Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment
-
摘要:
印染废水成分复杂,其中存在大量的有机染料和其他污染物,对环境和人体健康造成极大危害。传统的废水处理方法往往难以有效去除这些有机污染物,近年来,人们开始关注利用纳米材料来解决这一问题。Fe3O4纳米材料因具有磁性、生物相容性和光学特性等优异性能,已逐渐成为废水处理中具有巨大应用前景的新型材料。本文阐述了利用物理、化学、生物等方法制备出高质量Fe3O4纳米材料的过程,介绍了利用有机材料、无机材料、框架材料等对其进行改性的方法,用以解决材料易团聚的问题并提高其稳定性。综述了Fe3O4纳米材料在印染废水处理领域的最新应用研究进展,最后,对Fe3O4纳米材料的制备方法和应用研究进行了讨论,旨在为促进Fe3O4纳米材料的推广应用提供理论参考。
Abstract:Printing and dyeing wastewater has a complex composition, in which there are a large number of organic dyes and other pollutants, causing great harm to the environment and human health. Traditional wastewater treatment methods are often difficult to effectively remove these organic pollutants, and in recent years, people have begun to pay attention to the use of nanomaterials to solve this problem. Fe3O4 nanomaterials have gradually become a new type of wastewater treatment materials with great prospects for application due to their excellent properties such as magnetism, biocompatibility and optical properties. This paper describes the process of preparing high-quality Fe3O4 nanomaterials using physical, chemical, and biological methods, and introduces the methods of modifying them organic, inorganic, and framework materials, etc. to solve the problem of easy agglomeration and improve their stability. The latest research progress on the application of Fe3O4 nanomaterials in the field of printing and dyeing wastewater treatment is summarized, and finally, the preparation methods and application studies of Fe3O4 nanomaterials are discussed, aiming to provide theoretical references to promote the popularization and application of Fe3O4 nanomaterials.
-
Keywords:
- Fe3O4 nanomaterials /
- Preparation /
- Modification /
- Adsorption /
- Degradation /
- Dye wastewater
-
目前,全球变暖带来的负面效应极大地影响了人类的生产生活[1-2],能源的过度消耗和匮乏使得环境问题进一步增加,如何做好热管理是目前面临的主要问题[3-5]。地球表面温度为300 K,而外太空平均温度为3 K[6-7],根据热力学第二定律,地球上物体的热量由于热量差可以通过辐射的方式将热量传递到外太空。因此,辐射制冷技术是地球上的物体通过“大气窗口”波段(8~13 μm)将热量辐射到外太空[8-10],以此实现自身降温冷却的过程。
虽然辐射制冷材料在节能环保方面显示出极大的应用潜力[10],但现有材料多为白色或银白色,外观单调,利用率极低。染料会使材料的表面颜色发生改变,但染料的可见色会吸收热量,并在近红外波段内吸收额外的热量[11-12],降低了材料本身的制冷效果。到目前为止,克服这一问题的主要策略是提高在可见光区域内的反射率和在“大气窗口”波段(8~13 μm)的发射率[13-16]。为避免染料吸收热量的现象,结构色辐射制冷材料引发人们的广泛关注[17-18]。利用硅蛋白石可以制备具有结构色变化的辐射制冷材料,但这种方法不能实现亚环境冷却[19],并且生产工艺和条件复杂且苛刻,很难进行大批量生产和应用。
纤维素纳米晶体(CNC)是刚性的棒状颗粒,长度为数十至数百纳米,直径可以达到数十纳米[20],具有结晶度高、降解性好等特点。CNC可以从棉花、木材和纸浆等可再生资源中提取,具有成本低、绿色、可持续等特性[21-23]。CNC可以在水中自发地组织成手性向列结构的液晶相,这种有序结构在干燥过程中可以得到保留,直至得到具有手性向列结构的CNC薄膜[24]。双折射的CNC纳米棒在薄膜中呈现的螺旋式排列会使纳米结构的折射率产生周期性的变化,进而引起对可见光的强烈反射[25]。因此,结构色的调节与螺旋结构的周期性密切相关。
目前已有研究致力于制造色彩更为丰富的纤维素辐射制冷材料。Shanker等[26]通过将CNC自组装成结构色薄膜,与硅片基底结合,得到了一种结构色辐射制冷装置。通过控制CNC/甘油(GLU) 的质量比得到颜色由蓝紫色转变为红色的复合薄膜。结构色复合薄膜表现出在太阳光谱范围内低吸收率和“大气窗口”内高发射率,且绿色和红色样品降温效果可达9℃左右,蓝紫色样品的降温效果可达6℃左右,为制备纤维素结构色辐射制冷薄膜提供了研究基础。
本文将CNC与聚乙二醇(PEG)复合,通过自组装方法制备了高太阳光反射率和在“大气窗口”波段高发射率的结构色薄膜。通过控制CNC与PEG的质量比,调控复合薄膜的结构色,以实现不同波段的热辐射率调控。探究不同含量PEG的添加对CNC复合结构色薄膜的结构、光学性能及制冷性能的影响。并将复合结构色薄膜粘贴到醋酸纤维素滤膜上制备成双层复合膜,进一步探究双层复合膜的辐射制冷效应。
1. 实验材料及方法
1.1 原材料
醋酸纤维素:上海兴亚净化材料厂;浓硫酸(H2SO4):分析纯,阿拉丁世纪有限公司;聚乙二醇400:分析纯,天津市科密欧化学试剂有限公司。
1.2 实验过程
CNC的制备:利用酸水解法制备CNC,将200 mL 64%硫酸溶液缓慢倒入25 g硫酸盐漂白针叶浆中,在45℃的水浴加热中搅拌1 h,后加入大量蒸馏水来终止水解反应。静置2~3 d,去除上清液,加入去离子水通过高速离心机 (CT14D型,上海天美仪器有限公司) 进行多次离心洗涤。得到的CNC悬浮液,将CNC在去离子水中透析,直至pH为中性。最后将CNC悬浮液浓缩至3wt%,冷藏备用。
CNC/PEG复合薄膜的制备:称取聚乙二醇5.0 g,加入45 g超纯水中,在室温搅拌1 h,得到质量分数10wt%的聚乙二醇溶液。取一定量的质量分数为3wt%的CNC悬浮液超声5 min,取4份3.0 g CNC悬浮液分别与
0.1000 g、0.2250 g、0.3857 g和0.6000 g PEG的溶液进行混合,将上述溶液充分搅拌2 h,后将混合液体倒入圆形容器中,室温缓慢蒸发2~3 d,得到PEG浓度为10wt%、20wt%、30wt%和40wt%的CNC/PEG复合结构色薄膜。按照聚合物的种类和含量对复合薄膜进行命名,分别为CNC/PEG-10%、CNC/PEG-20%、CNC/PEG-30%、CNC/PEG-40%,具体见表1。表 1 纤维素纳米晶体/聚乙二醇(CNC/PEG)复合辐射制冷薄膜和CNC/PEG-醋酸纤维素(CA)结构色辐射制冷双层复合膜的命名Table 1. Naming of cellulose nanocrystal/polyethylene glycol (CNC/PEG) composite radiative cooling films and CNC/PEG-cellulose acetate (CA) structure-colored radiation-cooled bilayer composite filmsSample Mass fraction of
CNC/wt%Mass fraction of
PEG/wt%CA CNC/PEG-10% 3 10 — CNC/PEG-20% 3 20 — CNC/PEG-30% 3 30 — CNC/PEG-40% 3 40 — CNC/PEG-10%-CA 3 10 0.0740 g CNC/PEG-20%-CA 3 20 0.0740 g CNC/PEG-30%-CA 3 30 0.0740 g CNC/PEG-40%-CA 3 40 0.0740 g 双层复合膜的制备:将不同质量比的复合结构色薄膜与醋酸纤维素膜用双面胶粘在一起,双面胶放在醋酸纤维素膜的边缘起固定作用,不会影响双层复合结构色薄膜的结构,双层复合结构色薄膜分别命名为CNC/PEG-10%-CA、CNC/PEG-20%-CA、CNC/PEG-30%-CA,具体见表1。
1.3 测试与表征
1.3.1 CNC/PEG复合膜的性能分析
采用Malvern Zetasizer nano ZS90测试CNC的Zeta电位和粒径。利用偏光显微镜(POM,XPF-550C,上海蔡康光学仪器公司)观察复合薄膜样品的液晶特性。使用反射光谱仪(UV-vis,HR4000 CG-NIR型,海洋光学公司)对薄膜进行反射光谱测试(可见光区域)。将复合薄膜用液氮进行脆断,用双面导电胶粘到截面制样台上,喷金60 s,利用扫描电子显微镜(SEM,JSM-7500F,日本电子株式会社)观察复合薄膜的横截面微观形貌。使用带有积分球附件的紫外-可见-近红外分光光度计(UV-VIS-NIR Spectrometer,美国Perkins Elmer公司)检测样品在300~
2500 nm波长范围内的反射率变化。利用傅里叶变换红外光谱仪(FTIR,Nicolet-IS10,美国Thermo Fisher公司)检测样品在2.5~25 μm的波长范围内样品的吸收率变化。采用太阳光谱匹配良好的高功率氙灯(中教金源HXF300)来模拟太阳光照射,在聚苯乙烯(PS)泡沫箱子中裁剪一个1 cm×1 cm×1 cm的空腔,将薄膜或复合薄膜放置在空腔中固定,利用聚乙烯薄膜覆盖泡沫箱,消除环境热对流影响。将多通道温度计(JINKO,JK804)与两个k型热电偶进行连接,一个k型热电偶测试复合薄膜覆盖下空腔的内部温度,另一个k型热电偶用来测量聚乙烯膜覆盖下的装置内的环境温度。由于CNC/PEG-40%复合薄膜在表征过程中会吸收环境的水分,手性结构发生润胀,螺距在实际测量中会发生变化,不利于复合薄膜在实际环境中的应用,因此后续将不会对CNC/PEG-40%复合薄膜进行扫描电镜、光谱学和辐射制冷性能的测试与分析。1.3.2 双层复合膜的性能分析
将醋酸纤维素膜用导电胶粘贴到水平制样台上,喷金60 s,利用扫描电子显微镜观察醋酸纤维素薄膜的表面形貌。在同一氙灯光源照射下,观察不同样品在红外热成像仪(FTIR-E390,美国FLIR SYSTEMS公司)下的温度变化。利用上述自组装装置分别测量双层复合薄膜下方温度及被聚乙烯膜覆盖的整个装置内的环境温度。利用实验室自组装装置对样品进行户外降温性能测试,将室内自组装降温性能测试装置放置在用铝箔纸包裹的纸壳箱中,整体放置在泡沫箱上,用湿度计记录测试过程中的环境湿度变化。
2. 结果与讨论
2.1 纤维素纳米晶的电位粒径分析
图1为CNC的TEM图像、粒径分布和电位曲线,酸水解法制备的CNC具有棒状形态,平均粒径为144.1 nm (图1(b))。在水解过程中,CNC表面形成较多的负电荷,Zate电位高达−32.2 mV (图1(c))。CNC表面较多的负电荷会促进静电排斥作用,使CNC溶液的稳定性增强,为进一步制备结构色复合薄膜奠定基础。
2.2 纤维素纳米晶复合薄膜结构色光学特性分析
图2(a)~2(d)是PEG含量不同的复合薄膜光学照片。随着PEG含量的增加,薄膜反射颜色发生红移,逐渐由蓝绿色转变为红色。因此,复合薄膜的结构色红移现象与PEG的含量相关。通过对紫外-可见反射光谱(图2(e))分析可得,随着PEG含量的增加,4种复合薄膜分别在427 nm、487 nm、576 nm和654 nm处存在清晰的高峰,复合薄膜反射光谱中的最高峰发生红移,与薄膜结构色的红移相对应。通过图2(f)可知,复合薄膜通过反射可见光和发射热量来实现自身降温,为后续辐射制冷的研究提供理论基础。
2.3 纤维素纳米晶复合薄膜微观形貌分析
图3(a)~3(c)为PEG含量不同复合薄膜的横截断面扫描电镜图。当PEG含量为40%时,复合薄膜会吸收环境中的水分,手性结构发生润胀,螺距在实际测量中会发生变化,因此只对PEG含量为10%~30%的CNC/PEG复合薄膜进行扫描电镜的研究,不对CNC/PEG-40%复合薄膜进行扫描电镜的测试与分析。纯CNC薄膜具有周期性的层状结构,CNC通过逆时针方向旋转后形成了左旋的手性向列螺旋结构,这种左旋的手性向列结构反射特定波长的左旋圆偏振光,从而使复合薄膜表现出独特的虹彩色。聚合物的加入并不会改变CNC原有的手性向列结构,随着聚合物含量的增加,CNC手性向列结构的螺距明显增加。布拉格方程式中手性向列的螺距(P)定义为CNC棒状颗粒旋转360°产生的层间距,在电镜图(SEM)中表现为相邻两层结构的间距。
CNC/PEG复合薄膜的反射光遵循布拉格方程:
λ=nPcos(θ) (1) 其中:λ为反射波长;n为薄膜的平均折射率;θ为入射角;P为手性向列结构的层间距。因为CNC和PEG的折射率相似,分别为1.41和1.44,所以薄膜的平均折射率(n)可以认为是常量,当入射角(θ)恒定时,λ取决于手性向列结构的螺距P。图3(a)~3(c)的平均螺距分别为0.30、0.36和0.46 μm。随着平均螺距P的增加其反射波长λ也逐渐增大,主要原因是在加入PEG后,PEG高分子进入到CNC手性向列结构中,导致CNC手性向列结构的螺距P增大,复合薄膜颜色红移。
2.4 纤维素纳米晶复合薄膜折射现象
图4是PEG含量不同的复合薄膜偏光显微镜(POM)图像。通过观察图4(a)~4(d)可以得知薄膜具有明显的双折射现象,高倍POM图像(图4(e)~4(h))可以看出其具有明显的指纹结构,这说明CNC/PEG在干燥过程中CNC自组装了手性向列结构,并且在完全成膜后,仍然保留其手性向列结构。因此,适量PEG的加入并不会破坏CNC自组装所形成的手性向列结构。复合薄膜的指纹结构的纹理间隔随着PEG含量的增加逐渐变宽,分别为2.05 μm、2.33 μm、2.84 μm和3.38 μm,颜色由蓝绿色逐渐转化成蓝红色。PEG的添加占据了手性向列结构CNC之间的空间,导致螺距P增大,从而发生红移。因此,通过对POM结果分析,证明了PEG的添加不会破坏CNC的手性向列结构和双折射现象,控制PEG含量可以有效调控CNC手性向列层间距,进而调控复合薄膜结构色的变化。
2.5 纤维素纳米晶结构色复合薄膜和双层复合薄膜的光谱学分析
由基尔霍夫定律可知,样品的发射率(T)等同于吸收率(A)。通过观察图5(a)可知,在室内湿度为42%时,样品在大气窗口波段(8~13 μm)都有较高的发射率,其中当PEG的含量为30%时,复合薄膜的发射率最高可达93.0%,这样可以最大限度的向天空辐射红外热量。CNC/PEG复合薄膜具有高发射率,这是由于O—H (6.9~7.6 μm)、C—O (7.6~9.5 μm)、C—H (11.1~14.3 μm)键在大气窗口范围(8~13 μm)内产生强烈的拉伸与弯曲振动所导致的。图5(b)是PEG含量不同的复合薄膜在太阳波段(0.3~2.5 μm)范围内太阳光反射率曲线,结构色复合薄膜在近红外范围内的反射率最高可达68.5%。随着PEG的含量增加,其反射率也随之变高。
图6为不同PEG含量的双层复合制冷膜的发射率曲线和在可见光范围内的反射率曲线。通过观察图6(a)可知,在室内湿度为42%的测量环境下,双层复合膜在大气窗口的发射率高于醋酸纤维素膜的发射率,随着PEG含量的增加双层复合膜的发射率也逐步提高,当PEG含量为30%时,双层复合膜的发射率最高可达68.0%。图6(b)是PEG含量不同的双层复合膜在太阳波段(0.3~2.5 μm)范围内的太阳光反射率曲线,在近红外范围内的反射率最高可达91.8%。
2.6 纤维素纳米晶复合结构色薄膜和双层复合薄膜的辐射制冷性能分析
图7(a)为室内氙灯模拟图,利用100 mW/cm2高功率氙灯来照射,不仅可以模拟太阳光照射还可以将光均匀地分布在样品表面。图7(b)为用来测量样品温度及装置内空气温度的自组装装置,聚乙烯(PE)薄膜既可以保证氙灯的光照射到装置内部,又可以减少热对流对辐射制冷结果的影响。由图7(c)、图7(d)可知,将氙灯打开后,PE薄膜覆盖的装置内部温度迅速上升,在5 min后样品逐渐达到热稳定状态。当温度逐渐趋向平衡时,薄膜下方温度明显低于PE覆盖装置内的空气温度,不同结构色CNC/PEG复合薄膜辐射制冷性能相似,薄膜平均降温可达3.4℃。
图 7 (a)室内氙灯模拟装置图;(b)自组装温度测量装置图;CNC/PEG-10%和空气(c)、CNC/PEG-30%和空气(d) 温度对比图Figure 7. (a) Photos of indoor xenon lamp simulation device; (b) Self assembling temperature measuring device; Temperature comparison of CNC/PEG-10% and air (c), CNC/PEG-30% and air (d)PE—Polyethylene; IR—Infrared spectroscopy图8(a)~8(c)为不同纤维素基底在同一光源照射下的红外热成像图。在氙灯的照射下,采用红外热成像观察5 min,可以看出,醋酸纤维素薄膜的表面温度最低,滤纸的表面温度略高于醋酸纤维素薄膜,而A4纸的表面温度最高。通过观察醋酸纤维素的SEM图像(图8(d))可知,醋酸纤维素膜具有多孔结构,可以有效地反射可见光。图8(e)为醋酸纤维素膜下温度与环境温度对比曲线,膜下温度平均比环境温度低15℃左右。综上表明,醋酸纤维素薄膜具有良好的辐射降温能力,是作为双层复合薄膜的较优选择。
利用红外热成像分别观察CNC/PEG-20%、CNC/PEG-20%-CA和带有蓝色涂料的CA薄膜在相同时间和相同光照下其表面的降温能力,如图9(a)~9(c)所示。结果可知,CNC/PEG-20%-CA的表面降温能力较强,CNC/PEG-20%的降温能力次之,而带有蓝色涂料的CA薄膜的表面降温能力最差。通过分析CNC/PEG-20%和带有蓝色涂料的CA薄膜的温度曲线(图9(d)、图9(e)),进一步证实双层复合薄膜具有良好的制冷性能。由图9(f)、图9(g)可知,PE薄膜覆盖下装置内的空气温度与双层复合制冷膜下方温度的起始温度大致相同,氙灯打开后,两者温度迅速上升,5 min后双层复合制冷膜下方温度与装置内空气温度逐渐达到热稳定状态。当温度逐渐趋向平衡时,双层复合制冷膜下方温度远低于装置内空气温度,双层复合膜的辐射制冷性能几乎不受PEG含量的影响,双层复合薄膜平均降温可达14.3℃,双层复合膜的降温性能优于复合薄膜的降温性能。实验结果表明:CNC/PEG复合薄膜平均可降温3.4℃左右,醋酸纤维素膜是作为双层复合膜的理想基底,双层复合制冷膜的降温性能优于复合薄膜,平均降温可达14.3℃左右。
图 9 ((a)~(c)) CNC/PEG-20%、CNC/PEG-20%-CA与带有蓝色涂料的CA薄膜红外热成像图;带蓝色涂料的CA和空气(d)、CNC/PEG-20%-CA和空气(e)、CNC/PEG-10%-CA和空气(f)、CNC/PEG-30%-CA和空气(g)温度对比图Figure 9. ((a)-(c)) Infrared thermograms of CNC/PEG-20%, CNC/PEG-20%-CA and and CA films with blue coatings; Temperature comparison of CA with blue painting and air (d), CNC/PEG-20%-CA and air (e), CNC/PEG-10%-CA and air (f), CNC/PEG-30%-CA and air (g)图10(a)、图10(b)为测量CNC/PEG-30%-CA、CNC/PEG-30%及PE覆盖装置内空气温度的户外装置图,利用铝箔纸包裹整个装置以减少周围建筑物对装置热辐射的影响,在装置顶部覆盖一层PE膜来减少环境中的热对流及热传导对整个装置的影响,装置下方的泡沫箱用来隔绝地面对测量温度的热影响,利用热电偶分别记录样品覆盖空腔中的温度及PE膜覆盖下装置的空气温度。通过分析图10(c)可以看出,在平均温度为25℃,平均湿度51%的户外环境中,与PE覆盖装置中空气温度对比,复合薄膜可以实现平均2℃左右的降温效果,而双层复合薄膜可以实现平均6℃左右的降温效果。
图 10 ((a), (b))测试CNC/PEG-30%-CA、CNC/PEG-30%和空气的温差变化的户外装置图;(c) CNC/PEG-30%-CA、CNC/PEG-30%与空气的温差图Figure 10. ((a), (b)) Diagram of an outdoor installation for testing the change in temperature difference between CNC/PEG-30%-CA, CNC/PEG-30% and air; (c) Temperature comparison of CNC/PEG-30%-CA, CNC/PEG-30% and air3. 结 论
本文将纤维素纳米晶体(CNC)与聚乙二醇(PEG)以不同比例混合,采用自组装的方法制备了具有辐射制冷性能的结构色复合薄膜,将结构色复合薄膜与具有多孔结构的醋酸纤维素膜(CA)相结合,制备具有辐射制冷和结构色特性的双层复合膜。分别对复合薄膜和双层复合膜的性能进行分析,得出的结论如下:
(1) CNC/PEG复合薄膜具有手性向列结构和鲜艳的结构色,复合薄膜出现明显的双折射特性,随着PEG含量的增加,复合薄膜手性向列结构的螺距增大,反射波长随之发生红移,最终导致薄膜结构色的变化;
(2)对CNC/PEG复合薄膜和CNC/PEG-CA双层复合膜进行FTIR和UV-vis测试可知,复合薄膜在0.25~2.5 μm的波长范围内的反射率高达93.0%,双层复合膜反射率可达68.0%,复合薄膜在“大气窗口”(8~13 μm)范围内的发射率可达68.5%,双层复合膜发射率高达91.8%;
(3)在氙灯照射下,CNC/PEG结构色复合薄膜具有辐射制冷性能,与装置内空气温度对比,平均降温可达3.4℃左右。与具有多孔结构的醋酸纤维素膜结合,双层结构色复合薄膜的辐射制冷性能得到提升,平均降温可达14.3℃左右。在户外降温性能测试中,复合薄膜可以达到平均2℃左右的降温效果,双层复合膜可以达到平均6℃左右的降温效果。
-
图 1 不同制备方法得到的Fe3O4纳米材料的SEM或TEM图像(a)机械球磨法(1、干法[16],2、湿法[17]);(b)物理气相沉积[19];(c)化学气相沉积(插图为AFM 图像)[20];(d)共沉淀法[22];(e)水热法[24];(f)溶剂热法[26];(g)热分解法[28];(h)溶胶-凝胶法[30];(i)微乳液法[31];(j)声化学法[33];(k)电沉积法[34];(l)微生物合成法[35];(m)植物合成法[37];(n)仿生合成法[38]
Figure 1. SEM or TEM images of Fe3O4 nanomaterials obtained by different preparation methods (a) Mechanical ball milling (1, dry[16], 2, wet[17]); (b) Physical vapor deposition[19]; (c) Chemical vapor deposition(AFM image in the inset)[20]; (d) Co-precipitation[22]; (e) Hydrothermal[24]; (f) Solvent-thermal[26]; (g) Thermal decomposition[28]; (h) Sol-gel[30]; (i) Microemulsion[31]; (j) Acoustic chemical[33]; (k) electrodeposition[34]; (l) microbial synthesis[35]; (m) phytosynthesis[37]; (n) biomimetic synthesis[38]
图 2 (a)Al2O3上Fe3O4材料示意图[20];(b)黑色区域为Fe3O4纳米材料,棕色区域为活性污泥[25];(c) 聚醇法制备示意图[27];(d)溶胶-凝胶爆炸辅助法制备Fe3O4纳米材料的机理[30];(e)多相分段流动反应合成过程示意图[31];(f)微乳液法合成Fe3O4纳米材料(W/O)[32];(g)超声合成Fe3O4[33];(h)异质结构前驱体Fe3O4/FexSy的合成过程示意图[34];(i)传统合成与仿生合成Fe3O4NPs[38]
Figure 2. (a) Schematic diagram of Fe3O4 film on Al2O3[20]; (b) black area is Fe3O4 nanoparticles and brown area is activated sludge[25]; (c) Schematic diagram of the preparation by the polyol method[27]; (d) Mechanism of Fe3O4 nanoparticles prepared by the sol-gel explosion-assisted method[30]; (e) Schematic diagram of the synthesis process of multiphase segmented flow reaction [31]; (f) Synthesis of Fe3O4 nanoparticles (W/O) by the microemulsion method[32];(g ) synthesis of Fe3O4 by ultrasound[33]; (h) schematic of the synthesis process of the heterostructured precursor Fe3O4/FexSy[34]; (i) conventional synthesis and biomimetic synthesis of Fe3O4NPs[38]
图 3 (a) Fe3O4球体与Fe3O4/POA核壳球体的TEM图像[39];(b) Fe3O4/CS@Ag磁性材料的制备及SMSPE-SERS从预处理到检测过程示意图[40];(c) PAQR/Fe3O4复合纳米材料的合成过程[41];(d) Fe3O4@SiO2的合成工艺[43];(e) Fe3O4@Bi2S3的合成过程[47];(f) Au-Fe3O4纳米材料合成过程示意图[49];(g)以有机原料为基础的一步和两步AC制备示意图[50];(h) Fe3O4@CNTs示意图[51];(i) Cu-MOF和Cu-MOF@Fe3O4的合成流程示意图[53];(j)核壳结构 FPy-COF@PDA@Fe3O4 纳米球的合成流程示意图[54];(k) COF基纳米复合材料的合成工艺[55]
Figure 3. (a) TEM images of Fe3O4 spheres and Fe3O4/POA core-shell spheres[39]; (b) preparation of Fe3O4/CS@Ag magnetic microspheres and schematic diagram of the process of SMSPE-SERS from pretreatment to detection[40]; (c) synthesis process of PAQR/ Fe3O4 nanocomposites[41]; (d) synthesis process of Fe3O4@SiO2[43]; (e) synthesis process of Fe3O4 @Bi2S3 synthesis process[47]; (f) Schematic of the synthesis process of Au- Fe3O4 nanoparticles[49]; (g) Schematic of one-step and two-step AC preparations based on organic feedstocks[50]; (h) Schematic of Fe3O4@CNTs[51]; (i) Schematic of the synthesis process of Cu-MOF and Cu-MOF@ Fe3O4[53]; and (j) Schematic of the nucleoshell structure FPy-COF@PDA@ Fe3O4 nanorods[54]; (k) Schematic flow of the synthesis of COF-based nanocomposites[55]
图 4 (a) Fe3O4MNPs的吸附效率与时间的关系[56];(b)外加磁场下BF染料在Fe3O4@Cd磁性微球吸附剂上的吸附−解吸过程[57];(c)亚甲基蓝、亚甲基绿和罗丹明B的分子吸收光谱[58];(d)不同因素对Fe3O4/Ti3C2纳米复合材料去除MG的影响[59];(e) Fe3O4NPs和Fe3O4/TiO2NCs在阳光直射下对MB的降解效果[60];(f) rGO/Fe3O4/ZnSe纳米催化剂降解MB[61];(g) rGO/Fe3O4/ZnSe纳米催化剂降解RB和MO[61];(h) Fe3O4/CuO投加量与COD去除率的关系[62];(i) MB吸光度分析[63]
Figure 4. (a) Adsorption efficiency of Fe3O4MNPs versus time[56]; (b) Adsorption-desorption process of BF dye on Fe3O4@Cd magnetic microsphere adsorbent under applied magnetic field[57]; (c) Molecular absorption spectra of methylene blue, methylene green and rhodamine B[58]; (d) Effect of different factors on the removal of MG by Fe3O4/Ti3C2 nanocomposites MB under direct sunlight[59]; (e) degradation of MB by Fe3O4NPs and Fe3O4/TiO2NCs under direct sunlight[60]; (f) degradation of MB by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (g) degradation of RB and MO by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (h) relationship between Fe3O4/CuO dosage and COD removal[62]; and (i) adsorption of MB by Photometric analysis[63]
表 1 各种制备方法优缺点
Table 1 Advantages and disadvantages of various preparation methods
Production method Raw materials Reaction
Temperature /°CReaction
timeSolvent Particle size/nm Advantages Disadvantages References Mechanical ball milling shot (in shotgun) Room temperature
(RT)<20H H2O 11.1 Simple operation Easy to introduce impurities, not suitable for the preparation of different morphology of Fe3O4 nanocrystals [16][17] Physical vapor deposition Fe3O4、Si/MgO RT-500 / / 34-54 High purity, controllable, high efficiency Expensive equipment, high energy consumption, harsh reaction conditions [18] Chemical Vapor Deposition Fe(acac)3, MeOH 400 / / 110 High efficiency, easy to control Complex reaction process, requiring specific gases and reagents [20][21] Precipitation FeCl3·6H2O,
FeSO4·7H2O60 2H H2O/
EtOH10-32 Easy to implement, less hazardous Wide grain size distribution, need to control the conditions accurately [22][23] Hydrothermal FeCl3·6H2O,TEA 180 2-8H H2O 11.8 Strong magnetism at high temperatures, high product purity, easy to operate, low contamination High energy consumption, long reaction time, high equipment requirements [24] Solvent Thermal Method FeCl3·6H2O 200 4H EG 10-150 High purity, controllable size,
fast reaction speedLimited choice of solvents, high temperature and pressure conditions [25] Thermal decomposition Fe(acac)3 200-270 20-55 min Octadecene, Oleylamine, Dioctyl Ether 9-19 Uniformity of nanoparticles, high saturation magnetization rate Requires high temperature conditions, difficult to control the reaction process [28] Sol-gel method Fe(NO3)3 220-320 1H H2O 37.2-
43.5Controllable size and morphology, high uniformity, low temperature preparation High operating technology requirements, high equipment costs [29] Microemulsion FeCl2,FeCl3,HCl RT-50 25 min NH4OH solution 10 Controlled nucleation and growth, effectively avoiding agglomeration between particles Low yield, high cost [31] Acoustic Chemistry Fe 60 15 min Na2SO4 solution 50 Easier to achieve uniform mixing of media, high reaction rate Sensitive to reaction conditions, high energy consumption [33] Electrodeposition FeSO4·7H2O,Na2S2O3 RT 5 min deoxygenated water / Good biocompatibility Slower growth rate, high operation technology requirements [34] Microbial synthesis Fe2(SO4)3、S2 strain RT 5H H2O 20-70 Environmentally friendly, good biocompatibility, sustainability Long production cycle, low product purity, difficult to control [35] Phytosynthesis Fe(NO3)·9H2O、Natural tannins (green tea) / / / 23.4 Environmentally friendly, good biocompatibility, resourcefulness Complex extraction process, low product purity, difficult to control [36] Biomimetic synthesis FeSO4·7H2O、KOH、KNO3、Mms6-28 RT-90 -5H / / Controlled particle size, environmentally friendly, structural complexity Higher cost, more demanding reaction conditions [38] 表 2 Fe3O4纳米材料最大吸附量的比较
Table 2 Comparison of maximum adsorption capacity of Fe3O4 nanomaterials
Adsorbent Dye Dye amount/
(mg·g−1)Adsorbent amount Temperature PH Time/min Adsorption capacity/(mg·g−1) Removal/
adsorption rateFe3O4(Elham Ghoohestan) MB 12 0.5 mg/mL RT 7.5 60 17.79 89% Fe3O4@Cd BF 25 100 mg RT 7 60 23.5 >95% Fe3O4
(Hoang Anh Thid)MB 500 20 mg/
25 mLRT 7 90 268.64 ~97% Fe3O4/Ti3C2 MG 10 5 mg Increased removal rate at higher temperatures Increased
removal rate at
elevated pH60 4.68 99%(100 mg of adsorbent) Notes: MB: Methylene Blue; BF: Basic Fuchsin; MG: Malachite Green. -
[1] EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. DOI: 10.1016/j.jwpe.2022.103273
[2] SLAMA H B, CHENARI Bouket A, POURHASSAN Z, et al. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods[J]. Applied Sciences, 2021, 11(14): 6255. DOI: 10.3390/app11146255
[3] 阮瑜迪, 孟宪双, 董岳龙, 等. 纺织化学品中有害物质检测方法研究进展[J]. 印染, 2024, 50(4): 66-71+91. DOI: 10.3969/j.yinran.202404014 RUAN Yudi, MENG Xianshuang, DONG Yuelong, et al. Research progress in detection methods for harmful substances in textile chemicals[J]. China Dyeing & Finishing, 2024, 50(4): 66-71+91(in Chinese). DOI: 10.3969/j.yinran.202404014
[4] 张智琦, 鲁慧云, 薛星韬, 等. 典型印染废水处理工艺中重金属污染物的分布与去除[J]. 印染, 2022, 48(12): 62-65. DOI: 10.3321/j.issn.1000-4017.2022.12.015 ZHANG Zhiqi, LU Huiyun, XUE Xingtao, et al. Distribution and removal of selected heavy metal pollutants in typical dyeing wastewater treatment processes[J]. China Dyeing & Finishing, 2022, 48(12): 62-65(in Chinese). DOI: 10.3321/j.issn.1000-4017.2022.12.015
[5] LIU Z, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresource Technology, 2022, 354: 127168. DOI: 10.1016/j.biortech.2022.127168
[6] ZHENG H, YANG X, MENG K, et al. Textile Dyes Alter the Bacterial Community Structure in Contaminated Soil[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2599-2609. DOI: 10.1007/s42729-023-01216-4
[7] DUTTA P, RABBI M, ABU Sufian M, et al. Effects of textile dyeing effluent on the environment and its treatment: A review[J]. Eng. Appl. Sci. Lett, 2022, 5(1): 1-1.
[8] STERNIK D, WASILEWSKA M, DERYLO-MARCZEWSKA A, et al. Studies on the process of basic dyes adsorption on uniform spherical carbons[J]. ChemPhysChem, 2024, 25(8): e202300825. DOI: 10.1002/cphc.202300825
[9] SANTANA I L S, SILVA M G, OUREM G P, et al. Degradation of direct black 22 textile dye using the photo-Fenton and electro-Fenton processes: a comparative study[J]. Chemical Papers, 2024: 1-10.
[10] HUANG H, WEN Y, HUANG Y, et al. Separation and Photodegradation of Dye-Containing Oil/Water Mixtures with a Photothermally Responsive PNIPAm-MXene/PAN-PNIPAm Nanofibrous Hydrogel Membrane[J]. ACS Applied Nano Materials, 2024, 7(7): 7562-7572. DOI: 10.1021/acsanm.4c00235
[11] CHEN Z, FENG M, WANG Y, et al. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes[J]. Ecotoxicology and Environmental Safety, 2024, 275: 116226. DOI: 10.1016/j.ecoenv.2024.116226
[12] NASEEM K, ABRAR E, HAIDER S, et al. Polyurethane-based nanocomposite for catalytic reduction of toxic dyes[J]. Polymers for Advanced Technologies, 2024, 35(4): e6372. DOI: 10.1002/pat.6372
[13] SHABIL Sha M, Anwar H, Musthafa F N, et al. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)[J]. Scientific Reports, 2024, 14(1): 3608. DOI: 10.1038/s41598-024-53626-8
[14] GANAPATHE L S, MOHAMED M A, MOHAMAD Yunus R, et al. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation[J]. Magnetochemistry, 2020, 6(4): 68. DOI: 10.3390/magnetochemistry6040068
[15] ZHAI W, HE J, HAN P, et al. Adsorption mechanism for tetracycline onto magnetic Fe3O4 nanoparticles: Adsorption isotherm and dynamic behavior, location of adsorption sites and interaction bonds[J]. Vacuum, 2022, 195: 110634. DOI: 10.1016/j.vacuum.2021.110634
[16] JALIL Z, RAHWANTO A , MUSTANIR, et al. Magnetic behavior of natural magnetite (Fe3O4) extracted from beach sand obtained by mechanical alloying method[C]//American Institute of Physics Conference Series. AIP Publishing LLC, 2017. DOI:10.1063/1.4991127.
[17] LIANG Y , YUAN Y , HUANG Y , et al. Effect of Ball Milling on the Absorption Properties of Fe3O4[J]. Materials, 2020, 13(4): 883.
[18] CAO L, GUO Q, LIANG J, et al. Preparation of sputtered Fe3O4 thin film[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(18): 23645-23653. DOI: 10.1007/s10854-021-06858-7
[19] ZHANG Z, LU X, YAN Y, et al. Direct observation of spin polarization in epitaxial Fe3O4 (001)/MgO thin films grown by magnetron sputtering[J]. Applied Physics Letters, 2022, 120(18).
[20] FEIFEI L , RUI Z , ZIYUE Q , et al. Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films[J]. Crystals, 2022, 12(4): 485-485.
[21] KAN D, SUGANO S, KOSUGI Y, et al. Selective growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 at low temperatures and under ambient pressure[J]. Japanese Journal of Applied Physics, 2019, 58(9): 095504. DOI: 10.7567/1347-4065/ab39d1
[22] M. M A B , ABDELBAKI B , DINA E , et al. Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application[J]. JOM, 2022, 74(9): 3531-3539.
[23] 杨金子, 张春燕, 李进京等. 磁性Fe3O4纳米粒子的制备[J]. 精细化工中间体, 2020, 50(4): 50-53. DOI: 10.19342/j.cnki.issn.1009-9212.2020.04.013 YANG Jinzi, ZHANG Chunyan, LI Jinjing, et al. Preparation of Magnetic Fe3O4 Nanoparticles[J]. FINE CHEMICAL INTERMEDIATES, 2020, 50(4): 50-53. DOI: 10.19342/j.cnki.issn.1009-9212.2020.04.013
[24] XU Y , ZHANG Y , SONG X , et al. Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor[J]. Functional Materials Letters, 2019, 12(2): 4.
[25] LIANG Y, JIANG L, XU S, et al. Synthesis and Characterization of Fe3O4 Nanoparticles Prepared by Solvothermal Method[J]. Journal of Materials Engineering and Performance, 2023: 1-12.
[26] A A N , V I S , YU N T , et al. Synthesis of Iron Oxide Nanoclusters by Thermal Decomposition.[J]. Langmuir : the ACS journal of surfaces and colloids, 2018, 34(15): 4640-4650.
[27] OH A H, PARK H Y, JUNG Y G, et al. Synthesis of Fe3O4 nanoparticles of various size via the polyol method[J]. Ceramics International, 2020, 46(8): 10723-10728. DOI: 10.1016/j.ceramint.2020.01.080
[28] LIANG J Y , ZHANG L , CHEN M , et al. Anisotropic shaped Fe3O4 nanoparticles: Microwave-assisted thermal decomposition synthesis and their electromagnetic properties[J]. AIP Advances, 2020, 10(8): 085208.
[29] PARMARC , VERMAR , GHOSHA , et al. Sol-gel auto-combustion synthesis of magnetite and its characterization via x-ray diffraction[J]. AIP Conference Proceedings, 2019, 2142(1): 160014.
[30] HU P, CHANG T, CHEN W J, et al. Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method[J]. Journal of Alloys and Compounds, 2019, 773: 605-611. DOI: 10.1016/j.jallcom.2018.09.238
[31] GU T , ZHANG Y , KHAN A S , et al. Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems[J]. Colloid and Interface Science Communications, 2019, 28 1-4.
[32] GOSHU A , AMARE E Z , TESHOME S A . Synthesis of Silica-Coated Fe3O4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity.[J]. International journal of biomaterials, 2020, 2020 4783612.
[33] KALIDASS J, REJI M, SIVASANKAR T. Synthesis of Fe3O4 Nanoparticles with Enhanced Properties via Sonoelectrochemical Approach: A comparative study with Electrochemical and Hydrothermal Method[J]. Chemical Engineering and Processing-Process Intensification, 2024: 109690.
[34] LI X, SHAO C, WANG X, et al. Preparation of Fe3O4/FexSy heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 446: 137267. DOI: 10.1016/j.cej.2022.137267
[35] SAMIRA E , FERESHTEH K J . Bacterial synthesis of magnetic Fe3O4 nanoparticles: Decolorization Acid Red 88 using FeNPs/Ca-Alg beads[J]. Arabian Journal of Chemistry, 2022, 15(9):
[36] TAHANI A S , H. H. M A , M. A A . Green biosynthesis of Fe3O4 nanoparticles using Chlorella vulgaris extract for enhancing degradation of 2, 4 dinitrophenol[J]. Journal of King Saud University - Science, 2023, 35 (1):
[37] ANANTHI S, KAVITHA M, KUMAR E R, et al. Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application[J]. Sensors and Actuators B: Chemical, 2022, 352: 131071. DOI: 10.1016/j.snb.2021.131071
[38] MAO Y, LIU J, SUN J, et al. Elucidating the Bioinspired Synthesis Process of Magnetosomes-Like Fe3O4 Nanoparticles[J]. Small, 2024: 2308247.
[39] LEE J H, LU Q, LEE J Y, et al. Polymer-magnetic composite particles of Fe3O4/poly (o-anisidine) and their suspension characteristics under applied magnetic fields[J]. Polymers, 2019, 11(2): 219. DOI: 10.3390/polym11020219
[40] ZHANG Q , MA X , DU X , et al. Silver-nanoparticle-coated Fe3O4/chitosan core–shell microspheres for rapid and ultrasensitive detection of thiram using surface magnetic solid-phase extraction–surface-enhanced Raman scattering (SMSPE-SERS)[J]. Science of the Total Environment, 2024, 914170027-.
[41] ZHANG X, WANG Q, TANG Y, et al. Decoration of conjugated polyacene quinone radical (PAQR) with Fe3O4 nanospheres achieving improved impedance matching and electromagnetic wave absorption[J]. Materials Today Physics, 2024, 41: 101349. DOI: 10.1016/j.mtphys.2024.101349
[42] PAVÓN-HERNÁNDEZ A I, RODRÍGUEZ-VELÁZQUEZ E, ALATORRE-MEDA M, et al. Magnetic nanocomposite with fluorescence enhancement effect based on amino acid coated- Fe3O4 functionalized with quantum dots[J]. Materials Chemistry and Physics, 2020, 251: 123082. DOI: 10.1016/j.matchemphys.2020.123082
[43] LI H , JIN H , LI R , et al. Magnetic Fe3O4@SiO2 study on adsorption of methyl orange on nanoparticles.[J]. Scientific reports, 2024, 14(1): 1217-1217.
[44] HABILA M A, MOSHAB M S, EL-TONI A M, et al. Facile Strategy for Fabricating an Organosilica-Modified Fe3O4 (OS/ Fe3O4) Hetero-Nanocore and OS/ Fe3O4@ SiO2 Core–Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency[J]. ACS omega, 2023, 8(8): 7626-7638. DOI: 10.1021/acsomega.2c07214
[45] LIAO J, QIU J, WANG G, et al. 3D core-shell Fe3O4@ SiO2@ MoS2 composites with enhanced microwave absorption performance[J]. Journal of colloid and interface science, 2021, 604: 537-549. DOI: 10.1016/j.jcis.2021.07.032
[46] SHI L, HE Y, WANG X, et al. Recyclable photo-thermal conversion and purification systems via Fe3O4@ TiO2 nanoparticles[J]. Energy conversion and management, 2018, 171: 272-278. DOI: 10.1016/j.enconman.2018.05.106
[47] XU Y , CHEN B , XU L , et al. Urchin-like Fe3O4@Bi2S3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities.[J]. ACS applied materials & interfaces, 2024, 16(3).
[48] ZHENG K, SHEN C, QIAO J, et al. Novel magnetically-recyclable, nitrogen-doped Fe3O4@ Pd NPs for Suzuki–Miyaura coupling and their application in the synthesis of crizotinib[J]. Catalysts, 2018, 8(10): 443. DOI: 10.3390/catal8100443
[49] TONTHAT L, OGAWA T, YABUKAMI S. Dumbbell-like Au– Fe3O4 nanoparticles for magnetic hyperthermia[J]. AIP Advances, 2024, 14(1).
[50] BORDUN I, SZYMCZYKIEWICZ E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors[J]. Applied Sciences, 2024, 14(2): 677. DOI: 10.3390/app14020677
[51] YU L, TANG Y, MA W, et al. Impact of composite modes on electrochemical properties of Fe3O4/CNTs for li-ion storage[J]. Applied Surface Science, 2024: 159333.
[52] HUANG X, LIU Y, WANG X, et al. Removal of arsenic from wastewater by using nano Fe3O4/zinc organic frameworks[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10897. DOI: 10.3390/ijerph191710897
[53] AMEEN R, RAUF A, MOHYUDDIN A, et al. Excellent antimicrobial performances of Cu (II) metal organic framework@ Fe3O4 fused cubic particles[J]. Journal of Saudi Chemical Society, 2023, 27(6): 101762. DOI: 10.1016/j.jscs.2023.101762
[54] ZHANG J, CHEN Z, TANG F, et al. Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones[J]. Microchimica Acta, 2022, 189(12): 449. DOI: 10.1007/s00604-022-05541-w
[55] HAGHIGHI Shishavan Y, AMJADI M, MANZOORI J L. A fluorescent magnetic nanosensor for imidacloprid based on the incorporation of polymer dots and Fe3O4 nanoparticles into the covalent organic framework[J]. Luminescence, 2023, 38(12): 2056-2064. DOI: 10.1002/bio.4595
[56] GHOOHESTANI E, SAMARI F, HOMAEI A, et al. A facile strategy for preparation of Fe3O4 magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal[J]. Scientific Reports, 2024, 14(1): 84. DOI: 10.1038/s41598-023-50550-1
[57] NING J, CHEN D, LIU Y, et al. Efficient adsorption removal and adsorption mechanism of basic fuchsin by recyclable Fe3O4@ CD magnetic microspheres[J]. Journal of Central South University, 2021, 28(12): 3666-3680. DOI: 10.1007/s11771-021-4845-0
[58] THI H A, PHUC L T, VAN Trong N, et al. Synthesis of materials from agricultural wastes combined with Fe3O4 for methylene blue adsorption and application to treat organic pollutants in water samples[J]. Vietnam Journal of Chemistry, 2024, 62(1): 68-77. DOI: 10.1002/vjch.202300120
[59] ALKHUDAYDI A M, DANISH E Y, ABDEL Salam M. Magnetite/MXene (Fe3O4/Ti3C2) Nanocomposite as a Novel Adsorbent for Environmental Remediation of Malachite Green Dye[J]. Molecules, 2024, 29(6): 1372. DOI: 10.3390/molecules29061372
[60] RAJABATHAR R J , THANKAPPAN R , SUTHA A , et al. Enhanced photocatalytic activity of magnetite/titanate (Fe3O4/TiO2) nanocomposite for methylene blue dye degradation under direct sunlight[J]. Optical Materials, 2024, 148114820.
[61] FARAHMANDZADEH F, MOLAEI M, SALEHI S, et al. Simultaneous and fast degradation of Methylene Blue, Methylene Orange, and Rhodamine B dyes by high-performance rGO/Fe3O4/ZnSe magnetic nanocomposites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024: 133229.
[62] 孟丽平, 李纳纳. Fe3O4/CuO催化剂非均相Fenton深度处理染料废水[J]. 印染, 2021, 47(9): 61-65. DOI: 10.3321/j.issn.1000-4017.2021.09.015 MENG Liping, LI Nana. Heterogenous Fenton degradation of dye wastewater enhanced by Fe3O4/CuO nanoparticles[J]. China Dyeing & Finishing, 2021, 47(9): 61-65(in Chinese). DOI: 10.3321/j.issn.1000-4017.2021.09.015
[63] NAS M S, ÖNEN M, ÖZTÜRK E, et al. A novel CeO2/CuO-supported Fe3O4 sonocatalyst nanoparticle for highly efficient degradation of methylene blue dye[J]. Inorganic Chemistry Communications, 2024, 161: 112050. DOI: 10.1016/j.inoche.2024.112050
[64] 陈凤华, 梁娓娓, 石向东, 等. Ag@AgCl-Fe3O4/rGO复合材料对印染废水中染料和重金属离子的吸附和光催化降解性能[J]. 复合材料学报, 2021, 38(7): 2295-2304. DOI: 10.13801/j.cnki.fhclxb.20200928.004 CHEN Fenghua, LIANG Weiwei, SHI Xiangdong, et al. Adsorption and photocatalytic degradation of dyes and heavy metals in printing and dyeing wastewater by Ag@AgCl-Fe3O4/rGO composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2295-2304. DOI: 10.13801/j.cnki.fhclxb.20200928.004
-
目的
印染废水成分复杂,含有大量有机染料、助剂和重金属离子等污染物,对环境和人体健康危害极大。传统废水处理方法难以有效去除这些有机污染物,因此,本研究旨在探索利用 Fe3O4纳米材料处理印染废水的方法,包括其制备、改性以及在印染废水处理中的应用,为解决印染废水污染问题提供新的途径和理论参考。
方法1.Fe3O4纳米材料的制备方法:
物理合成方法:包括机械球磨法(干法和湿法)、物理气相沉积。
化学合成方法:涵盖化学气相沉积、共沉淀法、水热法、溶剂热法、热分解法、溶胶-凝胶法、微乳液法、声化学法、电沉积法。
生物合成方法:有微生物合成法、植物合成法、仿生合成法。有微生物合成法、植物合成法、仿生合成法。
2.Fe3O4纳米材料的改性
有机材料修饰:采用化学氧化聚合技术、溶剂热法、固相聚合法等合成具有核壳结构的Fe3O4/聚邻茴香胺磁性复合纳米材料、多功能Sers基底-Fe3O4/CS@Ag微球、PAQR/FeO纳米复合材料等,并用有机小分子(表面活性剂、偶联剂和氨基酸等)修饰Fe3O4纳米材料。
无机材料修饰:
SiO2修饰:采用溶胶凝胶法将磁性Fe3O4与介孔SiO复合,对 Fe3O4纳米材料进行功能化改性。
金属氧化物/硫化物修饰:制备Fe3O4@TiO2、Fe3O4@Bi2S3等纳米材料,用金属氧化物或硫化物作为磁性纳米材料的保护壳。
金属修饰:用金属包裹Fe3O4纳米材料,如制备新型磁性可回收纳米材料Fe3O4@Pd。
碳基材料修饰:以农业废弃物为原料合成Fe3O4/C复合材料,将Fe3O4封装到碳纳米管的空腔中。
框架材料修饰:
金属有机骨架:合成用于去除废水中As(V)的新型复合吸附剂(Fe3O4@ZIF-8)、铜(II)-苯-1,4 -二甲酸金属有机骨架与Fe3O4(Cu-MOF@Fe3O4)的复合纳米材料。
共价有机骨架:制备高氟化卟啉基共价有机骨架磁性吸附剂(FPy-COF@PDA@Fe3O4)、COF 基纳米复合材料。
3.Fe3O4纳米材料在印染废水的应用:
吸附作用:通过绿色一锅法合成Fe3O4MNPs、制备磁性吸附剂Fe3O4@CD、利用农业废弃物改性Fe3O4并用于吸附有机染料、制备磁铁矿/MXene(Fe3O4/Ti3C2)纳米复合材料吸附孔雀石绿染料等方法,研究Fe3O4纳米材料对印染废水中有机染料的吸附性能。
降解作用:制备纳米复合材料 Fe3O4/TiO2 NCs、还原氧化石墨烯(rGO)/Fe3O4/ZnSe 磁性纳米复合材料、Fe3O4/CuO 纳米颗粒、Fe3O -CeO2/CuO 纳米催化剂、Ag@AgCl-Fe3O4/rGO复合材料等,研究Fe3O4纳米材料对印染废水中染料的降解性能。
结果1.不同制备方法得到的 Fe3O4 纳米材料在反应温度、反应时间、溶剂和材料尺寸等方面存在差异。物理气相沉积和化学气相沉积能制备高纯度材料,但设备昂贵能耗高;沉淀法等相对简单但对反应条件控制要求高;微乳液法虽能制备粒度分布窄、分散性好的纳米材料,但成本高且可能对环境有影响;声化学法和电沉积法等有独特优势也有局限性;生物方法具有环境友好和可持续性特点,但生产周期长且产物纯度低。
2.有机、无机材料以及框架材料的修饰可优化 Fe3O4 纳米颗粒特性,提升其在印染废水处理中的吸附与催化能力。
3.Fe3O4纳米材料及其复合材料在印染废水处理中有高吸附容量和易于回收等优点,可通过物理孔径截留、静电作用、π-π相互作用和氢键作用吸附染料废水中的有机染料分子以及重金属离子,也可通过添加催化剂促进其分解产生强氧化性自由基来降解染料分子。
4.不同吸附剂对不同染料的最大吸附量不同,如Fe3O4(Elham Ghoohestan)对亚甲基蓝的最大吸附量为17.79mg/g,去除率为89%;Fe3O4@Cd对碱性品红的最大吸附量为23.5mg/g,去除率>95%等。
结论1.Fe3O4 纳米材料在印染废水处理中具有巨大潜力,可充当吸附剂清除有机染料,也可作为催化剂推动染料降解。
2.目前存在部分问题,如制备工艺成本高、流程繁杂,使用范围窄;改性研究常用到有毒有害物质,对环保绿色材料研究少;少量磁性粒子易脱落,再生效率和使用寿命有待提高;在实际废水处理中选择性和针对性不足。
3.未来需开发成本低、能同时去除多种污染物、具有合适表面特性和磁性的磁性复合材料;加强对环保绿色材料的研究;提高纳米材料的稳定性、再生效率和使用寿命;进行技术改进和优化,提高其选择性和针对性。