Research progress on preparation methods of yarn based flexible strain sensors
-
摘要:
纱线基柔性应变传感器作为一维传感器具有较好的柔韧性、可编织特性及可拉伸性能,使其在人体运动监测方面有很大的应用优势。纱线基柔性应变传感器的制备方法主要包括纺丝法、纺纱法、后整理及复合方法,以其制备方法为切入点阐述了各类纱线基柔性应变传感器的制备过程及研究进展,并归纳了各类制备方法的特征和优缺点,最后提出了纱线基柔性应变传感器的未来研究方向,为进一步制备和研究该类传感器提供参考。
Abstract:As a one-dimensional sensor, yarn-based flexible strain sensor has good flexibility, braidability and stretchability, which makes it have great application advantages in human motion monitoring. The preparation methods of yarn-based flexible strain sensors mainly include filature method, spinning method, finishing method and composite method, and the preparation process and research progress of various yarn-based flexible strain sensors are expounded from the preparation method, and the characteristics, advantages and disadvantages of various preparation methods are summarized, and finally the future research direction of yarn-based flexible strain sensors is proposed, which provides a reference for further preparation and research of such sensors.
-
Keywords:
- yarn-based /
- strain sensor /
- wearable electronic devices /
- sensing performance /
- preparation method
-
近年来,具有柔性、可延展和可穿戴特性的电子器件引起了广泛的研究兴趣,包括电子皮肤[1-3]、健康监测设备[4-9]、柔性显示器[10-11]和能量收集设备[12-16]。柔性应变传感器作为可穿戴电子的一个重要分支,应该能够顺应人体运动,有效地监控个人活动和人体健康。柔性应变传感器一般是将柔性基体和导电材料相结合,制成在高应变下还能保持稳定传感性能的可拉伸传感器器件,作用原理是将物理形变转变为可测量电信号,相较于传统的刚性应变传感器,柔性应变传感器可以在拉伸、弯曲和扭转等条件下工作,能实时追踪人体运动信息,并将信息传输到集成的中央处理单元。在实际应用中,应变传感器应具有超高的灵敏度、良好的柔性、优异的强伸性和相对稳定的特性。
纺织基柔性应变传感器可分为纤维基[17-19]、纱线基[20-22]、织物基[23-25]几种。织物基柔性应变传感器的制备多种多样,但产品在加工过程中易受损坏,且纺织材料属性牺牲较多;纤维基柔性应变传感器拥有低成本、小尺寸、高灵敏度等优点[26],但应变范围较窄,且加工难度偏大;纱线基传感器具有更宽的应变范围,可加工性好,拥有更广阔的应用前景[27]。此外,通过先进的纺织技术(如编织、针织、机织等),纱线基柔性应变传感器很容易集成到各种复杂的纺织品或布料中,真正实现服装与电子的融合[28],满足穿着的美观性和舒适性要求。基于纱线的应变传感器具有较高的机械自由度,易于与其他可穿戴电子设备连接,在可穿戴性和可集成性方面具有优势[29]。因此,传感纱线更适合开发新一代柔性应变传感器。
目前,纱线基应变柔性传感器按照制备方法可分为纺丝类、纺纱类、后整理类和复合类,不同方法所制备的纱线基传感器具有不同的特点,本文从制备方法入手,阐述了近年来纱线基柔性应变传感器的研究现状,通过分析所制备的传感器的特点,总结了纱线基柔性应变传感器各种制备方法的优缺点,为研发成本低、产量大、性能优异的纱线基柔性应变传感器提供一些参考。
1. 纺丝类纱线基柔性应变传感器
1.1 熔融纺丝
目前绝大多数压电器件为熔融成型。吴焕东等[30]在聚氨酯弹性体(Thermoplastic urethane,TPU)基体中掺杂氧化石墨烯(Graphene oxide,GO),使用熔融混炼的方法制备得到柔性TPU/还原氧化石墨烯(Reduced graphene oxide nanosheets,rGO)纳米复合材料片材,以此为介电层,成功制备了电容式压力传感器。GO掺杂能显著改善其介电层的介电常数,进而提高传感器的灵敏度,该传感器可较好地区分指尖用力的方式和监测指关节弯曲变形的程度,在智能可穿戴设备领域具有广泛的应用前景。
熔融纺丝已被证明是制备由多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)填充的聚合物制成的导电纤维的有效技术[31]之一。Bautista-Quijano等[32]采用熔融共混法制备了聚碳酸酯(Polycarbonate,PC)/MWCNTs/PC复合材料,并将其熔融纺丝成单丝纤维。由这种导电纤维制成的智能多功能纺织品具有广泛的应用,如健康监测、气体和液体的检测、传感器阵列和柔性传感器等。但随着MWCNTs浓度的增加,聚合物内开始出现较大的团聚体,纺丝过程中更容易发生断裂。Lin等[33]采用熔融挤出法,用聚丙烯(Polypropylene,PP)和MWCNTs对涤纶(Polyester,PET)纱线进行包覆,以生产具有高拉伸强度、柔韧性和导电性的PP/MWCNTs涂层PET纱线,见图1(b)。测试结果表明,PP/MWCNTs涂层PET纱线的拉伸强度得到提高,这是由于拉伸力使PP/MWCNTs熔体中的MWCNTs大部分沿同一方向排列;高含量的MWCNTs也有利于其结晶温度和电导率的提高,但是断裂伸长率较低。
Xiang等[34]采用简单的熔体混合和熔丝制备了一种基于碳纳米管(Carbon nanotube,CNT)/苯乙烯-丁二烯-苯乙烯嵌段共聚物(Styrene ethylene butylene styrene,SBS)@TPU复合材料的双渗流结构纤维应变传感器。研究了传感器导电网络、结构与应变传感性能之间的关系。通过集成高灵敏度、宽检测范围和低检测限的高性能传感器,在高性能应变传感的制造和性能研究方面取得了重大进展。
熔融纺丝法制备纱线基传感器因操作简便、容易产业化等优点而备受关注,但因其导电填料与共聚物之间易存在混合不匀而导致界面强度低的问题限制了其发展;因此,需要开发出稳定有效的掺杂剂来改善传感纱线的性能,或者多种技术相结合来提高传感纱线物理机械性能和传感性能。
1.2 湿法纺丝
熔融纺丝在填料的体积分数上具有局限性,过量的填料会增加熔体黏度,从而影响挤出成型,损害纤维的力学性能。而湿法纺丝将原料挤出到凝固浴中生产纤维,相较于熔融纺丝法,湿法纺丝允许加入更多的导电填料,且导电填料可以分散得更加均匀,纺出的纤维直径更加一致,同时,固化过程中的溶剂交换可以在纤维内部形成多孔结构,传感性能更好[35]。
凝固浴的固化作用可以使纤维具有特殊的皮芯结构,Park等[36]开发了一种利用湿法纺丝技术制备皮芯结构纤维的方法,纤维的芯部使用CNT溶液制备,而鞘部使用成纤聚合物,如聚乙烯醇(Polyvinyl alcohol,PVA)。制得的纤维具有很强的柔韧性,可以编织成织物,具有作为压力传感器的潜在用途。此外,由于湿法纺丝方法在纤维工业中应用广泛,上述的鞘芯CNT纤维是可大规模生产的。
PVA分子之间具有较高的黏附性,将PVA用于纺丝液的制备,可以极大地改善纺丝液的可纺性,赋予复合纤维良好的机械强度和洁净不黏的表面。Cheng等[37]通过简单的湿法纺丝工艺,将PVA/水性聚氨酯(Waterborne polyurethane,WPU)/MXene纺丝液注入CaCl2凝固浴中,凝固浴中的Ca2+离子迅速扩散到纺丝液中,可以促进纤维的形成,连续制备PVA/WPU/MXene复合纤维,合成机制见图2,形成了有效的导电网络结构,所得复合纤维具有优异的力学性能和化学稳定性。此外,该光纤应变传感器强度和柔韧性较好,其传感系数(Gage factor, GF)为5.61,断裂伸长率为358%,具有线性响应和良好的可编织性。
Sheng等[38]采用一种常见的湿法纺丝法直接制备了一种柔性纤维应变传感器,该法以TPU为弹性体,CNT和石墨烯为导电填料,掺入2, 2, 6, 6-四甲基哌啶-1-氧基氧化(2, 2, 6, 6- tetramethylpiperidine-1-oxyl oxidized,TEMP)细菌纤维素纳米纤维(Bacterial cellulose nanofibers,BCN)作为分散剂和结合剂,形成多孔结构,此特殊结构可以有效地承载和传递拉伸力。在各组分的协同作用下,制备了响应范围宽、响应时间快、恢复时间快、长期稳定循环的光纤应变传感器。
传统刚性无机导体和超可拉伸聚合物基体间不相容性导致传感器拉伸性差,导电稳定性低。为了克服这些缺点,Liu等[39]通过湿法纺丝以简单的一步法制备了高拉伸CNTs/TPU复合纤维。通过引入CNTs的旋转水分散体作为凝固槽,通过优化凝固槽的转速可以提高应变性能、应变感知性能和稳定性,所得纤维表现出200%的出色工作应变范围、约0.18 s的短响应时间和循环应变传感性能。
微控流纺丝是一种以传统湿法纺丝为基础,开发出的一种可以生产微米级纤维的新型纺丝技术,这种技术可以通过对微通道中微尺度液体的控制实现对纤维尺寸和形貌的微观控制。Wu等[40]通过一种简单且可扩展的微流控纺丝方法,开发了一种独特的中空多孔纤维形态,用于制备可拉伸的导电复合纤维。为了改善由于导电聚苯胺(Polyaniline,PANI)颗粒的坚固性和纤维内部的低空心率传感器无法监测压缩和弯曲变形的缺陷,考虑通过设计特殊的空芯-皮纤维结构来改善纤维内部的导电网络(图3),使导电PANI颗粒在PANI/TPU基皮芯复合纤维(PANI/TPU-based hollow core–sheath composite fibers,PTCF)中的沉积以三层不同的形式存在。制得的应变传感器可以检测拉伸、弯曲和压力应变。但具有皮芯结构的涂层在循环拉伸后容易剥落。这将导致外层涂层在大应变下产生不可逆的裂纹,限制了其在大应变传感方面的应用[41]。
图 3 纺丝过程中PANI/TPU基皮芯复合纤维(PTCF)空芯-护套结构形成机制示意图(a)及形貌表征(b)[40]PANI—Polyaniline; TPU—Thermoplastic urethaneFigure 3. Schematic diagram of the formation mechanism of PANI/TPU-based hollow core–sheath composite fibers (PTCF) hollow-sheath structure during spinning process (a) and morphological characterization (b)[40]然而,这些应变传感器通过减少逾渗网络中的导电路径而不是裂纹的形成来改变电阻,从而难以监测微小的应变,如脉搏和心跳。Qu等[42]将TPU和CNTs/TPU纺丝溶液通过同轴纺丝针头挤出在水和二甲基甲酰胺(Dimethylformamide,DMF)凝固浴中,在凝固浴中,由于芯层和鞘层的基体均为TPU溶液,相互渗透会形成界面过渡区(图4(b)),可以保持传感器的稳定性,提高工作范围。最后,由于芯层和鞘层在模量和弹性上的差异,在纤维表面形成了裂纹(图4(c))。芯鞘纤维在经过500%拉伸后仍具有良好恢复能力,在小应变和大应变下均保持稳定传感特性,但小应变下,裂纹的微小扩展和恢复引起的电阻变化较小。
图 4 碳纳米管(CNTs)/TPU芯鞘纤维的制备:(a) CNTs/TPU皮芯纤维同轴湿法纺丝工艺图;(b)基于微裂纹的皮芯纤维及TPU和CNT在微裂纹结构处的分布示意图;(c)光纤传感器微裂纹结构形成示意图[42]DMF—DimethylformamideFigure 4. Preparation of carbon nanotubes (CNTs)/TPU core sheath fibers: (a) Schematic diagram of coaxial wet spinning process of CNTs/TPU core fibers; (b) Schematic diagram of the distribution of microcrack-based cortex fibers, TPU and CNT at microcrack structure; (c) Microcrack structure formation of optical fiber sensor[42]1.3 静电纺丝
静电纺丝技术是聚合物或熔体在强电场中直接喷射纺丝,可生产长径比大、比表面积大的纳米级纤维[43];由于具有适纺性强、可设计性强、生产成本低等特点,目前,静电纺丝技术已成为研发纱线基应变传感器的重要方法之一。
共轭静电纺丝可以将两种溶液同时静电纺丝,性质不同的聚合物结合至同一张复合膜中,可赋予纤维膜不同的功能,将含有导电物质的溶液与其他溶液进行共轭静电纺丝即可得到导电薄膜。为制备高灵敏的柔性纱线型压力传感器,齐琨等[44]利用共轭静电纺纱和静电喷雾技术一步制备出嵌入GO片和聚苯乙烯(Polystyrene,PS)微球的纳米纤维传感纱线,进一步结合化学还原工艺得到石墨烯/微球导电纳米纤维传感纱线,并组装成纱线型压力传感器。研究结果表明,该纱线基压力传感器具有良好的柔性和可拉伸性及良好的压力响应循环稳定性和可靠性。
静电纺丝形成的纤维膜可以加工成不同结构纱线以改善传感性能,Nie等[45]通过静电纺丝法制备了具有超高拉伸性和优异电学性能的螺旋状CNTs/TPU纳米纤维复合纱线。CNTs/TPU纱线凭借其导电膜结构与致密螺旋结构相结合的分级结构,表现出优异的机械性能、高回弹性、高灵敏度和广泛的应变传感性能,最大断裂伸长率为
1066 %,响应时间为0.12 s。Ahmed等[46]通过使用传统的静电纺丝装置,开发了一种基于电纺纳米纤维纱(Electrospun nanofibrous yarns,ENFY)的超灵敏柔性应变传感器。通过在铝集流体上方放置棉布来实现电纺纳米纤维的扭曲构型。利用上述技术,使用由碳纳米粒子(Carbon nano particles, CNPs)和TPU组成的导电聚合物材料(Conductive polymer composites,CPC)在DMF和氯仿混合物中获得了ENFY传感器。该传感器具有由随机取向的纳米纤维组成的分级结构,平均测量直径为640 nm;其表现出高灵敏度,应变传感因子随应变递增,但在102%的应变下,传感器失效。王慈[47]基于静电纺丝技术对压电聚合物聚偏氟乙烯(Polyvinylidene fluoride,PVDF)的直接高压极化作用,并结合实验室自制共轭静电纺纱装置,制备了高压极化与拉伸极化共同作用的PVDF微纳米纤维压电包芯纱,所制得织物重复使用性能和输出稳定性能都十分良好,且基于电纺丝PVDF微纳米纤维的柔性单电极压电传感纱线的传感设备比双电极薄膜型传感器的可靠性更高,即使在电极断裂后也能正常工作。吴萌萌[48]对传统静电纺纱装置进行改造,以PVDF为原料,镀银尼龙为芯纱,制备了聚偏氟乙烯纳米纤维包芯纱,拉伸强度最高可达到261.49 MPa,断裂伸长率高达53.60%。
Tang等[49]将多维碳基纳米材料(Multidimensional carbon-based nanomaterial,MCN)(包括零维炭黑(Carbon black particles,CBs)、一维CNTs和二维片层石墨烯(Lamellar graphene flakes,GRs)的不同组合)均匀分散在TPU纺丝液中,通过多针头静电纺丝和加捻,制备了一种无需后处理即可作为应变传感器的MCN/TPU纳米纤维纱线(图5)。采用不同的MCNs对比分析各项性能,发现24 CB/3 CNT/3 GRs表现出快速响应(220 ms)、出色耐久性及耐洗性。但是出现的双峰现象不利于传感器的连续、高频的运动监测。
由于纳米材料的泄漏和可能的功能失效,纳米材料在纤维系统中的安全性和耐久性还是人们关注的一大问题。静电纺丝技术操作简单,但是其纺丝效率低、纺丝速度慢,产业化生产难度大,且纺丝稳定性有待提升,这些不足限制了基于静电纺丝的柔性传感器的发展。
2. 纺纱类纱线基柔性应变传感器
纺纱类纱线基柔性应变传感器是运用传统纺纱技术,将导电物质与柔性材料进行结合,形成导电性与柔性兼具的导电纱线,较常用的纺纱类纱线基柔性应变传感器为包覆纱或包芯纱结构,外层提供导电性,内层提供柔性,下面从这两个不同结构展开论述。
包覆纺纱是以弹性纱线作为芯纱,导电纱线作为包覆纱,利用相关设备制备弹性导电纱线。弹性纱线作为芯纱制成的包覆纱可以解决导电纱拉伸性能不足的问题。曾玮宸[50]以氨纶复丝作为芯纱,镀银尼龙复丝作为外包纱,采用包覆纺纱法,将弹性纱线和导电纱线相结合,发现随着包覆度的增加,纱线的断裂伸长率提高,断裂强度减小;该包覆纱可用于实现手势识别,综合识别准确率为87.78%,平均识别时间为0.175 s;但经过100次往复拉伸后,纱线电阻变化率增加,耐久性能下降。Uno等[51]用CB涂覆的聚酯纤维束分别覆盖金属芯纱镀银尼龙6,6纤维和不锈钢纤维(Stainless steel,SS),形成两种不同包覆纱结构,并将其合股(图6);该纱线传感器可用于呼吸频率检测及运动时呼吸情况,但没有解决批量生产的问题。
Yan等[52]以棉纱为纱芯,纳米纤维纱线作为螺旋纱皮,将复合纱线碳化制备出具有特殊螺旋包覆结构的碳纤维纱线。该传感器可检测小至0.1%的应变,在经过
1000 次拉伸后,传感器仍能稳定工作。后续他们[53]还制备了加捻棉纱、蚕丝纱和纳米纤维纱3种纱线,选用任两种材料组合纺制包覆纱;随后,进行了定型和碳化处理;最后,通过将碳化包覆纱嵌入Ecoflex橡胶中来设计柔性应变传感器。由于采用原料的不同,包覆纱的传感性能存在显著差异。以纤维素纳米纤维(Celluouse nanofibers,CNF)纱线为外层,以棉纱为芯的包覆纱柔性应变传感器能够捕捉到更细微的运动;CNF纱为外层,蚕丝纱为芯,可以赋予传感器更高的应变范围;棉纱为外层,蚕丝纱为芯,可以赋予传感器细微变形下的高灵敏度、响应时间快等特点。除了用长丝作为包覆层外,短纤维和纳米纤维网也可以作为皮层制备包芯纱柔性传感器。Zou等[54]首先通过浸渍法将MXene负载到棉粗纱上,再以MXene/棉粗纱作为导电皮层,氨纶长丝作为芯纱,采用摩擦纺纺纱技术实现了MXene/棉/氨纶包芯纱(MXene/cotton/spandex yarn,MCSY)的连续规模化生产;表面附着MXene的棉纤维为MCSY提供了导电性,氨纶为芯层提供了弹性。MCSY具有优异的力学性能、耐久性能和压缩传感性能,在极小的压力下也具有出色的灵敏度。Dou等[55]向橡胶管内注入液态金属制备出橡胶管芯纱,通过摩擦纺纱技术将浸渍过CNT的PET纤维包裹在橡胶管芯纱上,制备了液态金属/橡胶管/CNT涤纶包芯纱(Liquid metal/tube/CNT polyester yarn,LTCPY)(图7);外部结构赋予该传感纱线良好的传感性能(在200%的伸长率下,GF为6.73)和可恢复性(
1000 次循环);但限于摩擦纺纱技术特点,此法纺制的纱线较粗,且纤维伸直平行度较差。Qi等[56]将CNT嵌入聚氨酯(Polyurethane,PU)纳米纤维,涂覆在Ni包覆的棉纱线电极上获得了纳米纤维传感纱线;该传感纱线具有良好的稳定性和可重复性,压力监测极限约0.003 N,可用于微小压力的检测。基于传统纺纱方法制备包覆纱和包芯纱柔性传感器,具有简单、高效、易于产业化等优点,但该方法还存在纱线传感性能有待提升、导电物质与纤维结合牢度不佳等问题。
3. 后整理类纱线基柔性应变传感器
后整理法是以纱线为基体,将导电材料复合到纱线上制备传感纱线的一种方法。导电材料可以是导电聚合物[57-58]、金属类导电物[59]、碳类导电物[60-62]等。本文将后整理法分为涂层法及浸渍法两大类进行论述;涂层法是在纱线表面涂覆导电层,喷嘴喷射打印法、空气雾化喷射涂覆方法等是基于涂层法开发出的新型涂层技术;浸渍法是将纱线浸入到导电溶液中制备传感纱线的方法,层层浸涂法及原位聚合法属于浸渍法的一类。
3.1 涂层法
将具有高导电性能的材料,比如金属、导电聚合物及碳材料等,通过涂层的方式涂覆在纱线基体上,即可得到复合导电纱线[63]。纪辉[64]采用氨纶包芯纱作为基材,将碳纳米管/聚吡咯管涂覆液涂覆至氨纶包芯纱基材上,得到的氨纶包芯纱/碳纳米管/聚吡咯管纱线应变传感器在5%形变下的电阻变化率达到325%,该传感器在各种湿度下都可以稳定工作,并有效稳定输出信号。
郑贤宏等[65]将静电纺丝制备的TPU纳米纤维裁剪成纤维带,通过喷涂法将MXene溶液负载到纤维带上,用这种方法制备出的MXene改性TPU纳米纤维纱线,MXene片层可均匀包覆在TPU纳米纤维表面形成致密导电薄膜,传感系数可达到477.86,最大工作应变可高达400%,并在监测人体运动状态中展现出较好的稳定性。
Gao等[66]通过喷涂工艺,在PU纳米纤维膜的两侧涂覆CNTs,制备了CNTs/PU纳米纤维膜,然后将二维CNTs/PU薄膜通过电机驱动的加捻过程制得螺旋状CNTs/PU纱线。随着加捻过程的进行,CNTs被包裹在纱线内部和外部。高度可拉伸的CNTs/PU螺旋纱线在900%拉伸范围内表现出优异的电阻可恢复性和稳定性,最大拉伸伸长率为
1700 %。此外,CNTs/PU纱线作为应变传感器可较好监测人体运动。通过涂层法制备导电层,溶液中导电物质的聚集是一个需要考虑的问题。目前常用的手工喷涂方法效率低,且难以控制涂层的均匀性,有学者提出了一些喷涂新方法,比如空气雾化喷射涂覆方法、喷嘴喷射打印方法、电喷技术等。Liao等[67]利用喷嘴喷射打印方法将银墨水覆盖并完全浸透到聚酯长丝中,制备了基于团簇型微结构(Cluster-type microstructures,CM)的、兼具高拉伸性和高灵敏度的应变传感器;该CM应变传感器具有高达
2700 的GF和160%应变的宽传感范围;此外,其响应时间迅速(约18 ms),拥有大于10000 次拉伸-释放应变循环的响应稳定性,此有利于CM应变传感器在静态和动态工作条件下均具有良好的性能。涂层法制备纱线基柔性应变传感器的优势在于制备过程相对简单和快速,但若涂料分散性能不好,可能会导致涂层厚度不一、涂层不均匀等问题;另外,涂层与纱体的结合牢度、纱线传感器的循环稳定性等均有待提高。
3.2 浸渍法
浸渍是指将纱线浸入含有导电物质的溶液中一定时间,使导电物质沉积在纱线上,然后经过洗涤、烘干,可得到纱线柔性传感器。
Zhang等将用聚多巴胺(Polydopamine,PDA)溶液处理的包芯纱放入MWCNTs和rGO质量比为5∶1的混合溶液中进行碳材料包覆。研究发现,MWCNTs与rGO之间的良好搭接使传感器具有高工作范围(>300%),而包芯纱的螺旋结构使其对非常微小的形变(0.1%)敏感。PDA可以提高纱线与导电材料间的结合力,使传感器在10%应变下进行
10000 次拉伸循环测试仍具有稳定电信号。Islam等[68]用PDA和三羟甲基氨基甲烷盐酸(Hydroxymethyl aminomethane hydrochloride,Tris-HCl)对由熔融纺丝法制成的PP/聚乳酸(Polylactic acid,PLA)长丝进行化学改性,以增加其亲水性。将经过处理的亲水性PP/PLA复合长丝浸泡在聚 (3, 4-乙烯二氧噻吩)-聚苯乙烯磺酸(Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate),PEDOT:PSS)分散液中5 min,制备出PEDOT:PSS涂层导电纱线,所制得的导电PP/PLA纱线具有高拉伸性和柔韧性。
层层浸涂法纱线传感器是将短纤维纱线或长丝纱线交替浸入带有相反电荷的溶液中而制得的,此法制备的传感器具有良好的柔韧性和可拉伸性[69]。Huang等[70]采用层层浸涂的方法将CNT涂覆在双包缠纱线(Double-threaded yarn,DTY)表面,形成CNT/DTY传感纱线,见图8。Ecoflex(一种硅胶)包裹层的加入不仅避免了导电层的脱落,而且提高了应变传感器的灵敏度,并提供了优异的疏水性能。但Ecoflex不利于CNT的滑移回复,导致导电网络回复性差,机电滞后较高。Dai等[71]通过将PU纱线交替浸入带负电荷的改性多壁羧基碳纳米管(Modified multiwalled carboxylic carbon nanotubes,m-MWCNTs-COOH)分散液和带正电荷的壳聚糖(Chitosan,CS)溶液中,采用层层浸涂的方法制备了PU应变传感器。所制备的传感器表现出优异的综合传感性能,包括大的可工作应变范围(115%)和优越的灵敏度(应变在0%~40%时,GF可达159;应变超过100%时,GF高达
8175 ),可以用于人体大幅度运动监测。原位聚合法是指首先使纳米尺度的无机粉体在单体中均匀分散,然后用类似于本体聚合的方法进行聚合反应,是实现无机组分与聚合物基体之间均相复合的有效技术。Huang等[72]通过原位聚合法在PET双包缠长丝上沉积银纳米颗粒(Silver nanoparticles,AgNPs),将芯层弹性纤维制成具有AgNPs导电层的导电复合纤维,这种复合结构具有一种混合传感机制,即裂纹扩展和导电接触面积的变化而引起的电阻变化;该应变传感纱线具有良好的线性度(线性回归决定系数R2=0.96)、超低的检测限(0.05%)和较高的线性灵敏度(GF=10)等特点。这种显著传感性能归因于协同传感机制,但是经过4次原位聚合之后,纱线传感器的力学性能下降。浸渍法制备纱线柔性传感器,具有成本低、操作简单、导电溶液利用率高等优点;但该方法存在整理时间较长,纱线中导电物质含量低、分布不均匀等问题。
4. 复合类纱线基柔性应变传感器
上述纱线应变传感器仅通过一种方法将导电物质负载到柔性基体中,虽然操作较简单方便,但都存在一些不足之处,因此有学者将两种或两种以上的纱线传感器制备方法结合起来,可以改善一种方法制备出的纱线传感器性能不足的问题,这种方法制备出的传感器可称之为复合类纱线基柔性传感器。在此主要对后处理工艺与其他工艺相结合制备纱线基传感器的研究进行阐述。
Ai等[73]采用湿法纺丝和原位聚合法相结合,以TPU和四苯乙烯(Tetraphenylethylene,TPE)为基体,在异丙醇(Isopropanol,IPA)和水凝固浴中湿纺制成柔性荧光纤维作为传感器基体,然后滴加聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)珠子并固化,产生非均质结构,进一步加捻成褶皱纱。最后,通过添加PDA和聚吡咯(Polypyrrole,PPy)原位聚合,得到了基于凝固液珠和裂纹结构的可视化柔性纱线应变传感器(Afluorescent visual yarn strain sensor with solidified liquid beads andcrack structure,SCFY),见图9。该传感器在143%~184%的应变范围内GF值为58.9,工作应变范围可达184%,监测极限<0.1%,响应时间58.82 ms,具有不同频率下的可靠响应和优异的循环耐久性。
Dai等[74]通过同步共轭静电纺丝和电喷技术,将PU纺丝液和银纳米线溶液(Silver nanowires,AgNWs)分散液通过高压静电拉伸成PU纳米纤维(PU nanofibers,PUNFs),并将AgNWs喷涂在PUNFs表面得到PU纳米纤维传感纱线。与经常使用的层层涂覆和浸渍等多步制备方法相比,该方法省时、易操作且低成本,AgNWs同时存在于纱线内部和外部,可有效提高导电性。Zhou等[75]采用纺纱法与后处理法相结合,用经过预拉伸的氨纶丝作为芯纱,掺杂GO的腈纶(Polyacrylonitrile,PAN)纳米纤维作为外包纱,然后用吡咯在纱线表面进行原位聚合,最后在纱线表面涂覆一层薄的聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)薄膜得到纱线传感器,该传感器在0%~500%的应变范围内GF为34.63,在
10000 次循环的小幅拉伸下灵敏度损失较小。Zhang和Xu[76]以PU纱线为弹性基底,MXene纳米片为导电材料,通过浸涂法成功制备了应变传感纱线。为了提高其导电性和稳定性,引入了磁控溅射法在纱线表面沉积银纳米颗粒并涂以PDMS保护层。所制备的应变传感纱线显示出200%的工作范围,超过
15000 次循环的优异稳定性,在150%~200%应变区域下GF值超过700的高灵敏度及快速响应性。Gao等[77]将PANI涂覆在环氧天然橡胶(Epoxy natural rubber,ENR)纳米球表面,得到PANI@ENR纳米球,PANI@ENR与石墨烯(Graphene,GN)片材共混,制得GN/PANI@ENR复合材料。由PANI和GN组成的复合导电网络赋予复合材料优异的机械、机电和应变传感性能。复合法制备的传感纱线的传感性能、循环耐久性能更好,但相比于单一方法成本更高,制作过程更复杂。因此各制备方法都有其优缺点(表1),制备纱线基传感器要根据其使用场景、性能要求等进行合理选择。
表 1 纱线基柔性应变传感器制备方法及其优缺点Table 1. Preparation methods for yarn-based flexible strain sensors and their advantages and disadvantagesPreparation of yarn-based sensors Preparation characteristics Advantages Disadvantages Melt spinning A conductive substance is added to the spinning stock solution to spin and form, and it is cured into silk in hot air The spinning speed is faster and it is easy to achieve industrial production There is limitations in the volume fraction of the filler, which damages the mechanical properties Wet spinning The conductive substance is added to the spinning stock solution to spin and mold, and the silk is cured into silk in a coagulation bath The conductive material is more evenly dispersed, the fiber fineness is more consistent, and a special leather core structure can be spun The spinning speed is low and the cost is high Electrospinning Polymers or melts are mixed with conductive substances and spun
directly in a strong electric fieldStrong spinnability, strong
designability, low production costLow production efficiency Spinning Using traditional spinning technology, conductive materials are combined
with flexible materialsThe operation is simple and the equipment is mature It is often necessary to combine with other preparation techniques Coating method Conductive materials are coated on the yarn matrix The preparation process is simple
and fastThe coating is easy to peel off Impregnation method Immersing the yarn in a solution containing a conductive substance for
a certain period of time, so that the conductive substance is deposited on the yarnThe conductive material is well combined with the flexible matrix The conductive layer is prone to detachment Composite method Yarn-based flexible strain sensors are produced by combining two or more preparation methods The operation is more complicated The shortcomings of a single approach can be improved 5. 结论与展望
纱线基柔性应变传感器的制备方法主要包括熔融纺丝法、湿法纺丝法、纺纱法、后处理法及复合法。
熔融纺丝法和湿法纺丝制备纱线基传感器具有易加工的特点,但提高其强度和耐久性一直是一个难题;静电纺丝过程具有多功能性,纺得的纳米纤维具有较高的比表面积、长径比和柔韧性,但纳米纤维网结构完整性较差且存在产量低、成本高等问题;后整理法制备传感器对材料形貌要求较低,操作简单,成本较低,但涂层与基体之间常存在结合牢固的问题;复合法制备纱线传感器可略改善上述方法存在的不足,但制备工艺相对复杂。整体而言,目前纱线基柔性应变传感器的制备已经取得了不错的成果,但还有一些问题需要克服,未来的研究方向在于:
(1)根据纤维材料特性,选择合适的原理实现特殊结构和高性能;根据不同制备方法的优缺点,选择合适的导电材料和柔性基底,优化设计策略,在保留原有优势的同时解决不足,开发具有显著应变性能、灵敏度、线性度、强伸度和稳定性的纱线基柔性应变传感器;
(2)制备方法的集成化也是未来的发展方向之一。有效地结合各种制备方法的优点,开发具有显著传感性能的多机制传感器,即自供电传感及无线信号传输能力;
(3)目前开发出的柔性传感器大多都停留在实验室阶段,实现产业化难度大,因此,研究制备方法简单、产品灵敏度高且应变大及可快速产业化的纱线基柔性应变传感器也是一个发展方向。
-
图 3 纺丝过程中PANI/TPU基皮芯复合纤维(PTCF)空芯-护套结构形成机制示意图(a)及形貌表征(b)[40]
PANI—Polyaniline; TPU—Thermoplastic urethane
Figure 3. Schematic diagram of the formation mechanism of PANI/TPU-based hollow core–sheath composite fibers (PTCF) hollow-sheath structure during spinning process (a) and morphological characterization (b)[40]
图 4 碳纳米管(CNTs)/TPU芯鞘纤维的制备:(a) CNTs/TPU皮芯纤维同轴湿法纺丝工艺图;(b)基于微裂纹的皮芯纤维及TPU和CNT在微裂纹结构处的分布示意图;(c)光纤传感器微裂纹结构形成示意图[42]
DMF—Dimethylformamide
Figure 4. Preparation of carbon nanotubes (CNTs)/TPU core sheath fibers: (a) Schematic diagram of coaxial wet spinning process of CNTs/TPU core fibers; (b) Schematic diagram of the distribution of microcrack-based cortex fibers, TPU and CNT at microcrack structure; (c) Microcrack structure formation of optical fiber sensor[42]
表 1 纱线基柔性应变传感器制备方法及其优缺点
Table 1 Preparation methods for yarn-based flexible strain sensors and their advantages and disadvantages
Preparation of yarn-based sensors Preparation characteristics Advantages Disadvantages Melt spinning A conductive substance is added to the spinning stock solution to spin and form, and it is cured into silk in hot air The spinning speed is faster and it is easy to achieve industrial production There is limitations in the volume fraction of the filler, which damages the mechanical properties Wet spinning The conductive substance is added to the spinning stock solution to spin and mold, and the silk is cured into silk in a coagulation bath The conductive material is more evenly dispersed, the fiber fineness is more consistent, and a special leather core structure can be spun The spinning speed is low and the cost is high Electrospinning Polymers or melts are mixed with conductive substances and spun
directly in a strong electric fieldStrong spinnability, strong
designability, low production costLow production efficiency Spinning Using traditional spinning technology, conductive materials are combined
with flexible materialsThe operation is simple and the equipment is mature It is often necessary to combine with other preparation techniques Coating method Conductive materials are coated on the yarn matrix The preparation process is simple
and fastThe coating is easy to peel off Impregnation method Immersing the yarn in a solution containing a conductive substance for
a certain period of time, so that the conductive substance is deposited on the yarnThe conductive material is well combined with the flexible matrix The conductive layer is prone to detachment Composite method Yarn-based flexible strain sensors are produced by combining two or more preparation methods The operation is more complicated The shortcomings of a single approach can be improved -
[1] SUN Q, LAI Q, TANG Z, et al. Advanced functional composite materials toward e-skin for health monitoring and artificial intelligence[J]. Advanced Materials Technologies, 2023, 8(5): 2201088. DOI: 10.1002/admt.202201088
[2] PARK W, YIU C, LIU Y, et al. High channel temperature mapping electronics in a thin, soft, wireless format for non-invasive body thermal analysis[J]. Biosensors, 2021, 11(11): 435. DOI: 10.3390/bios11110435
[3] LIU S, WANG S, XUAN S, et al. Highly flexible multilayered e-skins for thermal-magnetic-mechanical triple sensors and intelligent grippers[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15675-15685.
[4] MA Y, ZHANG Y, CAI S, et al. Flexible hybrid electronics for digital health-care[J]. Advanced Materials, 2020, 32(15): 1902062. DOI: 10.1002/adma.201902062
[5] ZHANG Y, TAN Y, LAO J, et al. Hydrogels for flexible electronics[J]. ACS Nano, 2023, 17(11): 9681-9693. DOI: 10.1021/acsnano.3c02897
[6] YANG Y, WANG H, HOU Y, et al. MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics[J]. Composites Science and Technology, 2022, 226: 109518. DOI: 10.1016/j.compscitech.2022.109518
[7] YAN T, WU Y, YI W, et al. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors[J]. Sensors and Actuators A: Physical, 2021, 327: 112755. DOI: 10.1016/j.sna.2021.112755
[8] GONG X, HUANG K, WU Y H, et al. Recent progress on screen-printed flexible sensors for human health monitoring[J]. Sensors and Actuators A: Physical, 2022, 345: 113821. DOI: 10.1016/j.sna.2022.113821
[9] WANG J, LI L, LIU H, et al. Screen-printed highly sensitive and anisotropic strain sensors with asymmetrical inner concave honeycomb cross-conducting structure for health monitoring of medical electrophysiological signals[J]. IEEE Sensors Journal, 2023, 23(21): 25732-25748. DOI: 10.1109/JSEN.2023.3303014
[10] PENG Q, CHEN J, WANG T, et al. Recent advances in designing conductive hydrogels for flexible electronics[J]. InfoMat, 2020, 2(5): 843-865. DOI: 10.1002/inf2.12113
[11] KILICARSLAN B, BOZYEL I, GOKCE N D, et al. Sustainable macromolecular materials in flexible electronics[J]. Macromolecular Materials and Engineering, 2022, 307(6): 2100978. DOI: 10.1002/mame.202100978
[12] 苏传丽. 纺织基柔性超级电容器的设计与性能研究[D]. 上海: 东华大学, 2023. SU Chuanli. Design and performance research of textile-based flexible super-capacitors[D]. Shanghai: Donghua University, 2023(in chinese).
[13] 聂文琪, 孙江东, 许帅, 等. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(7): 200-206, 216. NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Preparation and propreties of ploypyrrole yarn strain sensors[J]. Journal of Textile Research, 2022, 43(7): 200-206, 216(in chinese).
[14] 杜鲜晶. 纱线状导电聚合物全固态超级电容器构筑及其可穿戴应用研究[D]. 青岛: 青岛大学, 2021. DU Xianjing. Wearable application and construction of yarn-shaped all-solid supercapacitor based on conducting polymer[D]. Qingdao: Qingdao Univeisity, 2021(in chinese).
[15] ALTIN Y, CELIK BEDELOGLU A. Flexible carbon nanofiber yarn electrodes for self-standing fiber supercapacitors[J]. Journal of Industrial Textiles, 2022, 51(3_suppl): 4254S-4267S. DOI: 10.1177/15280837221094062
[16] KEUM K, KIM J W, HONG S Y, et al. Flexible/stretchable supercapacitors with novel functionality for wearable electronics[J]. Advanced Materials, 2020, 32(51): 2002180. DOI: 10.1002/adma.202002180
[17] YU R, WANG C, DU X, et al. In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors[J]. National Science Review, 2024, 11(6): nwae158. DOI: 10.1093/nsr/nwae158
[18] HUANG Q, JIANG Y, DUAN Z, et al. Ion gradient induced self-powered flexible strain sensor[J]. Nano Energy, 2024, 126: 109689. DOI: 10.1016/j.nanoen.2024.109689
[19] HE J, LI Y, YANG F, et al. Waterproof, stretchable and wearable corrugated conductive carbon fiber strain sensors for underwater respiration monitoring and swimming instruction[J]. Applied Materials Today, 2024, 38: 102165. DOI: 10.1016/j.apmt.2024.102165
[20] CUTHBERT T J, HANNIGAN B C, ROBERJOT P, et al. HACS: Helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit[J]. Advanced Materials, 2023, 35(10): 2209321. DOI: 10.1002/adma.202209321
[21] ZHANG Z, LIU S, WU M, et al. Shape-adaptable and wearable strain sensor based on braided auxetic yarns for monitoring large human motions[J]. Applied Materials Today, 2023, 35: 101996. DOI: 10.1016/j.apmt.2023.101996
[22] FENG Z, HE Q, WANG X, et al. Waterproof iontronic yarn for highly sensitive biomechanical strain monitoring in wearable electronics[J]. Advanced Fiber Materials, 2024, 6(3): 925-935. DOI: 10.1007/s42765-024-00381-0
[23] ZHANG Y X, LI Y D, DU A K, et al. Layer-by-layer assembly of chitosan and carbon nanotube on cotton fabric for strain and temperature sensing[J]. Journal of Materials Science & Technology, 2024, 173: 114-120.
[24] ZHANG P, WANG T, ZHANG J, et al. Preparation and application of fabric-based interlocking microstructured flexible piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2023, 363: 114740. DOI: 10.1016/j.sna.2023.114740
[25] BAI Y, YIN L, HOU C, et al. Response regulation for epidermal fabric strain sensors via mechanical strategy[J]. Advanced Functional Materials, 2023, 33(31): 2214119. DOI: 10.1002/adfm.202214119
[26] ZHANG M, FENG P, LIAN X, et al. Design of MWCNTs and rGO co-decorated elastic core-spun yarn towards multifunctional flexible strain sensor with low detection limit and wide working range[J]. Journal of Applied Polymer Science, 2023, 140(33): e54288. DOI: 10.1002/app.54288
[27] 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883. HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883(in Chinese).
[28] DONG Y, XU D, YU H Y, et al. Highly sensitive, scrub-resistant, robust breathable wearable silk yarn sensors via interfacial multiple covalent reactions for health management[J]. Nano Energy, 2023, 115: 108723. DOI: 10.1016/j.nanoen.2023.108723
[29] WU J, JIAO W, GUO Y, et al. Recent progress on yarn-based electronics: From material and device design to multi-functional applications[J]. Advanced Electronic Materials, 2023, 9(8): 2300219. DOI: 10.1002/aelm.202300219
[30] 吴焕东, 肖书平, 徐百平, 等. 熔融混炼制备柔性TPU/rGO介电层及其压力传感性能[J]. 工程塑料应用, 2023, 51(5): 8-13. DOI: 10.3969/j.issn.1001-3539.2023.05.002 WU Huandong, XIAO Shuping, XU Baiping, et al. Fabrication of flexible TPU/rGO dielectric layer via melt-mixing and its pressure sensing performance[J]. Engineering Plastics Application, 2023, 51(5): 8-13(in Chinese). DOI: 10.3969/j.issn.1001-3539.2023.05.002
[31] FORNES T D, BAUR J W, SABBA Y, et al. Morphology and properties of melt-spun polycarbonate fibers containing single and multiwall carbon nanotubes[J]. Polymer, 2006, 47(5): 1704-1714. DOI: 10.1016/j.polymer.2006.01.003
[32] BAUTISTA-QUIJANO J R, POTSCHKE P, BRUNIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016, 82: 181-189. DOI: 10.1016/j.polymer.2015.11.030
[33] LIN J H, LIN Z I, PAN Y J, et al. Manufacturing techniques and property evaluations of conductive composite yarns coated with polypropylene and multiwalled carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 354-363. DOI: 10.1016/j.compositesa.2016.02.004
[34] XIANG D, LIU L, XU F, et al. Highly sensitive flexible strain sensor based on a double-percolation structured elastic fiber of carbon nanotube (CNT)/styrene butadiene styrene (SBS)@thermoplastic polyurethane (TPU) for human motion and tactile recognition[J]. Applied Composite Materials, 2023, 30(1): 307-322. DOI: 10.1007/s10443-022-10084-7
[35] 邢任权, 闫静, 杨光, 等. 纤维/纱线柔性电阻式应变传感器的研究进展[J]. 产业用纺织品, 2022, 40(1): 1-7. DOI: 10.3969/j.issn.1004-7093.2022.01.001 XING Renquan, YAN Jing, YANG Guang, et al. Reanch progress of fiber/yarn flexible resistive strain sensors[J]. Technical Textiles, 2022, 40(1): 1-7(in Chinese). DOI: 10.3969/j.issn.1004-7093.2022.01.001
[36] PARK G, JUNG Y, LEE G W, et al. Carbon nanotube/poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning[J]. Fibers and Polymers, 2012, 13(7): 874-879. DOI: 10.1007/s12221-012-0874-5
[37] CHENG H, ZUO T, CHEN Y, et al. High sensitive, stretchable and weavable fiber-based PVA/WPU/MXene materials prepared by wet spinning for strain sensors[J]. Journal of Materials Science, 2023, 58(34): 13875-13887. DOI: 10.1007/s10853-023-08887-5
[38] SHENG N, JI P, ZHANG M, et al. High sensitivity polyurethane-based fiber strain sensor with porous structure via incorporation of bacterial cellulose nanofibers[J]. Advanced Electronic Materials, 2021, 7(4): 2001235. DOI: 10.1002/aelm.202001235
[39] LIU W, XUE C, LONG X, et al. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning[J]. Journal of Alloys and Compounds, 2023, 948: 169641. DOI: 10.1016/j.jallcom.2023.169641
[40] WU Y, YAN T, ZHANG K, et al. A hollow core-sheath composite fiber based on polyaniline/polyurethane: Preparation, properties, and multi-model strain sensing performance[J]. Advanced Materials Technologies, 2023, 8(1): 2200777. DOI: 10.1002/admt.202200777
[41] LIU S, ZHANG W, HE J, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: From spatial 1D and 2D perspectives[J]. Advanced Fiber Materials, 2023, 6: 36-67.
[42] QU X, WU Y, JI P, et al. Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29167-29175.
[43] 谢金林, 张京, 郭宇星, 等. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(6): 241-254. XIE Jinlin, ZHANG Jing, GUO Yuxing, et al. Application progress of conductive fibers in the application of new txtiles[J]. Advanced Textile Technology, 2023, 31(6): 241-254(in Chinese).
[44] 齐琨, 宋玉堂, 苏宇, 等. 石墨烯/微球导电纳米纤维传感纱线的制备及性能[J]. 印染, 2023, 49(10): 6-11. QI Kun, SONG Yutang, SU Yu, et al. Preparation and properties of graphene/-microsphere conductive nanofiber sensing yarn[J]. Dyeing & Finishing, 2023, 49(10): 6-11(in Chinese).
[45] NIE H, CHEN Z, TANG H, et al. Strain sensor based on polyurethane/carbon nanotube elastic conductive spiral yarn with high strain range and sensitivity[J]. Polymer Composites, 2024, 6(45): 28144.
[46] AHMED S, NAUMAN S, KHAN Z M. Electrospun nanofibrous yarn based piezoresistive flexible strain sensor for human motion detection and speech recognition[J]. Journal of Thermoplastic Composite Materials, 2023, 36(6): 2459-2481. DOI: 10.1177/08927057221095853
[47] 王慈. 微纳米纤维包芯纱制备及其织物压电传感研究[D]. 上海: 东华大学, 2023. WANG Ci. Preparation and properties of piezoelectric micro-nanofibers corespun yarn and its fabric sensor[D]. Shanghai: Donghua University, 2023(in Chinese).
[48] 吴萌萌. 静电纺取向纳米纤维包芯纱的制备及其压电性能研究[D]. 天津: 天津工业大学, 2021. WU Mengmeng. Preparation of electro-spinning oriented nanofiber corespun yarn and its piezoelectric properties[D]. Tianjin: Tiangong University, 2021(in Chinese).
[49] TANG J, WU Y, MA S, et al. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials[J]. iScience, 2022, 25(10): 105162. DOI: 10.1016/j.isci.2022.105162
[50] 曾玮宸. 基于弹性导电纱线的可穿戴应变传感器的开发研究[D]. 上海: 上海工程技术大学, 2021. ZENG Yichen. Development and reserch of wearable strain sensor based on elastic conductive yarn[D]. Shanghai: Shanghai University of Engineering Science, 2021(in Chinese).
[51] UNO M O, OMORI M, MORITA S, et al. Moisture-insensitive force sensor yarns and fabrics to monitor biological motion[J]. Advanced Materials Technologies, 2023, 8(24): 2301124.
[52] YAN T, ZHOU H, NIU H, et al. A noble gas sensor platform: Linear dense assemblies of singlewalled carbon nano-tubes (LACNTs) in a multilayered ceramic/metal electrode system (MLES)[J]. Journal of Materials Chemistry C, 2018, 6(5): 972-979. DOI: 10.1039/C7TC03576D
[53] YAN T, WU Y, TANG J, et al. Highly sensitive strain sensor with wide strain range fabricated using carbonized natural wrapping yarns[J]. Materials Research Bulletin, 2021, 143: 111452. DOI: 10.1016/j.materresbull.2021.111452
[54] ZOU S, LI D, HE C, et al. Scalable fabrication of an MXene/cotton/spandex yarn for intelligent wearable applications[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10994-11003.
[55] DOU L, ZHENG X, YUAN M, et al. Hierarchical and coaxial yarn with combined conductance stability and sensing capability for wearable electronics[J]. Applied Materials Today, 2022, 29: 101695. DOI: 10.1016/j.apmt.2022.101695
[56] QI K, WANG H, YOU X, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103. DOI: 10.1016/j.jcis.2019.11.059
[57] LI C, MU J, SONG Y, et al. Highly aligned cellulose/polypyrrole composite nano-fibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9820-9829.
[58] ZHAN Z, YUAN Y, ZHANG Y, et al. Stretchable and highly sensitive flexible strain sensor based on a three-layer core-shell structure of polydopamine/polypyrrole@natural rubber for human activity monitoring[J]. Advanced Engineering Materials, 2024, 26: 2301952.
[59] SOE H M, ABD MANAF A, MATSUDA A, et al. Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods[J]. Sensors and Actuators A: Physical, 2021, 329: 112793. DOI: 10.1016/j.sna.2021.112793
[60] ZHOU B, LI C, LIU Z, et al. A highly sensitive and flexible strain sensor based on dopamine-modified electrospun styrene-ethylene-butylene-styrene block copolymer yarns and multi walled carbon nanotubes[J]. Polymers, 2022, 14(15): 3030. DOI: 10.3390/polym14153030
[61] SHEN T, LIU S, YUE X, et al. High-performance fibrous strain sensor with synergistic sensing layer for human motion recognition and robot control[J]. Advanced Composites and Hybrid Materials, 2023, 6(4): 127. DOI: 10.1007/s42114-023-00701-9
[62] TANG J, WU Y, MA S, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineering, 2022, 232: 109605. DOI: 10.1016/j.compositesb.2021.109605
[63] 蔡明坤. 碳纳米管/水性聚氨酯涂层导电纱线的制备及其性能和应用研究[D]. 上海: 东华大学, 2023. CAI Mingkun. Preparation of carbon nanotube/waterborne polyurethane coated conductive yarn and its performance and application research[D]. Shanghai: Donghua University, 2023(in Chinese).
[64] 纪辉. 纱线应力传感器的制备与性能研究[D]. 武汉: 武汉纺织大学, 2020. JI Hui. Preparation and properties of wearable strain fabric sensors[D]. Wuhan: Wuhan Textile University, 2020(in Chinese).
[65] 郑贤宏, 胡侨乐, 聂文琪, 等. 高弹性MXene/TPU纳米纤维纱线的制备及其应变传感性能[J]. 精细化工, 2022, 39(1): 80-85. ZHENG Xianhong, HU Qiaole, NIE Wenqi, et al. Preparation and strain sensing performance of highly stretchable MXene/TPU nanofiber yarn[J]. Fine Chemicals, 2022, 39(1): 80-85(in Chinese).
[66] GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nano-fibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14(3): 3442-3450. DOI: 10.1021/acsnano.9b09533
[67] LIAO X, WANG W, WANG L, et al. Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2431-2440.
[68] ISLAM G M N, COLLIE S, QASIM M, et al. Highly stretchable and flexible melt spun thermoplastic conductive yarns for smart textiles[J]. Nanomaterials, 2020, 10(12): 2324. DOI: 10.3390/nano10122324
[69] TANG X, CHENG D, RAN J, et al. Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor[J]. Nanotechnology Reviews, 2021, 10(1): 221-236. DOI: 10.1515/ntrev-2021-0021
[70] HUANG F, HU J, YAN X. A wide-linear-range and low-hysteresis resistive strain sensor made of double-threaded conductive yarn for human movement detection[J]. Journal of Materials Science & Technology, 2024, 172: 202-212.
[71] DAI H, ZHOU X, GU Z, et al. Highly sensitive and stretchable strain sensor based on modified carboxylic carbon nanotubes/chitosan/polyurethane yarn[J]. The Journal of the Textile Institute, 2023, 115(9): 1–14.
[72] HUANG F, HU J, YAN X, et al. High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves[J]. Journal of Industrial Textiles, 2022, 51(3_suppl): 4554S-4570S. DOI: 10.1177/15280837221084369
[73] AI J, WANG Q, LI Z, et al. Highly stretchable and fluorescent visualizable thermoplastic polyurethane/tetrapheny-lethylene plied yarn strain sensor with heterogeneous and cracked structure for human health monitoring[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1428-1438.
[74] DAI Y, QI K, OU K, et al. Ag NW-embedded coaxial nanofiber-coated yarns with high stretchability and sensitivity for wearable multi-sensing textiles[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 11244-11258.
[75] ZHOU Y, LIAO H, QI Q, et al. Polypyrrole-coated graphene oxide-doped polyacrylonitrile nanofibers for stretchable strain sensors[J]. ACS Applied Nano Materials, 2022, 5(6): 8224-8231. DOI: 10.1021/acsanm.2c01298
[76] ZHANG S, XU J. PDMS/Ag/Mxene/-polyurethane conductive yarn as a highly reliable and stretchable strain sensor for human motion monitoring[J]. Polymers, 2022, 14(24): 5401. DOI: 10.3390/polym14245401
[77] GAO Y, SUN J, TIAN X, et al. Ultra-highly sensitive graphene/polyaniline@-epoxidized natural rubber strain sensors for human motion monitoring[J]. Sensors and Actuators A: Physical, 2023, 358: 114421. DOI: 10.1016/j.sna.2023.114421
-