3O4 nanoparticles of various size via the polyol method[J]. Ceramics International, 2020, 46(8): 10723-10728. DOI: 10.1016/j.ceramint.2020.01.080

    [28]

    LIANG J Y , ZHANG L , CHEN M , et al. Anisotropic shaped Fe3O4 nanoparticles: Microwave-assisted thermal decomposition synthesis and their electromagnetic properties[J]. AIP Advances, 2020, 10(8): 085208.

    [29]

    PARMARC , VERMAR , GHOSHA , et al. Sol-gel auto-combustion synthesis of magnetite and its characterization via x-ray diffraction[J]. AIP Conference Proceedings, 2019, 2142(1): 160014.

    [30]

    HU P, CHANG T, CHEN W J, et al. Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method[J]. Journal of Alloys and Compounds, 2019, 773: 605-611. DOI: 10.1016/j.jallcom.2018.09.238

    [31]

    GU T , ZHANG Y , KHAN A S , et al. Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems[J]. Colloid and Interface Science Communications, 2019, 28 1-4.

    [32]

    GOSHU A , AMARE E Z , TESHOME S A . Synthesis of Silica-Coated Fe3O4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity.[J]. International journal of biomaterials, 2020, 2020 4783612.

    [33]

    KALIDASS J, REJI M, SIVASANKAR T. Synthesis of Fe3O4 Nanoparticles with Enhanced Properties via Sonoelectrochemical Approach: A comparative study with Electrochemical and Hydrothermal Method[J]. Chemical Engineering and Processing-Process Intensification, 2024: 109690.

    [34]

    LI X, SHAO C, WANG X, et al. Preparation of Fe3O4/FexSy heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 446: 137267. DOI: 10.1016/j.cej.2022.137267

    [35]

    SAMIRA E , FERESHTEH K J . Bacterial synthesis of magnetic Fe3O4 nanoparticles: Decolorization Acid Red 88 using FeNPs/Ca-Alg beads[J]. Arabian Journal of Chemistry, 2022, 15(9):

    [36]

    TAHANI A S , H. H. M A , M. A A . Green biosynthesis of Fe3O4 nanoparticles using Chlorella vulgaris extract for enhancing degradation of 2, 4 dinitrophenol[J]. Journal of King Saud University - Science, 2023, 35 (1):

    [37]

    ANANTHI S, KAVITHA M, KUMAR E R, et al. Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application[J]. Sensors and Actuators B: Chemical, 2022, 352: 131071. DOI: 10.1016/j.snb.2021.131071

    [38]

    MAO Y, LIU J, SUN J, et al. Elucidating the Bioinspired Synthesis Process of Magnetosomes-Like Fe3O4 Nanoparticles[J]. Small, 2024: 2308247.

    [39]

    LEE J H, LU Q, LEE J Y, et al. Polymer-magnetic composite particles of Fe3O4/poly (o-anisidine) and their suspension characteristics under applied magnetic fields[J]. Polymers, 2019, 11(2): 219. DOI: 10.3390/polym11020219

    [40]

    ZHANG Q , MA X , DU X , et al. Silver-nanoparticle-coated Fe3O4/chitosan core–shell microspheres for rapid and ultrasensitive detection of thiram using surface magnetic solid-phase extraction–surface-enhanced Raman scattering (SMSPE-SERS)[J]. Science of the Total Environment, 2024, 914170027-.

    [41]

    ZHANG X, WANG Q, TANG Y, et al. Decoration of conjugated polyacene quinone radical (PAQR) with Fe3O4 nanospheres achieving improved impedance matching and electromagnetic wave absorption[J]. Materials Today Physics, 2024, 41: 101349. DOI: 10.1016/j.mtphys.2024.101349

    [42]

    PAVÓN-HERNÁNDEZ A I, RODRÍGUEZ-VELÁZQUEZ E, ALATORRE-MEDA M, et al. Magnetic nanocomposite with fluorescence enhancement effect based on amino acid coated- Fe3O4 functionalized with quantum dots[J]. Materials Chemistry and Physics, 2020, 251: 123082. DOI: 10.1016/j.matchemphys.2020.123082

    [43]

    LI H , JIN H , LI R , et al. Magnetic Fe3O4@SiO2 study on adsorption of methyl orange on nanoparticles.[J]. Scientific reports, 2024, 14(1): 1217-1217.

    [44]

    HABILA M A, MOSHAB M S, EL-TONI A M, et al. Facile Strategy for Fabricating an Organosilica-Modified Fe3O4 (OS/ Fe3O4) Hetero-Nanocore and OS/ Fe3O4@ SiO2 Core–Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency[J]. ACS omega, 2023, 8(8): 7626-7638. DOI: 10.1021/acsomega.2c07214

    [45]

    LIAO J, QIU J, WANG G, et al. 3D core-shell Fe3O4@ SiO2@ MoS2 composites with enhanced microwave absorption performance[J]. Journal of colloid and interface science, 2021, 604: 537-549. DOI: 10.1016/j.jcis.2021.07.032

    [46]

    SHI L, HE Y, WANG X, et al. Recyclable photo-thermal conversion and purification systems via Fe3O4@ TiO2 nanoparticles[J]. Energy conversion and management, 2018, 171: 272-278. DOI: 10.1016/j.enconman.2018.05.106

    [47]

    XU Y , CHEN B , XU L , et al. Urchin-like Fe3O4@Bi2S3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities.[J]. ACS applied materials & interfaces, 2024, 16(3).

    [48]

    ZHENG K, SHEN C, QIAO J, et al. Novel magnetically-recyclable, nitrogen-doped Fe3O4@ Pd NPs for Suzuki–Miyaura coupling and their application in the synthesis of crizotinib[J]. Catalysts, 2018, 8(10): 443. DOI: 10.3390/catal8100443

    [49]

    TONTHAT L, OGAWA T, YABUKAMI S. Dumbbell-like Au– Fe3O4 nanoparticles for magnetic hyperthermia[J]. AIP Advances, 2024, 14(1).

    [50]

    BORDUN I, SZYMCZYKIEWICZ E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors[J]. Applied Sciences, 2024, 14(2): 677. DOI: 10.3390/app14020677

    [51]

    YU L, TANG Y, MA W, et al. Impact of composite modes on electrochemical properties of Fe3O4/CNTs for li-ion storage[J]. Applied Surface Science, 2024: 159333.

    [52]

    HUANG X, LIU Y, WANG X, et al. Removal of arsenic from wastewater by using nano Fe3O4/zinc organic frameworks[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10897. DOI: 10.3390/ijerph191710897

    [53]

    AMEEN R, RAUF A, MOHYUDDIN A, et al. Excellent antimicrobial performances of Cu (II) metal organic framework@ Fe3O4 fused cubic particles[J]. Journal of Saudi Chemical Society, 2023, 27(6): 101762. DOI: 10.1016/j.jscs.2023.101762

    [54]

    ZHANG J, CHEN Z, TANG F, et al. Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones[J]. Microchimica Acta, 2022, 189(12): 449. DOI: 10.1007/s00604-022-05541-w

    [55]

    HAGHIGHI Shishavan Y, AMJADI M, MANZOORI J L. A fluorescent magnetic nanosensor for imidacloprid based on the incorporation of polymer dots and Fe3O4 nanoparticles into the covalent organic framework[J]. Luminescence, 2023, 38(12): 2056-2064. DOI: 10.1002/bio.4595

    [56]

    GHOOHESTANI E, SAMARI F, HOMAEI A, et al. A facile strategy for preparation of Fe3O4 magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal[J]. Scientific Reports, 2024, 14(1): 84. DOI: 10.1038/s41598-023-50550-1

    [57]

    NING J, CHEN D, LIU Y, et al. Efficient adsorption removal and adsorption mechanism of basic fuchsin by recyclable Fe3O4@ CD magnetic microspheres[J]. Journal of Central South University, 2021, 28(12): 3666-3680. DOI: 10.1007/s11771-021-4845-0

    [58]

    THI H A, PHUC L T, VAN Trong N, et al. Synthesis of materials from agricultural wastes combined with Fe3O4 for methylene blue adsorption and application to treat organic pollutants in water samples[J]. Vietnam Journal of Chemistry, 2024, 62(1): 68-77. DOI: 10.1002/vjch.202300120

    [59]

    ALKHUDAYDI A M, DANISH E Y, ABDEL Salam M. Magnetite/MXene (Fe3O4/Ti3C2) Nanocomposite as a Novel Adsorbent for Environmental Remediation of Malachite Green Dye[J]. Molecules, 2024, 29(6): 1372. DOI: 10.3390/molecules29061372

    [60]

    RAJABATHAR R J , THANKAPPAN R , SUTHA A , et al. Enhanced photocatalytic activity of magnetite/titanate (Fe3O4/TiO2) nanocomposite for methylene blue dye degradation under direct sunlight[J]. Optical Materials, 2024, 148114820.

    [61]

    FARAHMANDZADEH F, MOLAEI M, SALEHI S, et al. Simultaneous and fast degradation of Methylene Blue, Methylene Orange, and Rhodamine B dyes by high-performance rGO/Fe3O4/ZnSe magnetic nanocomposites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024: 133229.

    [62] 孟丽平, 李纳纳. Fe3O4/CuO催化剂非均相Fenton深度处理染料废水[J]. 印染, 2021, 47(9): 61-65. DOI: 10.3321/j.issn.1000-4017.2021.09.015

    MENG Liping, LI Nana. Heterogenous Fenton degradation of dye wastewater enhanced by Fe3O4/CuO nanoparticles[J]. China Dyeing & Finishing, 2021, 47(9): 61-65(in Chinese). DOI: 10.3321/j.issn.1000-4017.2021.09.015

    [63]

    NAS M S, ÖNEN M, ÖZTÜRK E, et al. A novel CeO2/CuO-supported Fe3O4 sonocatalyst nanoparticle for highly efficient degradation of methylene blue dye[J]. Inorganic Chemistry Communications, 2024, 161: 112050. DOI: 10.1016/j.inoche.2024.112050

    [64] 陈凤华, 梁娓娓, 石向东, 等. Ag@AgCl-Fe3O4/rGO复合材料对印染废水中染料和重金属离子的吸附和光催化降解性能[J]. 复合材料学报, 2021, 38(7): 2295-2304. DOI: 10.13801/j.cnki.fhclxb.20200928.004

    CHEN Fenghua, LIANG Weiwei, SHI Xiangdong, et al. Adsorption and photocatalytic degradation of dyes and heavy metals in printing and dyeing wastewater by Ag@AgCl-Fe3O4/rGO composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2295-2304. DOI: 10.13801/j.cnki.fhclxb.20200928.004

  • 期刊类型引用(8)

    1. 赵鼎元,刘思思,廖君慧,傅兵,刘金刚. 碳纳米管-碳纤维增强二硫化钨/聚酰胺酰亚胺复合涂层摩擦学性能研究. 摩擦学学报(中英文). 2024(08): 1125-1135 . 百度学术
    2. 楚电明,董乾鹏,白文娟,何燕. 碳纤维/碳纳米管界面增强技术研究进展. 化工新型材料. 2023(01): 1-7 . 百度学术
    3. 周明明,刘威,杨成祥,赵修贤,杨震,路翔翔,蒋绪川. 多核稀土离子掺杂有机配合物转光剂的制备与应用. 复合材料学报. 2023(04): 2131-2139 . 本站查看
    4. 夏伟,陆松,白二雷,许金余,杜宇航,姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究. 材料导报. 2023(16): 110-118 . 百度学术
    5. 李传习,鄢亦斌,高有为,李御航,司睹英胡. CFRP板及其浸渍胶性能的纳米增韧剂影响研究. 交通科学与工程. 2023(04): 54-61+79 . 百度学术
    6. 孙伟松,于思荣,薛瑞婷,尹晓丽,王珺,王丽媛. 氨基链修饰氧化石墨烯/环氧树脂界面性能的分子动力学模拟. 表面技术. 2022(02): 241-248 . 百度学术
    7. 刘刚,欧宝立,赵欣欣,彭彩茹,汪雨微. 共价功能化石墨烯超疏水防腐复合涂层材料的制备. 复合材料学报. 2021(10): 3236-3246 . 本站查看
    8. 胡玮. 复合材料增强体纤维性能分析. 天津化工. 2021(06): 83-86 . 百度学术

    其他类型引用(2)

  • 目的 

    印染废水成分复杂,含有大量有机染料、助剂和重金属离子等污染物,对环境和人体健康危害极大。传统废水处理方法难以有效去除这些有机污染物,因此,本研究旨在探索利用 Fe3O4纳米材料处理印染废水的方法,包括其制备、改性以及在印染废水处理中的应用,为解决印染废水污染问题提供新的途径和理论参考。

    方法 

    1.Fe3O4纳米材料的制备方法:

    物理合成方法:包括机械球磨法(干法和湿法)、物理气相沉积。

    化学合成方法:涵盖化学气相沉积、共沉淀法、水热法、溶剂热法、热分解法、溶胶-凝胶法、微乳液法、声化学法、电沉积法。

    生物合成方法:有微生物合成法、植物合成法、仿生合成法。有微生物合成法、植物合成法、仿生合成法。

    2.Fe3O4纳米材料的改性

    有机材料修饰:采用化学氧化聚合技术、溶剂热法、固相聚合法等合成具有核壳结构的Fe3O4/聚邻茴香胺磁性复合纳米材料、多功能Sers基底-Fe3O4/CS@Ag微球、PAQR/FeO纳米复合材料等,并用有机小分子(表面活性剂、偶联剂和氨基酸等)修饰Fe3O4纳米材料。

    无机材料修饰:

    SiO2修饰:采用溶胶凝胶法将磁性Fe3O4与介孔SiO复合,对 Fe3O4纳米材料进行功能化改性。

    金属氧化物/硫化物修饰:制备Fe3O4@TiO2、Fe3O4@Bi2S3等纳米材料,用金属氧化物或硫化物作为磁性纳米材料的保护壳。

    金属修饰:用金属包裹Fe3O4纳米材料,如制备新型磁性可回收纳米材料Fe3O4@Pd。

    碳基材料修饰:以农业废弃物为原料合成Fe3O4/C复合材料,将Fe3O4封装到碳纳米管的空腔中。

    框架材料修饰:

    金属有机骨架:合成用于去除废水中As(V)的新型复合吸附剂(Fe3O4@ZIF-8)、铜(II)-苯-1,4 -二甲酸金属有机骨架与Fe3O4(Cu-MOF@Fe3O4)的复合纳米材料。

    共价有机骨架:制备高氟化卟啉基共价有机骨架磁性吸附剂(FPy-COF@PDA@Fe3O4)、COF 基纳米复合材料。

    3.Fe3O4纳米材料在印染废水的应用:

    吸附作用:通过绿色一锅法合成Fe3O4MNPs、制备磁性吸附剂Fe3O4@CD、利用农业废弃物改性Fe3O4并用于吸附有机染料、制备磁铁矿/MXene(Fe3O4/Ti3C2)纳米复合材料吸附孔雀石绿染料等方法,研究Fe3O4纳米材料对印染废水中有机染料的吸附性能。

    降解作用:制备纳米复合材料 Fe3O4/TiO2 NCs、还原氧化石墨烯(rGO)/Fe3O4/ZnSe 磁性纳米复合材料、Fe3O4/CuO 纳米颗粒、Fe3O -CeO2/CuO 纳米催化剂、Ag@AgCl-Fe3O4/rGO复合材料等,研究Fe3O4纳米材料对印染废水中染料的降解性能。

    结果 

    1.不同制备方法得到的 Fe3O4 纳米材料在反应温度、反应时间、溶剂和材料尺寸等方面存在差异。物理气相沉积和化学气相沉积能制备高纯度材料,但设备昂贵能耗高;沉淀法等相对简单但对反应条件控制要求高;微乳液法虽能制备粒度分布窄、分散性好的纳米材料,但成本高且可能对环境有影响;声化学法和电沉积法等有独特优势也有局限性;生物方法具有环境友好和可持续性特点,但生产周期长且产物纯度低。

    2.有机、无机材料以及框架材料的修饰可优化 Fe3O4 纳米颗粒特性,提升其在印染废水处理中的吸附与催化能力。

    3.Fe3O4纳米材料及其复合材料在印染废水处理中有高吸附容量和易于回收等优点,可通过物理孔径截留、静电作用、π-π相互作用和氢键作用吸附染料废水中的有机染料分子以及重金属离子,也可通过添加催化剂促进其分解产生强氧化性自由基来降解染料分子。

    4.不同吸附剂对不同染料的最大吸附量不同,如Fe3O4(Elham Ghoohestan)对亚甲基蓝的最大吸附量为17.79mg/g,去除率为89%;Fe3O4@Cd对碱性品红的最大吸附量为23.5mg/g,去除率>95%等。

    结论 

    1.Fe3O4 纳米材料在印染废水处理中具有巨大潜力,可充当吸附剂清除有机染料,也可作为催化剂推动染料降解。

    2.目前存在部分问题,如制备工艺成本高、流程繁杂,使用范围窄;改性研究常用到有毒有害物质,对环保绿色材料研究少;少量磁性粒子易脱落,再生效率和使用寿命有待提高;在实际废水处理中选择性和针对性不足。

    3.未来需开发成本低、能同时去除多种污染物、具有合适表面特性和磁性的磁性复合材料;加强对环保绿色材料的研究;提高纳米材料的稳定性、再生效率和使用寿命;进行技术改进和优化,提高其选择性和针对性。

图(4)  /  表(2)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  51
  • PDF下载量:  3
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2024-09-24
  • 录用日期:  2024-10-13
  • 网络出版日期:  2024-10-28
  • 刊出日期:  2025-06-14

目录

/

返回文章
返回