留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4纳米材料在印染废水处理中的研究进展

宋杰枫 李皓天 聂子聪 李心如 肖远淑

宋杰枫, 李皓天, 聂子聪, 等. Fe3O4纳米材料在印染废水处理中的研究进展[J]. 复合材料学报, 2024, 43(0): 1-13.
引用本文: 宋杰枫, 李皓天, 聂子聪, 等. Fe3O4纳米材料在印染废水处理中的研究进展[J]. 复合材料学报, 2024, 43(0): 1-13.
SONG Jiefeng, LI Haotian, NIE Zicong, et al. Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment[J]. Acta Materiae Compositae Sinica.
Citation: SONG Jiefeng, LI Haotian, NIE Zicong, et al. Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment[J]. Acta Materiae Compositae Sinica.

Fe3O4纳米材料在印染废水处理中的研究进展

基金项目: 新疆维吾尔自治区重点研发任务专项(2022B01045-4);新疆维吾尔自治区高校基本科研业务费科研项目(XJEDU2022P005)、(XJEDU2024P028);2023年国家级大学生创新训练计划项目(202310755020)
详细信息
    通讯作者:

    肖远淑,讲师,硕士研究生,研究方向为清洁染整与功能纺织品开发。 E-mail:xiaoyuanshu122@xju.edu.cn

  • 中图分类号: TB333

Preparation and modification of Fe3O4 nanomaterials and their application in printing and dyeing wastewater treatment

Funds: The Key Research and Development Special Task Project of Xinjiang (No. 2022B01045-4); Xinjiang Uygur Autonomous Region Colleges and Universities Basic Research Operating Expenses Scientific Research Projects (No.XJEDU2022P005)、(No.XJEDU2024P028);2023 National Innovative Training Program for College Students Project (202310755020)
  • 摘要: 印染废水成分复杂,其中存在大量的有机染料和其他污染物,对环境和人体健康造成极大危害。传统的废水处理方法往往难以有效去除这些有机污染物,近年来,人们开始关注利用纳米材料来解决这一问题。Fe3O4纳米材料因具有磁性、生物相容性和光学特性等优异性能,已逐渐成为废水处理中具有巨大应用前景的新型材料。本文阐述了利用物理、化学、生物等方法制备出高质量Fe3O4纳米材料的过程,介绍了利用有机材料、无机材料、框架材料等对其进行改性的方法,用以解决材料易团聚的问题并提高其稳定性。综述了Fe3O4纳米材料在印染废水处理领域的最新应用研究进展,最后,对Fe3O4纳米材料的制备方法和应用研究进行了讨论,旨在为促进Fe3O4纳米材料的推广应用提供理论参考。

     

  • 图  1  不同制备方法得到的Fe3O4纳米材料的SEM或TEM图像(a)机械球磨法(1、干法[16],2、湿法[17]);(b)物理气相沉积[19];(c)化学气相沉积(插图为AFM 图像)[20];(d)共沉淀法[22];(e)水热法[24];(f)溶剂热法[26];(g)热分解法[28];(h)溶胶-凝胶法[30];(i)微乳液法[31];(j)声化学法[33];(k)电沉积法[34];(l)微生物合成法[35];(m)植物合成法[37];(n)仿生合成法[38]

    Figure  1.  SEM or TEM images of Fe3O4 nanomaterials obtained by different preparation methods (a) Mechanical ball milling (1, dry[16], 2, wet[17]); (b) Physical vapor deposition[19]; (c) Chemical vapor deposition(AFM image in the inset)[20]; (d) Co-precipitation[22]; (e) Hydrothermal[24]; (f) Solvent-thermal[26]; (g) Thermal decomposition[28]; (h) Sol-gel[30]; (i) Microemulsion[31]; (j) Acoustic chemical[33]; (k) electrodeposition[34]; (l) microbial synthesis[35]; (m) phytosynthesis[37]; (n) biomimetic synthesis[38]

    图  2  (a)Al2O3上Fe3O4材料示意图[20];(b)黑色区域为Fe3O4纳米材料,棕色区域为活性污泥[25];(c) 聚醇法制备示意图[27];(d)溶胶-凝胶爆炸辅助法制备Fe3O4纳米材料的机理[30];(e)多相分段流动反应合成过程示意图[31];(f)微乳液法合成Fe3O4纳米材料(W/O)[32];(g)超声合成Fe3O4[33];(h)异质结构前驱体Fe3O4/FexSy的合成过程示意图[34];(i)传统合成与仿生合成Fe3O4NPs[38]

    Figure  2.  (a) Schematic diagram of Fe3O4 film on Al2O3[20]; (b) black area is Fe3O4 nanoparticles and brown area is activated sludge[25]; (c) Schematic diagram of the preparation by the polyol method[27]; (d) Mechanism of Fe3O4 nanoparticles prepared by the sol-gel explosion-assisted method[30]; (e) Schematic diagram of the synthesis process of multiphase segmented flow reaction [31]; (f) Synthesis of Fe3O4 nanoparticles (W/O) by the microemulsion method[32];(g ) synthesis of Fe3O4 by ultrasound[33]; (h) schematic of the synthesis process of the heterostructured precursor Fe3O4/FexSy[34]; (i) conventional synthesis and biomimetic synthesis of Fe3O4NPs[38]

    图  3  (a) Fe3O4球体与Fe3O4/POA核壳球体的TEM图像[39];(b) Fe3O4/CS@Ag磁性材料的制备及SMSPE-SERS从预处理到检测过程示意图[40];(c) PAQR/Fe3O4复合纳米材料的合成过程[41];(d) Fe3O4@SiO2的合成工艺[43];(e) Fe3O4@Bi2S3的合成过程[47];(f) Au-Fe3O4纳米材料合成过程示意图[49];(g)以有机原料为基础的一步和两步AC制备示意图[50];(h) Fe3O4@CNTs示意图[51];(i) Cu-MOF和Cu-MOF@Fe3O4的合成流程示意图[53];(j)核壳结构 FPy-COF@PDA@Fe3O4 纳米球的合成流程示意图[54];(k) COF基纳米复合材料的合成工艺[55]

    Figure  3.  (a) TEM images of Fe3O4 spheres and Fe3O4/POA core-shell spheres[39]; (b) preparation of Fe3O4/CS@Ag magnetic microspheres and schematic diagram of the process of SMSPE-SERS from pretreatment to detection[40]; (c) synthesis process of PAQR/ Fe3O4 nanocomposites[41]; (d) synthesis process of Fe3O4@SiO2[43]; (e) synthesis process of Fe3O4 @Bi2S3 synthesis process[47]; (f) Schematic of the synthesis process of Au- Fe3O4 nanoparticles[49]; (g) Schematic of one-step and two-step AC preparations based on organic feedstocks[50]; (h) Schematic of Fe3O4@CNTs[51]; (i) Schematic of the synthesis process of Cu-MOF and Cu-MOF@ Fe3O4[53]; and (j) Schematic of the nucleoshell structure FPy-COF@PDA@ Fe3O4 nanorods[54]; (k) Schematic flow of the synthesis of COF-based nanocomposites[55]

    图  4  (a) Fe3O4MNPs的吸附效率与时间的关系[56];(b)外加磁场下BF染料在Fe3O4@Cd磁性微球吸附剂上的吸附−解吸过程[57];(c)亚甲基蓝、亚甲基绿和罗丹明B的分子吸收光谱[58];(d)不同因素对Fe3O4/Ti3C2纳米复合材料去除MG的影响[59];(e) Fe3O4NPs和Fe3O4/TiO2NCs在阳光直射下对MB的降解效果[60];(f) rGO/Fe3O4/ZnSe纳米催化剂降解MB[61];(g) rGO/Fe3O4/ZnSe纳米催化剂降解RB和MO[61];(h) Fe3O4/CuO投加量与COD去除率的关系[62];(i) MB吸光度分析[63]

    Figure  4.  (a) Adsorption efficiency of Fe3O4MNPs versus time[56]; (b) Adsorption-desorption process of BF dye on Fe3O4@Cd magnetic microsphere adsorbent under applied magnetic field[57]; (c) Molecular absorption spectra of methylene blue, methylene green and rhodamine B[58]; (d) Effect of different factors on the removal of MG by Fe3O4/Ti3C2 nanocomposites MB under direct sunlight[59]; (e) degradation of MB by Fe3O4NPs and Fe3O4/TiO2NCs under direct sunlight[60]; (f) degradation of MB by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (g) degradation of RB and MO by rGO/ Fe3O4/ZnSe nanocatalysts[61]; (h) relationship between Fe3O4/CuO dosage and COD removal[62]; and (i) adsorption of MB by Photometric analysis[63]

    表  1  各种制备方法优缺点

    Table  1.   Advantages and disadvantages of various preparation methods

    Production method Raw materials Reaction
    Temperature /°C
    Reaction
    time
    Solvent Particle size/nm Advantages Disadvantages References
    Mechanical ball milling shot (in shotgun) Room temperature
    (RT)
    <20H H2O 11.1 Simple operation Easy to introduce impurities, not suitable for the preparation of different morphology of Fe3O4 nanocrystals [16][17]
    Physical vapor deposition Fe3O4、Si/MgO RT-500 / / 34-54 High purity, controllable, high efficiency Expensive equipment, high energy consumption, harsh reaction conditions [18]
    Chemical Vapor Deposition Fe(acac)3, MeOH 400 / / 110 High efficiency, easy to control Complex reaction process, requiring specific gases and reagents [20][21]
    Precipitation FeCl3·6H2O,
    FeSO4·7H2O
    60 2H H2O/
    EtOH
    10-32 Easy to implement, less hazardous Wide grain size distribution, need to control the conditions accurately [22][23]
    Hydrothermal FeCl3·6H2O,TEA 180 2-8H H2O 11.8 Strong magnetism at high temperatures, high product purity, easy to operate, low contamination High energy consumption, long reaction time, high equipment requirements [24]
    Solvent Thermal Method FeCl3·6H2O 200 4H EG 10-150 High purity, controllable size,
    fast reaction speed
    Limited choice of solvents, high temperature and pressure conditions [25]
    Thermal decomposition Fe(acac)3 200-270 20-55 min Octadecene, Oleylamine, Dioctyl Ether 9-19 Uniformity of nanoparticles, high saturation magnetization rate Requires high temperature conditions, difficult to control the reaction process [28]
    Sol-gel method Fe(NO3)3 220-320 1H H2O 37.2-
    43.5
    Controllable size and morphology, high uniformity, low temperature preparation High operating technology requirements, high equipment costs [29]
    Microemulsion FeCl2,FeCl3,HCl RT-50 25 min NH4OH solution 10 Controlled nucleation and growth, effectively avoiding agglomeration between particles Low yield, high cost [31]
    Acoustic Chemistry Fe 60 15 min Na2SO4 solution 50 Easier to achieve uniform mixing of media, high reaction rate Sensitive to reaction conditions, high energy consumption [33]
    Electrodeposition FeSO4·7H2O,Na2S2O3 RT 5 min deoxygenated water / Good biocompatibility Slower growth rate, high operation technology requirements [34]
    Microbial synthesis Fe2(SO4)3、S2 strain RT 5H H2O 20-70 Environmentally friendly, good biocompatibility, sustainability Long production cycle, low product purity, difficult to control [35]
    Phytosynthesis Fe(NO3)·9H2O、Natural tannins (green tea) / / / 23.4 Environmentally friendly, good biocompatibility, resourcefulness Complex extraction process, low product purity, difficult to control [36]
    Biomimetic synthesis FeSO4·7H2O、KOH、KNO3、Mms6-28 RT-90 -5H / / Controlled particle size, environmentally friendly, structural complexity Higher cost, more demanding reaction conditions [38]
    下载: 导出CSV

    表  2  Fe3O4纳米材料最大吸附量的比较

    Table  2.   Comparison of maximum adsorption capacity of Fe3O4 nanomaterials

    AdsorbentDyeDye amount/
    (mg·g−1)
    Adsorbent amountTemperaturePHTime/minAdsorption capacity/(mg·g−1)Removal/
    adsorption rate
    Fe3O4(Elham Ghoohestan)MB120.5 mg/mLRT7.56017.7989%
    Fe3O4@CdBF25100 mgRT76023.5>95%
    Fe3O4
    (Hoang Anh Thid)
    MB50020 mg/
    25 mL
    RT790268.64~97%
    Fe3O4/Ti3C2MG105 mgIncreased removal rate at higher temperaturesIncreased
    removal rate at
    elevated pH
    604.6899%(100 mg of adsorbent)
    Notes: MB: Methylene Blue; BF: Basic Fuchsin; MG: Malachite Green.
    下载: 导出CSV
  • [1] EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. doi: 10.1016/j.jwpe.2022.103273
    [2] SLAMA H B, CHENARI Bouket A, POURHASSAN Z, et al. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods[J]. Applied Sciences, 2021, 11(14): 6255. doi: 10.3390/app11146255
    [3] 阮瑜迪, 孟宪双, 董岳龙, 等. 纺织化学品中有害物质检测方法研究进展[J]. 印染, 2024, 50(4): 66-71+91. doi: 10.3969/j.yinran.202404014

    RUAN Yudi, MENG Xianshuang, DONG Yuelong, et al. Research progress in detection methods for harmful substances in textile chemicals[J]. China Dyeing & Finishing, 2024, 50(4): 66-71+91(in Chinese). doi: 10.3969/j.yinran.202404014
    [4] 张智琦, 鲁慧云, 薛星韬, 等. 典型印染废水处理工艺中重金属污染物的分布与去除[J]. 印染, 2022, 48(12): 62-65. doi: 10.3321/j.issn.1000-4017.2022.12.015

    ZHANG Zhiqi, LU Huiyun, XUE Xingtao, et al. Distribution and removal of selected heavy metal pollutants in typical dyeing wastewater treatment processes[J]. China Dyeing & Finishing, 2022, 48(12): 62-65(in Chinese). doi: 10.3321/j.issn.1000-4017.2022.12.015
    [5] LIU Z, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresource Technology, 2022, 354: 127168. doi: 10.1016/j.biortech.2022.127168
    [6] ZHENG H, YANG X, MENG K, et al. Textile Dyes Alter the Bacterial Community Structure in Contaminated Soil[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2599-2609. doi: 10.1007/s42729-023-01216-4
    [7] DUTTA P, RABBI M, ABU Sufian M, et al. Effects of textile dyeing effluent on the environment and its treatment: A review[J]. Eng. Appl. Sci. Lett, 2022, 5(1): 1-1.
    [8] STERNIK D, WASILEWSKA M, DERYLO-MARCZEWSKA A, et al. Studies on the process of basic dyes adsorption on uniform spherical carbons[J]. ChemPhysChem, 2024, 25(8): e202300825. doi: 10.1002/cphc.202300825
    [9] SANTANA I L S, SILVA M G, OUREM G P, et al. Degradation of direct black 22 textile dye using the photo-Fenton and electro-Fenton processes: a comparative study[J]. Chemical Papers, 2024: 1-10.
    [10] HUANG H, WEN Y, HUANG Y, et al. Separation and Photodegradation of Dye-Containing Oil/Water Mixtures with a Photothermally Responsive PNIPAm-MXene/PAN-PNIPAm Nanofibrous Hydrogel Membrane[J]. ACS Applied Nano Materials, 2024, 7(7): 7562-7572. doi: 10.1021/acsanm.4c00235
    [11] CHEN Z, FENG M, WANG Y, et al. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes[J]. Ecotoxicology and Environmental Safety, 2024, 275: 116226. doi: 10.1016/j.ecoenv.2024.116226
    [12] NASEEM K, ABRAR E, HAIDER S, et al. Polyurethane-based nanocomposite for catalytic reduction of toxic dyes[J]. Polymers for Advanced Technologies, 2024, 35(4): e6372. doi: 10.1002/pat.6372
    [13] SHABIL Sha M, Anwar H, Musthafa F N, et al. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)[J]. Scientific Reports, 2024, 14(1): 3608. doi: 10.1038/s41598-024-53626-8
    [14] GANAPATHE L S, MOHAMED M A, MOHAMAD Yunus R, et al. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation[J]. Magnetochemistry, 2020, 6(4): 68. doi: 10.3390/magnetochemistry6040068
    [15] ZHAI W, HE J, HAN P, et al. Adsorption mechanism for tetracycline onto magnetic Fe3O4 nanoparticles: Adsorption isotherm and dynamic behavior, location of adsorption sites and interaction bonds[J]. Vacuum, 2022, 195: 110634. doi: 10.1016/j.vacuum.2021.110634
    [16] JALIL Z, RAHWANTO A , MUSTANIR, et al. Magnetic behavior of natural magnetite (Fe3O4) extracted from beach sand obtained by mechanical alloying method[C]//American Institute of Physics Conference Series. AIP Publishing LLC, 2017. DOI: 10.1063/1.4991127.
    [17] LIANG Y , YUAN Y , HUANG Y , et al. Effect of Ball Milling on the Absorption Properties of Fe3O4[J]. Materials, 2020, 13(4): 883.
    [18] CAO L, GUO Q, LIANG J, et al. Preparation of sputtered Fe3O4 thin film[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(18): 23645-23653. doi: 10.1007/s10854-021-06858-7
    [19] ZHANG Z, LU X, YAN Y, et al. Direct observation of spin polarization in epitaxial Fe3O4 (001)/MgO thin films grown by magnetron sputtering[J]. Applied Physics Letters, 2022, 120(18).
    [20] FEIFEI L , RUI Z , ZIYUE Q , et al. Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films[J]. Crystals, 2022, 12(4): 485-485.
    [21] KAN D, SUGANO S, KOSUGI Y, et al. Selective growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 at low temperatures and under ambient pressure[J]. Japanese Journal of Applied Physics, 2019, 58(9): 095504. doi: 10.7567/1347-4065/ab39d1
    [22] M. M A B , ABDELBAKI B , DINA E , et al. Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application[J]. JOM, 2022, 74(9): 3531-3539.
    [23] 杨金子, 张春燕, 李进京等. 磁性Fe3O4纳米粒子的制备[J]. 精细化工中间体, 2020, 50(4): 50-53. doi: 10.19342/j.cnki.issn.1009-9212.2020.04.013

    YANG Jinzi, ZHANG Chunyan, LI Jinjing, et al. Preparation of Magnetic Fe3O4 Nanoparticles[J]. FINE CHEMICAL INTERMEDIATES, 2020, 50(4): 50-53. doi: 10.19342/j.cnki.issn.1009-9212.2020.04.013
    [24] XU Y , ZHANG Y , SONG X , et al. Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor[J]. Functional Materials Letters, 2019, 12(2): 4.
    [25] LIANG Y, JIANG L, XU S, et al. Synthesis and Characterization of Fe3O4 Nanoparticles Prepared by Solvothermal Method[J]. Journal of Materials Engineering and Performance, 2023: 1-12.
    [26] A A N , V I S , YU N T , et al. Synthesis of Iron Oxide Nanoclusters by Thermal Decomposition.[J]. Langmuir : the ACS journal of surfaces and colloids, 2018, 34(15): 4640-4650.
    [27] OH A H, PARK H Y, JUNG Y G, et al. Synthesis of Fe3O4 nanoparticles of various size via the polyol method[J]. Ceramics International, 2020, 46(8): 10723-10728. doi: 10.1016/j.ceramint.2020.01.080
    [28] LIANG J Y , ZHANG L , CHEN M , et al. Anisotropic shaped Fe3O4 nanoparticles: Microwave-assisted thermal decomposition synthesis and their electromagnetic properties[J]. AIP Advances, 2020, 10(8): 085208.
    [29] PARMARC , VERMAR , GHOSHA , et al. Sol-gel auto-combustion synthesis of magnetite and its characterization via x-ray diffraction[J]. AIP Conference Proceedings, 2019, 2142(1): 160014.
    [30] HU P, CHANG T, CHEN W J, et al. Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method[J]. Journal of Alloys and Compounds, 2019, 773: 605-611. doi: 10.1016/j.jallcom.2018.09.238
    [31] GU T , ZHANG Y , KHAN A S , et al. Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems[J]. Colloid and Interface Science Communications, 2019, 28 1-4.
    [32] GOSHU A , AMARE E Z , TESHOME S A . Synthesis of Silica-Coated Fe3O4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity.[J]. International journal of biomaterials, 2020, 2020 4783612.
    [33] KALIDASS J, REJI M, SIVASANKAR T. Synthesis of Fe3O4 Nanoparticles with Enhanced Properties via Sonoelectrochemical Approach: A comparative study with Electrochemical and Hydrothermal Method[J]. Chemical Engineering and Processing-Process Intensification, 2024: 109690.
    [34] LI X, SHAO C, WANG X, et al. Preparation of Fe3O4/FexSy heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 446: 137267. doi: 10.1016/j.cej.2022.137267
    [35] SAMIRA E , FERESHTEH K J . Bacterial synthesis of magnetic Fe3O4 nanoparticles: Decolorization Acid Red 88 using FeNPs/Ca-Alg beads[J]. Arabian Journal of Chemistry, 2022, 15(9):
    [36] TAHANI A S , H. H. M A , M. A A . Green biosynthesis of Fe3O4 nanoparticles using Chlorella vulgaris extract for enhancing degradation of 2, 4 dinitrophenol[J]. Journal of King Saud University - Science, 2023, 35 (1):
    [37] ANANTHI S, KAVITHA M, KUMAR E R, et al. Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application[J]. Sensors and Actuators B: Chemical, 2022, 352: 131071. doi: 10.1016/j.snb.2021.131071
    [38] MAO Y, LIU J, SUN J, et al. Elucidating the Bioinspired Synthesis Process of Magnetosomes-Like Fe3O4 Nanoparticles[J]. Small, 2024: 2308247.
    [39] LEE J H, LU Q, LEE J Y, et al. Polymer-magnetic composite particles of Fe3O4/poly (o-anisidine) and their suspension characteristics under applied magnetic fields[J]. Polymers, 2019, 11(2): 219. doi: 10.3390/polym11020219
    [40] ZHANG Q , MA X , DU X , et al. Silver-nanoparticle-coated Fe3O4/chitosan core–shell microspheres for rapid and ultrasensitive detection of thiram using surface magnetic solid-phase extraction–surface-enhanced Raman scattering (SMSPE-SERS)[J]. Science of the Total Environment, 2024, 914170027-.
    [41] ZHANG X, WANG Q, TANG Y, et al. Decoration of conjugated polyacene quinone radical (PAQR) with Fe3O4 nanospheres achieving improved impedance matching and electromagnetic wave absorption[J]. Materials Today Physics, 2024, 41: 101349. doi: 10.1016/j.mtphys.2024.101349
    [42] PAVÓN-HERNÁNDEZ A I, RODRÍGUEZ-VELÁZQUEZ E, ALATORRE-MEDA M, et al. Magnetic nanocomposite with fluorescence enhancement effect based on amino acid coated- Fe3O4 functionalized with quantum dots[J]. Materials Chemistry and Physics, 2020, 251: 123082. doi: 10.1016/j.matchemphys.2020.123082
    [43] LI H , JIN H , LI R , et al. Magnetic Fe3O4@SiO2 study on adsorption of methyl orange on nanoparticles.[J]. Scientific reports, 2024, 14(1): 1217-1217.
    [44] HABILA M A, MOSHAB M S, EL-TONI A M, et al. Facile Strategy for Fabricating an Organosilica-Modified Fe3O4 (OS/ Fe3O4) Hetero-Nanocore and OS/ Fe3O4@ SiO2 Core–Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency[J]. ACS omega, 2023, 8(8): 7626-7638. doi: 10.1021/acsomega.2c07214
    [45] LIAO J, QIU J, WANG G, et al. 3D core-shell Fe3O4@ SiO2@ MoS2 composites with enhanced microwave absorption performance[J]. Journal of colloid and interface science, 2021, 604: 537-549. doi: 10.1016/j.jcis.2021.07.032
    [46] SHI L, HE Y, WANG X, et al. Recyclable photo-thermal conversion and purification systems via Fe3O4@ TiO2 nanoparticles[J]. Energy conversion and management, 2018, 171: 272-278. doi: 10.1016/j.enconman.2018.05.106
    [47] XU Y , CHEN B , XU L , et al. Urchin-like Fe3O4@Bi2S3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities.[J]. ACS applied materials & interfaces, 2024, 16(3).
    [48] ZHENG K, SHEN C, QIAO J, et al. Novel magnetically-recyclable, nitrogen-doped Fe3O4@ Pd NPs for Suzuki–Miyaura coupling and their application in the synthesis of crizotinib[J]. Catalysts, 2018, 8(10): 443. doi: 10.3390/catal8100443
    [49] TONTHAT L, OGAWA T, YABUKAMI S. Dumbbell-like Au– Fe3O4 nanoparticles for magnetic hyperthermia[J]. AIP Advances, 2024, 14(1).
    [50] BORDUN I, SZYMCZYKIEWICZ E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors[J]. Applied Sciences, 2024, 14(2): 677. doi: 10.3390/app14020677
    [51] YU L, TANG Y, MA W, et al. Impact of composite modes on electrochemical properties of Fe3O4/CNTs for li-ion storage[J]. Applied Surface Science, 2024: 159333.
    [52] HUANG X, LIU Y, WANG X, et al. Removal of arsenic from wastewater by using nano Fe3O4/zinc organic frameworks[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10897. doi: 10.3390/ijerph191710897
    [53] AMEEN R, RAUF A, MOHYUDDIN A, et al. Excellent antimicrobial performances of Cu (II) metal organic framework@ Fe3O4 fused cubic particles[J]. Journal of Saudi Chemical Society, 2023, 27(6): 101762. doi: 10.1016/j.jscs.2023.101762
    [54] ZHANG J, CHEN Z, TANG F, et al. Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones[J]. Microchimica Acta, 2022, 189(12): 449. doi: 10.1007/s00604-022-05541-w
    [55] HAGHIGHI Shishavan Y, AMJADI M, MANZOORI J L. A fluorescent magnetic nanosensor for imidacloprid based on the incorporation of polymer dots and Fe3O4 nanoparticles into the covalent organic framework[J]. Luminescence, 2023, 38(12): 2056-2064. doi: 10.1002/bio.4595
    [56] GHOOHESTANI E, SAMARI F, HOMAEI A, et al. A facile strategy for preparation of Fe3O4 magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal[J]. Scientific Reports, 2024, 14(1): 84. doi: 10.1038/s41598-023-50550-1
    [57] NING J, CHEN D, LIU Y, et al. Efficient adsorption removal and adsorption mechanism of basic fuchsin by recyclable Fe3O4@ CD magnetic microspheres[J]. Journal of Central South University, 2021, 28(12): 3666-3680. doi: 10.1007/s11771-021-4845-0
    [58] THI H A, PHUC L T, VAN Trong N, et al. Synthesis of materials from agricultural wastes combined with Fe3O4 for methylene blue adsorption and application to treat organic pollutants in water samples[J]. Vietnam Journal of Chemistry, 2024, 62(1): 68-77. doi: 10.1002/vjch.202300120
    [59] ALKHUDAYDI A M, DANISH E Y, ABDEL Salam M. Magnetite/MXene (Fe3O4/Ti3C2) Nanocomposite as a Novel Adsorbent for Environmental Remediation of Malachite Green Dye[J]. Molecules, 2024, 29(6): 1372. doi: 10.3390/molecules29061372
    [60] RAJABATHAR R J , THANKAPPAN R , SUTHA A , et al. Enhanced photocatalytic activity of magnetite/titanate (Fe3O4/TiO2) nanocomposite for methylene blue dye degradation under direct sunlight[J]. Optical Materials, 2024, 148114820.
    [61] FARAHMANDZADEH F, MOLAEI M, SALEHI S, et al. Simultaneous and fast degradation of Methylene Blue, Methylene Orange, and Rhodamine B dyes by high-performance rGO/Fe3O4/ZnSe magnetic nanocomposites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024: 133229.
    [62] 孟丽平, 李纳纳. Fe3O4/CuO催化剂非均相Fenton深度处理染料废水[J]. 印染, 2021, 47(9): 61-65. doi: 10.3321/j.issn.1000-4017.2021.09.015

    MENG Liping, LI Nana. Heterogenous Fenton degradation of dye wastewater enhanced by Fe3O4/CuO nanoparticles[J]. China Dyeing & Finishing, 2021, 47(9): 61-65(in Chinese). doi: 10.3321/j.issn.1000-4017.2021.09.015
    [63] NAS M S, ÖNEN M, ÖZTÜRK E, et al. A novel CeO2/CuO-supported Fe3O4 sonocatalyst nanoparticle for highly efficient degradation of methylene blue dye[J]. Inorganic Chemistry Communications, 2024, 161: 112050. doi: 10.1016/j.inoche.2024.112050
    [64] 陈凤华, 梁娓娓, 石向东, 等. Ag@AgCl-Fe3O4/rGO复合材料对印染废水中染料和重金属离子的吸附和光催化降解性能[J]. 复合材料学报, 2021, 38(7): 2295-2304. doi: 10.13801/j.cnki.fhclxb.20200928.004

    CHEN Fenghua, LIANG Weiwei, SHI Xiangdong, et al. Adsorption and photocatalytic degradation of dyes and heavy metals in printing and dyeing wastewater by Ag@AgCl-Fe3O4/rGO composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2295-2304. doi: 10.13801/j.cnki.fhclxb.20200928.004
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 修回日期:  2024-09-25
  • 录用日期:  2024-10-14
  • 网络出版日期:  2024-10-29

目录

    /

    返回文章
    返回