Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment
-
摘要: 印染废水成分复杂,其中存在大量的有机染料和其他污染物,对环境和人体健康造成极大危害。传统的废水处理方法往往难以有效去除这些有机污染物,近年来,人们开始关注利用纳米材料来解决这一问题。Fe3O4纳米材料因具有磁性、生物相容性和光学特性等优异性能,已逐渐成为废水处理中具有巨大应用前景的新型材料。本文阐述了利用物理、化学、生物等方法制备出高质量Fe3O4纳米材料的过程,介绍了利用有机材料、无机材料、框架材料等对其进行改性的方法,用以解决材料易团聚的问题并提高其稳定性。综述了Fe3O4纳米材料在印染废水处理领域的最新应用研究进展,最后,对Fe3O4纳米材料的制备方法和应用研究进行了讨论,旨在为促进Fe3O4纳米材料的推广应用提供理论参考。Abstract: Printing and dyeing wastewater has a complex composition, in which there are a large number of organic dyes and other pollutants, causing great harm to the environment and human health. Traditional wastewater treatment methods are often difficult to effectively remove these organic pollutants, and in recent years, people have begun to pay attention to the use of nanomaterials to solve this problem. Fe3O4 nanomaterials have gradually become a new type of wastewater treatment materials with great prospects for application due to their excellent properties such as magnetism, biocompatibility and optical properties. This paper describes the process of preparing high-quality Fe3O4 nanomaterials using physical, chemical, and biological methods, and introduces the methods of modifying them organic, inorganic, and framework materials, etc. to solve the problem of easy agglomeration and improve their stability. The latest research progress on the application of Fe3O4 nanomaterials in the field of printing and dyeing wastewater treatment is summarized, and finally, the preparation methods and application studies of Fe3O4 nanomaterials are discussed, aiming to provide theoretical references to promote the popularization and application of Fe3O4 nanomaterials.
-
Key words:
- Fe3O4 nanomaterials /
- Preparation /
- Modification /
- Adsorption /
- Degradation /
- Dye wastewater
-
图 1 不同制备方法得到的Fe3O4纳米材料的SEM或TEM图像(a)机械球磨法(1、干法[16],2、湿法[17]);(b)物理气相沉积[19];(c)化学气相沉积(插图为AFM 图像)[20];(d)共沉淀法[22];(e)水热法[24];(f)溶剂热法[26];(g)热分解法[28];(h)溶胶-凝胶法[30];(i)微乳液法[31];(j)声化学法[33];(k)电沉积法[34];(l)微生物合成法[35];(m)植物合成法[37];(n)仿生合成法[38]
Figure 1. SEM or TEM images of Fe3O4 nanomaterials obtained by different preparation methods (a) Mechanical ball milling (1, dry[16], 2, wet[17]); (b) Physical vapor deposition[19]; (c) Chemical vapor deposition(AFM image in the inset)[20]; (d) Co-precipitation[22]; (e) Hydrothermal[24]; (f) Solvent-thermal[26]; (g) Thermal decomposition[28]; (h) Sol-gel[30]; (i) Microemulsion[31]; (j) Acoustic chemical[33]; (k) electrodeposition[34]; (l) microbial synthesis[35]; (m) phytosynthesis[37]; (n) biomimetic synthesis[38]
图 2 (a)Al2O3上Fe3O4材料示意图[20];(b)黑色区域为Fe3O4纳米材料,棕色区域为活性污泥[25];(c) 聚醇法制备示意图[27];(d)溶胶-凝胶爆炸辅助法制备Fe3O4纳米材料的机理[30];(e)多相分段流动反应合成过程示意图[31];(f)微乳液法合成Fe3O4纳米材料(W/O)[32];(g)超声合成Fe3O4[33];(h)异质结构前驱体Fe3O4/FexSy的合成过程示意图[34];(i)传统合成与仿生合成Fe3O4NPs[38]
Figure 2. (a) Schematic diagram of Fe3O4 film on Al2O3[20]; (b) black area is Fe3O4 nanoparticles and brown area is activated sludge[25]; (c) Schematic diagram of the preparation by the polyol method[27]; (d) Mechanism of Fe3O4 nanoparticles prepared by the sol-gel explosion-assisted method[30]; (e) Schematic diagram of the synthesis process of multiphase segmented flow reaction [31]; (f) Synthesis of Fe3O4 nanoparticles (W/O) by the microemulsion method[32];(g ) synthesis of Fe3O4 by ultrasound[33]; (h) schematic of the synthesis process of the heterostructured precursor Fe3O4/FexSy[34]; (i) conventional synthesis and biomimetic synthesis of Fe3O4NPs[38]
图 3 (a) Fe3O4球体与Fe3O4/POA核壳球体的TEM图像[39];(b) Fe3O4/CS@Ag磁性材料的制备及SMSPE-SERS从预处理到检测过程示意图[40];(c) PAQR/Fe3O4复合纳米材料的合成过程[41];(d) Fe3O4@SiO2的合成工艺[43];(e) Fe3O4@Bi2S3的合成过程[47];(f) Au-Fe3O4纳米材料合成过程示意图[49];(g)以有机原料为基础的一步和两步AC制备示意图[50];(h) Fe3O4@CNTs示意图[51];(i) Cu-MOF和Cu-MOF@Fe3O4的合成流程示意图[53];(j)核壳结构 FPy-COF@PDA@Fe3O4 纳米球的合成流程示意图[54];(k) COF基纳米复合材料的合成工艺[55]
Figure 3. (a) TEM images of Fe3O4 spheres and Fe3O4/POA core-shell spheres[39]; (b) preparation of Fe3O4/CS@Ag magnetic microspheres and schematic diagram of the process of SMSPE-SERS from pretreatment to detection[40]; (c) synthesis process of PAQR/ Fe3O4 nanocomposites[41]; (d) synthesis process of Fe3O4@SiO2[43]; (e) synthesis process of Fe3O4 @Bi2S3 synthesis process[47]; (f) Schematic of the synthesis process of Au- Fe3O4 nanoparticles[49]; (g) Schematic of one-step and two-step AC preparations based on organic feedstocks[50]; (h) Schematic of Fe3O4@CNTs[51]; (i) Schematic of the synthesis process of Cu-MOF and Cu-MOF@ Fe3O4[53]; and (j) Schematic of the nucleoshell structure FPy-COF@PDA@ Fe3O4 nanorods[54]; (k) Schematic flow of the synthesis of COF-based nanocomposites[55]
图 4 (a) Fe3O4MNPs的吸附效率与时间的关系[56];(b)外加磁场下BF染料在Fe3O4@Cd磁性微球吸附剂上的吸附−解吸过程[57];(c)亚甲基蓝、亚甲基绿和罗丹明B的分子吸收光谱[58];(d)不同因素对Fe3O4/Ti3C2纳米复合材料去除MG的影响[59];(e) Fe3O4NPs和Fe3O4/TiO2NCs在阳光直射下对MB的降解效果[60];(f) rGO/Fe3O4/ZnSe纳米催化剂降解MB[61];(g) rGO/Fe3O4/ZnSe纳米催化剂降解RB和MO[61];(h) Fe3O4/CuO投加量与COD去除率的关系[62];(i) MB吸光度分析[63]
Figure 4. (a) Adsorption efficiency of Fe3O4MNPs versus time[56]; (b) Adsorption-desorption process of BF dye on Fe3O4@Cd magnetic microsphere adsorbent under applied magnetic field[57]; (c) Molecular absorption spectra of methylene blue, methylene green and rhodamine B[58]; (d) Effect of different factors on the removal of MG by Fe3O4/Ti3C2 nanocomposites MB under direct sunlight[59]; (e) degradation of MB by Fe3O4NPs and Fe3O4/TiO2NCs under direct sunlight[60]; (f) degradation of MB by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (g) degradation of RB and MO by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (h) relationship between Fe3O4/CuO dosage and COD removal[62]; and (i) adsorption of MB by Photometric analysis[63]
表 1 各种制备方法优缺点
Table 1. Advantages and disadvantages of various preparation methods
Production method Raw materials Reaction
Temperature /°CReaction
timeSolvent Particle size/nm Advantages Disadvantages References Mechanical ball milling shot (in shotgun) Room temperature
(RT)<20H H2O 11.1 Simple operation Easy to introduce impurities, not suitable for the preparation of different morphology of Fe3O4 nanocrystals [16][17] Physical vapor deposition Fe3O4、Si/MgO RT-500 / / 34-54 High purity, controllable, high efficiency Expensive equipment, high energy consumption, harsh reaction conditions [18] Chemical Vapor Deposition Fe(acac)3, MeOH 400 / / 110 High efficiency, easy to control Complex reaction process, requiring specific gases and reagents [20][21] Precipitation FeCl3·6H2O,
FeSO4·7H2O60 2H H2O/
EtOH10-32 Easy to implement, less hazardous Wide grain size distribution, need to control the conditions accurately [22][23] Hydrothermal FeCl3·6H2O,TEA 180 2-8H H2O 11.8 Strong magnetism at high temperatures, high product purity, easy to operate, low contamination High energy consumption, long reaction time, high equipment requirements [24] Solvent Thermal Method FeCl3·6H2O 200 4H EG 10-150 High purity, controllable size,
fast reaction speedLimited choice of solvents, high temperature and pressure conditions [25] Thermal decomposition Fe(acac)3 200-270 20-55 min Octadecene, Oleylamine, Dioctyl Ether 9-19 Uniformity of nanoparticles, high saturation magnetization rate Requires high temperature conditions, difficult to control the reaction process [28] Sol-gel method Fe(NO3)3 220-320 1H H2O 37.2-
43.5Controllable size and morphology, high uniformity, low temperature preparation High operating technology requirements, high equipment costs [29] Microemulsion FeCl2,FeCl3,HCl RT-50 25 min NH4OH solution 10 Controlled nucleation and growth, effectively avoiding agglomeration between particles Low yield, high cost [31] Acoustic Chemistry Fe 60 15 min Na2SO4 solution 50 Easier to achieve uniform mixing of media, high reaction rate Sensitive to reaction conditions, high energy consumption [33] Electrodeposition FeSO4·7H2O,Na2S2O3 RT 5 min deoxygenated water / Good biocompatibility Slower growth rate, high operation technology requirements [34] Microbial synthesis Fe2(SO4)3、S2 strain RT 5H H2O 20-70 Environmentally friendly, good biocompatibility, sustainability Long production cycle, low product purity, difficult to control [35] Phytosynthesis Fe(NO3)·9H2O、Natural tannins (green tea) / / / 23.4 Environmentally friendly, good biocompatibility, resourcefulness Complex extraction process, low product purity, difficult to control [36] Biomimetic synthesis FeSO4·7H2O、KOH、KNO3、Mms6-28 RT-90 -5H / / Controlled particle size, environmentally friendly, structural complexity Higher cost, more demanding reaction conditions [38] 表 2 Fe3O4纳米材料最大吸附量的比较
Table 2. Comparison of maximum adsorption capacity of Fe3O4 nanomaterials
Adsorbent Dye Dye amount/
(mg·g−1)Adsorbent amount Temperature PH Time/min Adsorption capacity/(mg·g−1) Removal/
adsorption rateFe3O4(Elham Ghoohestan) MB 12 0.5 mg/mL RT 7.5 60 17.79 89% Fe3O4@Cd BF 25 100 mg RT 7 60 23.5 >95% Fe3O4
(Hoang Anh Thid)MB 500 20 mg/
25 mLRT 7 90 268.64 ~97% Fe3O4/Ti3C2 MG 10 5 mg Increased removal rate at higher temperatures Increased
removal rate at
elevated pH60 4.68 99%(100 mg of adsorbent) Notes: MB: Methylene Blue; BF: Basic Fuchsin; MG: Malachite Green. -
[1] EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. doi: 10.1016/j.jwpe.2022.103273 [2] SLAMA H B, CHENARI Bouket A, POURHASSAN Z, et al. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods[J]. Applied Sciences, 2021, 11(14): 6255. doi: 10.3390/app11146255 [3] 阮瑜迪, 孟宪双, 董岳龙, 等. 纺织化学品中有害物质检测方法研究进展[J]. 印染, 2024, 50(4): 66-71+91. doi: 10.3969/j.yinran.202404014RUAN Yudi, MENG Xianshuang, DONG Yuelong, et al. Research progress in detection methods for harmful substances in textile chemicals[J]. China Dyeing & Finishing, 2024, 50(4): 66-71+91(in Chinese). doi: 10.3969/j.yinran.202404014 [4] 张智琦, 鲁慧云, 薛星韬, 等. 典型印染废水处理工艺中重金属污染物的分布与去除[J]. 印染, 2022, 48(12): 62-65. doi: 10.3321/j.issn.1000-4017.2022.12.015ZHANG Zhiqi, LU Huiyun, XUE Xingtao, et al. Distribution and removal of selected heavy metal pollutants in typical dyeing wastewater treatment processes[J]. China Dyeing & Finishing, 2022, 48(12): 62-65(in Chinese). doi: 10.3321/j.issn.1000-4017.2022.12.015 [5] LIU Z, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresource Technology, 2022, 354: 127168. doi: 10.1016/j.biortech.2022.127168 [6] ZHENG H, YANG X, MENG K, et al. Textile Dyes Alter the Bacterial Community Structure in Contaminated Soil[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2599-2609. doi: 10.1007/s42729-023-01216-4 [7] DUTTA P, RABBI M, ABU Sufian M, et al. Effects of textile dyeing effluent on the environment and its treatment: A review[J]. Eng. Appl. Sci. Lett, 2022, 5(1): 1-1. [8] STERNIK D, WASILEWSKA M, DERYLO-MARCZEWSKA A, et al. Studies on the process of basic dyes adsorption on uniform spherical carbons[J]. ChemPhysChem, 2024, 25(8): e202300825. doi: 10.1002/cphc.202300825 [9] SANTANA I L S, SILVA M G, OUREM G P, et al. Degradation of direct black 22 textile dye using the photo-Fenton and electro-Fenton processes: a comparative study[J]. Chemical Papers, 2024: 1-10. [10] HUANG H, WEN Y, HUANG Y, et al. Separation and Photodegradation of Dye-Containing Oil/Water Mixtures with a Photothermally Responsive PNIPAm-MXene/PAN-PNIPAm Nanofibrous Hydrogel Membrane[J]. ACS Applied Nano Materials, 2024, 7(7): 7562-7572. doi: 10.1021/acsanm.4c00235 [11] CHEN Z, FENG M, WANG Y, et al. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes[J]. Ecotoxicology and Environmental Safety, 2024, 275: 116226. doi: 10.1016/j.ecoenv.2024.116226 [12] NASEEM K, ABRAR E, HAIDER S, et al. Polyurethane-based nanocomposite for catalytic reduction of toxic dyes[J]. Polymers for Advanced Technologies, 2024, 35(4): e6372. doi: 10.1002/pat.6372 [13] SHABIL Sha M, Anwar H, Musthafa F N, et al. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)[J]. Scientific Reports, 2024, 14(1): 3608. doi: 10.1038/s41598-024-53626-8 [14] GANAPATHE L S, MOHAMED M A, MOHAMAD Yunus R, et al. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation[J]. Magnetochemistry, 2020, 6(4): 68. doi: 10.3390/magnetochemistry6040068 [15] ZHAI W, HE J, HAN P, et al. Adsorption mechanism for tetracycline onto magnetic Fe3O4 nanoparticles: Adsorption isotherm and dynamic behavior, location of adsorption sites and interaction bonds[J]. Vacuum, 2022, 195: 110634. doi: 10.1016/j.vacuum.2021.110634 [16] JALIL Z, RAHWANTO A , MUSTANIR, et al. Magnetic behavior of natural magnetite (Fe3O4) extracted from beach sand obtained by mechanical alloying method[C]//American Institute of Physics Conference Series. AIP Publishing LLC, 2017. DOI: 10.1063/1.4991127. [17] LIANG Y , YUAN Y , HUANG Y , et al. Effect of Ball Milling on the Absorption Properties of Fe3O4[J]. Materials, 2020, 13(4): 883. [18] CAO L, GUO Q, LIANG J, et al. Preparation of sputtered Fe3O4 thin film[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(18): 23645-23653. doi: 10.1007/s10854-021-06858-7 [19] ZHANG Z, LU X, YAN Y, et al. Direct observation of spin polarization in epitaxial Fe3O4 (001)/MgO thin films grown by magnetron sputtering[J]. Applied Physics Letters, 2022, 120(18). [20] FEIFEI L , RUI Z , ZIYUE Q , et al. Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films[J]. Crystals, 2022, 12(4): 485-485. [21] KAN D, SUGANO S, KOSUGI Y, et al. Selective growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 at low temperatures and under ambient pressure[J]. Japanese Journal of Applied Physics, 2019, 58(9): 095504. doi: 10.7567/1347-4065/ab39d1 [22] M. M A B , ABDELBAKI B , DINA E , et al. Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application[J]. JOM, 2022, 74(9): 3531-3539. [23] 杨金子, 张春燕, 李进京等. 磁性Fe3O4纳米粒子的制备[J]. 精细化工中间体, 2020, 50(4): 50-53. doi: 10.19342/j.cnki.issn.1009-9212.2020.04.013YANG Jinzi, ZHANG Chunyan, LI Jinjing, et al. Preparation of Magnetic Fe3O4 Nanoparticles[J]. FINE CHEMICAL INTERMEDIATES, 2020, 50(4): 50-53. doi: 10.19342/j.cnki.issn.1009-9212.2020.04.013 [24] XU Y , ZHANG Y , SONG X , et al. Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor[J]. Functional Materials Letters, 2019, 12(2): 4. [25] LIANG Y, JIANG L, XU S, et al. Synthesis and Characterization of Fe3O4 Nanoparticles Prepared by Solvothermal Method[J]. Journal of Materials Engineering and Performance, 2023: 1-12. [26] A A N , V I S , YU N T , et al. Synthesis of Iron Oxide Nanoclusters by Thermal Decomposition.[J]. Langmuir : the ACS journal of surfaces and colloids, 2018, 34(15): 4640-4650. [27] OH A H, PARK H Y, JUNG Y G, et al. Synthesis of Fe3O4 nanoparticles of various size via the polyol method[J]. Ceramics International, 2020, 46(8): 10723-10728. doi: 10.1016/j.ceramint.2020.01.080 [28] LIANG J Y , ZHANG L , CHEN M , et al. Anisotropic shaped Fe3O4 nanoparticles: Microwave-assisted thermal decomposition synthesis and their electromagnetic properties[J]. AIP Advances, 2020, 10(8): 085208. [29] PARMARC , VERMAR , GHOSHA , et al. Sol-gel auto-combustion synthesis of magnetite and its characterization via x-ray diffraction[J]. AIP Conference Proceedings, 2019, 2142(1): 160014. [30] HU P, CHANG T, CHEN W J, et al. Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method[J]. Journal of Alloys and Compounds, 2019, 773: 605-611. doi: 10.1016/j.jallcom.2018.09.238 [31] GU T , ZHANG Y , KHAN A S , et al. Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems[J]. Colloid and Interface Science Communications, 2019, 28 1-4. [32] GOSHU A , AMARE E Z , TESHOME S A . Synthesis of Silica-Coated Fe3O4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity.[J]. International journal of biomaterials, 2020, 2020 4783612. [33] KALIDASS J, REJI M, SIVASANKAR T. Synthesis of Fe3O4 Nanoparticles with Enhanced Properties via Sonoelectrochemical Approach: A comparative study with Electrochemical and Hydrothermal Method[J]. Chemical Engineering and Processing-Process Intensification, 2024: 109690. [34] LI X, SHAO C, WANG X, et al. Preparation of Fe3O4/FexSy heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 446: 137267. doi: 10.1016/j.cej.2022.137267 [35] SAMIRA E , FERESHTEH K J . Bacterial synthesis of magnetic Fe3O4 nanoparticles: Decolorization Acid Red 88 using FeNPs/Ca-Alg beads[J]. Arabian Journal of Chemistry, 2022, 15(9): [36] TAHANI A S , H. H. M A , M. A A . Green biosynthesis of Fe3O4 nanoparticles using Chlorella vulgaris extract for enhancing degradation of 2, 4 dinitrophenol[J]. Journal of King Saud University - Science, 2023, 35 (1): [37] ANANTHI S, KAVITHA M, KUMAR E R, et al. Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application[J]. Sensors and Actuators B: Chemical, 2022, 352: 131071. doi: 10.1016/j.snb.2021.131071 [38] MAO Y, LIU J, SUN J, et al. Elucidating the Bioinspired Synthesis Process of Magnetosomes-Like Fe3O4 Nanoparticles[J]. Small, 2024: 2308247. [39] LEE J H, LU Q, LEE J Y, et al. Polymer-magnetic composite particles of Fe3O4/poly (o-anisidine) and their suspension characteristics under applied magnetic fields[J]. Polymers, 2019, 11(2): 219. doi: 10.3390/polym11020219 [40] ZHANG Q , MA X , DU X , et al. Silver-nanoparticle-coated Fe3O4/chitosan core–shell microspheres for rapid and ultrasensitive detection of thiram using surface magnetic solid-phase extraction–surface-enhanced Raman scattering (SMSPE-SERS)[J]. Science of the Total Environment, 2024, 914170027-. [41] ZHANG X, WANG Q, TANG Y, et al. Decoration of conjugated polyacene quinone radical (PAQR) with Fe3O4 nanospheres achieving improved impedance matching and electromagnetic wave absorption[J]. Materials Today Physics, 2024, 41: 101349. doi: 10.1016/j.mtphys.2024.101349 [42] PAVÓN-HERNÁNDEZ A I, RODRÍGUEZ-VELÁZQUEZ E, ALATORRE-MEDA M, et al. Magnetic nanocomposite with fluorescence enhancement effect based on amino acid coated- Fe3O4 functionalized with quantum dots[J]. Materials Chemistry and Physics, 2020, 251: 123082. doi: 10.1016/j.matchemphys.2020.123082 [43] LI H , JIN H , LI R , et al. Magnetic Fe3O4@SiO2 study on adsorption of methyl orange on nanoparticles.[J]. Scientific reports, 2024, 14(1): 1217-1217. [44] HABILA M A, MOSHAB M S, EL-TONI A M, et al. Facile Strategy for Fabricating an Organosilica-Modified Fe3O4 (OS/ Fe3O4) Hetero-Nanocore and OS/ Fe3O4@ SiO2 Core–Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency[J]. ACS omega, 2023, 8(8): 7626-7638. doi: 10.1021/acsomega.2c07214 [45] LIAO J, QIU J, WANG G, et al. 3D core-shell Fe3O4@ SiO2@ MoS2 composites with enhanced microwave absorption performance[J]. Journal of colloid and interface science, 2021, 604: 537-549. doi: 10.1016/j.jcis.2021.07.032 [46] SHI L, HE Y, WANG X, et al. Recyclable photo-thermal conversion and purification systems via Fe3O4@ TiO2 nanoparticles[J]. Energy conversion and management, 2018, 171: 272-278. doi: 10.1016/j.enconman.2018.05.106 [47] XU Y , CHEN B , XU L , et al. Urchin-like Fe3O4@Bi2S3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities.[J]. ACS applied materials & interfaces, 2024, 16(3). [48] ZHENG K, SHEN C, QIAO J, et al. Novel magnetically-recyclable, nitrogen-doped Fe3O4@ Pd NPs for Suzuki–Miyaura coupling and their application in the synthesis of crizotinib[J]. Catalysts, 2018, 8(10): 443. doi: 10.3390/catal8100443 [49] TONTHAT L, OGAWA T, YABUKAMI S. Dumbbell-like Au– Fe3O4 nanoparticles for magnetic hyperthermia[J]. AIP Advances, 2024, 14(1). [50] BORDUN I, SZYMCZYKIEWICZ E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors[J]. Applied Sciences, 2024, 14(2): 677. doi: 10.3390/app14020677 [51] YU L, TANG Y, MA W, et al. Impact of composite modes on electrochemical properties of Fe3O4/CNTs for li-ion storage[J]. Applied Surface Science, 2024: 159333. [52] HUANG X, LIU Y, WANG X, et al. Removal of arsenic from wastewater by using nano Fe3O4/zinc organic frameworks[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10897. doi: 10.3390/ijerph191710897 [53] AMEEN R, RAUF A, MOHYUDDIN A, et al. Excellent antimicrobial performances of Cu (II) metal organic framework@ Fe3O4 fused cubic particles[J]. Journal of Saudi Chemical Society, 2023, 27(6): 101762. doi: 10.1016/j.jscs.2023.101762 [54] ZHANG J, CHEN Z, TANG F, et al. Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones[J]. Microchimica Acta, 2022, 189(12): 449. doi: 10.1007/s00604-022-05541-w [55] HAGHIGHI Shishavan Y, AMJADI M, MANZOORI J L. A fluorescent magnetic nanosensor for imidacloprid based on the incorporation of polymer dots and Fe3O4 nanoparticles into the covalent organic framework[J]. Luminescence, 2023, 38(12): 2056-2064. doi: 10.1002/bio.4595 [56] GHOOHESTANI E, SAMARI F, HOMAEI A, et al. A facile strategy for preparation of Fe3O4 magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal[J]. Scientific Reports, 2024, 14(1): 84. doi: 10.1038/s41598-023-50550-1 [57] NING J, CHEN D, LIU Y, et al. Efficient adsorption removal and adsorption mechanism of basic fuchsin by recyclable Fe3O4@ CD magnetic microspheres[J]. Journal of Central South University, 2021, 28(12): 3666-3680. doi: 10.1007/s11771-021-4845-0 [58] THI H A, PHUC L T, VAN Trong N, et al. Synthesis of materials from agricultural wastes combined with Fe3O4 for methylene blue adsorption and application to treat organic pollutants in water samples[J]. Vietnam Journal of Chemistry, 2024, 62(1): 68-77. doi: 10.1002/vjch.202300120 [59] ALKHUDAYDI A M, DANISH E Y, ABDEL Salam M. Magnetite/MXene (Fe3O4/Ti3C2) Nanocomposite as a Novel Adsorbent for Environmental Remediation of Malachite Green Dye[J]. Molecules, 2024, 29(6): 1372. doi: 10.3390/molecules29061372 [60] RAJABATHAR R J , THANKAPPAN R , SUTHA A , et al. Enhanced photocatalytic activity of magnetite/titanate (Fe3O4/TiO2) nanocomposite for methylene blue dye degradation under direct sunlight[J]. Optical Materials, 2024, 148114820. [61] FARAHMANDZADEH F, MOLAEI M, SALEHI S, et al. Simultaneous and fast degradation of Methylene Blue, Methylene Orange, and Rhodamine B dyes by high-performance rGO/Fe3O4/ZnSe magnetic nanocomposites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024: 133229. [62] 孟丽平, 李纳纳. Fe3O4/CuO催化剂非均相Fenton深度处理染料废水[J]. 印染, 2021, 47(9): 61-65. doi: 10.3321/j.issn.1000-4017.2021.09.015MENG Liping, LI Nana. Heterogenous Fenton degradation of dye wastewater enhanced by Fe3O4/CuO nanoparticles[J]. China Dyeing & Finishing, 2021, 47(9): 61-65(in Chinese). doi: 10.3321/j.issn.1000-4017.2021.09.015 [63] NAS M S, ÖNEN M, ÖZTÜRK E, et al. A novel CeO2/CuO-supported Fe3O4 sonocatalyst nanoparticle for highly efficient degradation of methylene blue dye[J]. Inorganic Chemistry Communications, 2024, 161: 112050. doi: 10.1016/j.inoche.2024.112050 [64] 陈凤华, 梁娓娓, 石向东, 等. Ag@AgCl-Fe3O4/rGO复合材料对印染废水中染料和重金属离子的吸附和光催化降解性能[J]. 复合材料学报, 2021, 38(7): 2295-2304. doi: 10.13801/j.cnki.fhclxb.20200928.004CHEN Fenghua, LIANG Weiwei, SHI Xiangdong, et al. Adsorption and photocatalytic degradation of dyes and heavy metals in printing and dyeing wastewater by Ag@AgCl-Fe3O4/rGO composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2295-2304. doi: 10.13801/j.cnki.fhclxb.20200928.004
计量
- 文章访问数: 21
- HTML全文浏览量: 11
- 被引次数: 0