留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纱线基柔性应变传感器制备方法研究进展

袁明珠 赵立环 王玉稳 张蓉 李长静

袁明珠, 赵立环, 王玉稳, 等. 纱线基柔性应变传感器制备方法研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 袁明珠, 赵立环, 王玉稳, 等. 纱线基柔性应变传感器制备方法研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
YUAN Mingzhu, ZHAOLihuan, WANG Yuwen, et al. Research progress on preparation methods of yarn based flexible strain sensors[J]. Acta Materiae Compositae Sinica.
Citation: YUAN Mingzhu, ZHAOLihuan, WANG Yuwen, et al. Research progress on preparation methods of yarn based flexible strain sensors[J]. Acta Materiae Compositae Sinica.

纱线基柔性应变传感器制备方法研究进展

基金项目: 天津市科技计划项目(23YFYSHZ00220);中国纺织工业联合会科技指导性计划项目(2021065)
详细信息
    通讯作者:

    赵立环,博士,副教授,硕士生导师,研究方向为新型非织造材料的制备、理论及应用;纺织基柔性纱线/织物基传感器和智能可穿戴设备E-mail: zhaolihuan@tiangong.edu.cn

  • 中图分类号: TP212; TS104.2; TB332

Research progress on preparation methods of yarn based flexible strain sensors

Funds: Science and Technology Plan Project of Tianjin (23YFYSHZ00220); Science and Technology Guidance Project of China National Textile and Apparel Association (2021065)
  • 摘要: 纱线基柔性应变传感器作为一维传感器具有较好的柔韧性、可编织特性以及可拉伸性能,使得其在人体运动监测方面有很大的应用优势。纱线基柔性应变传感器的制备方法主要包括纺丝法、纺纱法、后整理以及复合方法,以其制备方法为切入点阐述了各类纱线基柔性应变传感器的制备过程及研究进展,并归纳了各类制备方法的特征和优缺点,最后提出了纱线基柔性应变传感器的未来研究方向,为进一步制备和研究该类传感器提供参考。

     

  • 图  1  挤出模具的图像(a)及涂层纱线直径的示意图(b)[33]

    Figure  1.  Image of extrusion die (a) and schematic diagram of coated yarn diameter (b)[33]

    图  2  PVA/WPU/MXene复合纤维的合成机制示意图[37]

    Figure  2.  schematic diagram of the synthesis mechanism of PVA/WPU/MXene synthetic fibers[37]

    图  3  纺丝过程中PTCF空芯-护套结构形成机制示意图(a)及形貌表征(b)[40]

    Figure  3.  Schematic diagram of the formation mechanism of PTCF hollow-sheath structure during spinning process (a) and morphological characterization (b)[40]

    图  4  CNTS/TPU芯鞘纤维的制备。CNTs/TPU皮芯纤维同轴湿法纺丝工艺图(a)及基于微裂纹的皮芯纤维以及TPU和CNT在微裂纹结构处的分布示意图(b)及光纤传感器微裂纹结构形成示意图(c)[42]

    Figure  4.  Preparation of CNTS/TPU core sheath fibers. Schematic diagram of coaxial wet spinning process of CNTs/TPU core fibers (a), schematic diagram of the distribution of microcrack-based cortex fibers, TPU and CNT at microcrack structure (b) and microcrack structure formation of optical fiber sensor (c)[42]

    图  5  MCN/TPU-NY的生产工艺[49]

    Figure  5.  Production process of MCN/TPU-NY[49]

    图  6  传感器的概念图和光学图像[51]

    Figure  6.  Concept art and optical image of the sensor[51]

    图  7  LTPCY传感器的制备[55]

    Figure  7.  Preparation of LTPCY sensors[55]

    图  8  DTY的制备过程示意图(a)及Ecoflex/CNT/DTY应变传感器的制备示意图(b)[71]

    Figure  8.  Schematic diagram of the preparation process of DTY (a) and preparation of Ecoflex/CNT/DTY strain sensor (b)[71]

    图  9  SCFY应变传感器的制备流程图[74]

    Figure  9.  Flow chart for the preparation of SCFY strain sensors[74]

    表  1  纱线基柔性应变传感器制备方法及其优缺点

    Table  1.   Preparation methods for Yarn-based flexible strain sensors and their advantage and disadvantage

    Preparation of yarn-based sensors Preparation characteristics Advantages Disadvantages
    Melt spinning A conductive substance is added to the spinning stock solution to spin and form, and it is cured into silk in hot air The spinning speed is faster and it is easy to achieve industrial production There is limitations in the volume fraction of the filler, which damages the mechanical properties
    Wet spinning The conductive substance is added to the spinning stock solution to spin and mold, and the silk is cured into silk in a coagulation bath The conductive material is more evenly dispersed, the fiber fineness is more consistent, and a special leather core structure can be spun The spinning speed is low and the cost is high
    Electrospinning Polymers or melts are mixed with conductive substances and spun
    directly in a strong electric field
    Strong spinnability, strong designability, low production cost Low production efficiency
    Spinning Using traditional spinning technology, conductive materials are combined
    with flexible materials
    The operation is simple and the equipment is mature It is often necessary to combine with other preparation techniques
    Coating method Conductive materials are coated on the yarn matrix The preparation process is simple and fast The coating is easy to peel off
    Impregnation method Immersing the yarn in a solution containing a conductive substance for
    a certain period of time, so that the conductive substance is deposited on the yarn
    The conductive material is well combined with the flexible matrix The conductive layer is prone to detachment
    Composite method Yarn-based flexible strain sensors are produced by combining two or more preparation methods The operation is more complicated The shortcomings of a single approach can be improved
    下载: 导出CSV
  • [1] SUN Q, LAI Q, TANG Z, et al. Advanced functional composite materials toward e-skin for health monitoring and artificial intelligence[J]. Advanced Materials Technologies, 2023, 8(5): 2201088. doi: 10.1002/admt.202201088
    [2] PARK W, YIU C, LIU Y, et al. High channel temperature mapping electronics in a thin, soft, wireless format for non-invasive body thermal analysis[J]. Biosensors, 2021, 11(11): 435. doi: 10.3390/bios11110435
    [3] LIU S, WANG S, XUAN S, et al. Highly flexible multilayered e-skins for thermal-magnetic-mechanical triple sensors and intelligent grippers[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15675-15685.
    [4] MA Y, ZHANG Y, CAI S, et al. Flexible hybrid electronics for digital health-care[J]. Advanced Materials, 2020, 32(15): 1902062. doi: 10.1002/adma.201902062
    [5] ZHANG Y, TAN Y, LAO J, et al. Hydrogels for flexible electronics[J]. ACS Nano, 2023, 17(11): 9681-9693. doi: 10.1021/acsnano.3c02897
    [6] YANG Y, WANG H, HOU Y, et al. MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics[J]. Composites Science and Technology, 2022, 226: 109518. doi: 10.1016/j.compscitech.2022.109518
    [7] YAN T, WU Y, YI W, et al. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors[J]. Sensors and Actuat-ors A: Physical, 2021, 327: 112755. doi: 10.1016/j.sna.2021.112755
    [8] GONG X, HUANG K, WU Y-H, et al. Recent progress on screen-printed flexible sen-sors for human health monitoring[J]. Sensors and Actuators A: Physical, 2022, 345: 113821. doi: 10.1016/j.sna.2022.113821
    [9] WANG J, LI L, LIU H, et al. Screen-printed highly sensitive and anisotropic strain sensors with asymmetrical inner concave honeycomb cross-conducting structure for health monitoring of medical electrophysiological signals[J]. IEEE Sensors Journal, 2023, 23(21): 25732-25748. doi: 10.1109/JSEN.2023.3303014
    [10] PENG Q, CHEN J, WANG T, et al. Recent advances in designing conductive hydr-ogels for flexible electronics[J]. InfoMat, 2020, 2(5): 843-865. doi: 10.1002/inf2.12113
    [11] KILICARSLAN B, BOZYEL I, GOKCE-N D, et al. Sustainable macromolecular materials in flexible electronics[J]. Ma-cromolecular Materials and Engineering, 2022, 307(6): 2100978. doi: 10.1002/mame.202100978
    [12] 苏传丽. 纺织基柔性超级电容器的设计与性能研究[D]. 东华大学, 2023.

    SU Chuanli. Design and performance research of textile-based flexible super-capacitors[D]. Donghua University, 2023(in chinese).
    [13] 聂文琪, 孙江东, 许帅, 等. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(7): 200-206+216.

    NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Preparation and propreties of ploy-pyrrole yarn strain sensors[J]. Journal of Textile Research, 2022, 43(7): 200-206+216(in chinese).
    [14] 杜鲜晶. 纱线状导电聚合物全固态超级电容器构筑及其可穿戴应用研究[D]. 青岛大学, 2021.

    DU Xianjing. Wearable application and construction of yarn-shaped all-solid supercapacitor based on conducting polymer[D]. Qingdao Univeisity, 2021(in chinese).
    [15] ALTIN Y, CELIK Bedeloglu A. Flexible carbon nanofiber yarn electrodes for self-standing fiber supercapacitors[J]. Journal of Industrial Textiles, 2022, 51(3_suppl): 4254S-4267S. doi: 10.1177/15280837221094062
    [16] KEUM K, KIM J W, HONG S Y, et al. Flexible/stretchable supercapacitors with novel functionality for wearable electro-nics[J]. Advanced Materials, 2020, 32(51): 2002180. doi: 10.1002/adma.202002180
    [17] YU R, WANG C, DU X, et al. In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors[J]. National Science Review, 2024, 11(6): nwae158. doi: 10.1093/nsr/nwae158
    [18] HUANG Q, JIANG Y, DUAN Z, et al. Ion gradient induced self-powered flexible strain sensor[J]. Nano Energy, 2024, 126: 109689. doi: 10.1016/j.nanoen.2024.109689
    [19] HE J, LI Y, YANG F, et al. Waterproof, stretchable and wearable corrugated conductive carbon fiber strain sensors for underwater respiration monitoring and swimming instruction[J]. Applied Materials Today, 2024, 38: 102165. doi: 10.1016/j.apmt.2024.102165
    [20] CUTHBERT T J, HANNIGAN B C, ROBERJOT P, et al. HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical Limit[J]. Advanced Materials, 2023, 35(10): 2209321. doi: 10.1002/adma.202209321
    [21] ZHANG Z, LIU S, WU M, et al. Shape-adaptable and wearable strain sensor based on braided auxetic yarns for monitoring large human motions[J]. Applied Materials Today, 2023, 35: 101996. doi: 10.1016/j.apmt.2023.101996
    [22] FENG Z, HE Q, WANG X, et al. Waterproof iontronic yarn for highly sensitive biomechanical strain monito-ring in wearable electronics[J]. Advanced Fiber Materials, 2024, 6(3): 925-935. doi: 10.1007/s42765-024-00381-0
    [23] ZHANG Y-X, LI Y-D, DU A-K, et al. Layer-by-layer assembly of chitosan and carbon nanotube on cotton fabric for strain and temperature sensing[J]. Journal of Mater-ials Science & Technology, 2024, 173: 114-120.
    [24] ZHANG P, WANG T, ZHANG J, et al. Preparation and application of fabric-based interlocking microstructured flex-ible piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2023, 363: 114740. doi: 10.1016/j.sna.2023.114740
    [25] BAI Y, YIN L, HOU C, et al. Response regulation for epidermal fabric strain sensors via mechanical strategy[J]. Ad-vanced Functional Materials, 2023, 33(31): 2214119. doi: 10.1002/adfm.202214119
    [26] ZHANG M, FENG P, LIAN X, et al. Design of MWCNTs and rGO co-decorated elastic core-spun yarn towards multifunctional flexible strain sensor with low detection limit and wide working range[J]. Journal of Applied Polymer Science, 2023, 140(33): e54288. doi: 10.1002/app.54288
    [27] 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883.

    HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors[J]. Chemical Industry and Engineering Pro-gress, 2023, 42(2): 872-883(in chinese).
    [28] DONG Y, XU D, YU H-Y, et al. Highly sensitive, scrub-resistant, robust breath-able wearable silk yarn sensors via inter-facial multiple covalent reactions for health management[J]. Nano Energy, 2023, 115: 108723. doi: 10.1016/j.nanoen.2023.108723
    [29] WU J, JIAO W, GUO Y, et al. Recent progress on yarn-based electronics: from material and device design to multi-functional applications[J]. Advanced Electronic Materials, 2023, 9(8): 2300219. doi: 10.1002/aelm.202300219
    [30] 吴焕东, 肖书平, 徐百平, 等. 熔融混炼制备柔性TPU/rGO介电层及其压力传感性能[J]. 工程塑料应用, 2023, 51(5): 8-13. doi: 10.3969/j.issn.1001-3539.2023.05.002

    WU Huandong, XIAO Shuping, XU Baiping, et al. Fabrication of flexible TPU/rGO dielectric layer via Melt-mixing and its pressure sensing performance[J]. Engineering Plastics Application, 2023, 51(5): 8-13(in chinese). doi: 10.3969/j.issn.1001-3539.2023.05.002
    [31] FORNES T D, BAUR J W, SABBA Y, et al. Morphology and properties of melt-spun polycarbonate fibers containing single and multiwall carbon nanotubes[J]. Polymer, 2006, 47(5): 1704-1714. doi: 10.1016/j.polymer.2006.01.003
    [32] BAUTISTA-QUIJANO J R, POTSCHKE P, BRUNIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016, 82: 181-189. doi: 10.1016/j.polymer.2015.11.030
    [33] LIN J-H, LIN Z-I, PAN Y-J, et al. Manufacturing techniques and property evaluations of conductive composite yarns coated with polypropylene and multiwalled carbon nanotubes[J]. Compo-sites Part A: Applied Science and Manufacturing, 2016, 84: 354-363. doi: 10.1016/j.compositesa.2016.02.004
    [34] XIANG D, LIU L, XU F, et al. Highly sensitive flexible strain sensor based on a double-percolation structured elastic fiber of carbon nanotube (CNT)/styrene butadiene styrene (SBS) @ thermoplastic polyurethane (TPU) for human motion and tactile recognition[J]. Applied Composite Materials, 2023, 30(1): 307-322. doi: 10.1007/s10443-022-10084-7
    [35] 邢任权, 闫静, 杨光, 等. 纤维/纱线柔性电阻式应变传感器的研究进展[J]. 产业用纺织品, 2022, 40(1): 1-7. doi: 10.3969/j.issn.1004-7093.2022.01.001

    XING Renquan, YAN Jing, YANG Guang, et al. Reanch progress of fiber/yarn flexible resistive strain sensors[J]. Techni-cal Textiles, 2022, 40(1): 1-7(in chinese). doi: 10.3969/j.issn.1004-7093.2022.01.001
    [36] PARK G, JUNG Y, LEE G-W, et al. Carbon nanotube/poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning[J]. Fibers and Polymers, 2012, 13(7): 874-879. doi: 10.1007/s12221-012-0874-5
    [37] CHENG H, ZUO T, CHEN Y, et al. High sensitive, stretchable and weavable fiber-based PVA/WPU/MXene materials prepa-red by wet spinning for strain sensors[J]. Journal of Materials Science, 2023, 58(34): 13875-13887. doi: 10.1007/s10853-023-08887-5
    [38] SHENG N, JI P, ZHANG M, et al. High sensitivity polyurethane-based fiber strain sensor with porous structure via incorporation of bacterial cellulose nanofibers[J]. Advanced Electronic Materials, 2021, 7(4): 2001235. doi: 10.1002/aelm.202001235
    [39] LIU W, XUE C, LONG X, et al. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning[J]. Journal of Alloys and Compounds, 2023, 948: 169641. doi: 10.1016/j.jallcom.2023.169641
    [40] WU Y, YAN T, ZHANG K, et al. A Hollow core-sheath composite fiber based on polyaniline/polyurethane: preparation, properties, and multi-model strain sensing performance[J]. Advanced Materials Te-chnologies, 2023, 8(1): 2200777. doi: 10.1002/admt.202200777
    [41] LIU S, ZHANG W, HE J, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspec-tives[J]. Advanced Fiber Materials, 2023.
    [42] QU X, WU Y, JI P, et al. Crack-based core-sheath fiber strain sensors with an ultra-low detection limit and an ultrawide working range[J]. ACS Applied Mater-ials & Interfaces, 2022, 14(25): 29167-29175.
    [43] 谢金林, 张京, 郭宇星, 等. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, : 1–14.

    XIE Jinlin, ZHANG Jing, GUO Yuxing, et al. Application progress of conducetive fibers in the applicationofnew txtiles[J]. Advanced Textile Technology, 2023, 31(6): 241-254(in chinese).
    [44] 齐琨, 宋玉堂, 苏宇, 等. 石墨烯/微球导电纳米纤维传感纱线的制备及性能[J]. 印染, 2023, 49(10): 6-11.

    QI Kun, SONG Yutang, SU Yu, et al. Preparation and properties of graphene/-microsphere conductive nanofiber sensing yarn[J]. Dyeing & Finishing, 2023, 49(10): 6-11(in chinese).
    [45] NIE H, CHEN Z, TANG H, et al. Strain sensor based on polyurethane/carbon nanotube elastic conductive spiral yarn with high strain range and sensitivity[J]. Polymer Composites, 2024: pc. 28144.
    [46] AHMED S, NAUMAN S, KHAN Z M. Electrospun nanofibrous yarn based pie-zoresistive flexible strain sensor for hu-man motion detection and speech recog-nition[J]. Journal of Thermoplastic Com-posite Materials, 2023, 36(6): 2459-2481. doi: 10.1177/08927057221095853
    [47] 王慈. 微纳米纤维包芯纱制备及其织物压电传感研究[D]. 东华大学, 2023.

    WANG Ci. Preparation and properties of piezoelectric micro-nanofibers corespun yarn and its fabric sensor[D]. Donghua University, 2023(in chinese).
    [48] 吴萌萌. 静电纺取向纳米纤维包芯纱的制备及其压电性能研究[D]. 天津工业大学, 2021.

    WU Mengmeng. Preparation of electro-spinning oriented nanofiber corespun yarn and its piezoelectric properties[D]. Tian-gong University, 2021(in chinese).
    [49] TANG J, WU Y, MA S, et al. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials[J]. iScience, 2022, 25(10): 105162. doi: 10.1016/j.isci.2022.105162
    [50] 曾玮宸. 基于弹性导电纱线的可穿戴应变传感器的开发研究[D]. 上海工程技术大学, 2021.

    ZENG Yichen. Development and reserch of wearable strain sensor based on elastic conductive yarn[D]. Shanghai University Of Engineering Science, 2021(in chinese).
    [51] UNO M O, OMORI M, MORITA S, et al. Moisture-insensitive force sensor yarns and fabrics to monitor biological mo-tion[J]. Advanced Materials Technolo-gies, 2023: 2301124.
    [52] HWANG T-Y, CHOI Y, SONG Y, et al. A noble gas sensor platform: linear dense assemblies of singlewalled carbon nano-tubes (LACNTs) in a multilayered ceram-ic/metal electrode system (MLES)[J]. Journal of Materials Chemistry C, 2018, 6(5): 972-979. doi: 10.1039/C7TC03576D
    [53] YAN T, WU Y, TANG J, et al. Highly sensitive strain sensor with wide strain range fabricated using carbonized natural wrapping yarns[J]. Materials Research Bulletin, 2021, 143: 111452. doi: 10.1016/j.materresbull.2021.111452
    [54] ZOU S, LI D, HE C, et al. Scalable Fabrication of an MXene/cotton/spandex yarn for intelligent wearable applica-tions[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10994-11003.
    [55] DOU L, ZHENG X, YUAN M, et al. Hierarchical and coaxial yarn with com-bined conductance stability and sensing capability for wearable electronics[J]. Applied Materials Today, 2022, 29: 101695. doi: 10.1016/j.apmt.2022.101695
    [56] QI K, WANG H, YOU X, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103. doi: 10.1016/j.jcis.2019.11.059
    [57] LI C, MU J, SONG Y, et al. Highly aligned cellulose/polypyrrole composite nano-fibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9820-9829.
    [58] ZHAN Z, YUAN Y, ZHANG Y, et al. Stretchable and highly sensitive flexible strain sensor based on a three-layer core-shell structure of polydopamine/polypyr-role@natural rubber for human activity monitoring[J]. Advanced Engineering Materials, 2024: 2301952.
    [59] SOE H M, ABD Manaf A, MATSUDA A, et al. Performance of a silver nanopartic-les-based polydimethylsiloxane compo-site strain sensor produced using different fabrication methods[J]. Sensors and Act-uators A: Physical, 2021, 329: 112793. doi: 10.1016/j.sna.2021.112793
    [60] ZHOU B, LI C, LIU Z, et al. A highly sensitive and flexible strain sensor based on dopamine-modified electrospun sty-rene-ethylene-butylene-styrene block copolymer yarns and multi walled carbon nanotubes[J]. Polymers, 2022, 14(15): 3030. doi: 10.3390/polym14153030
    [61] SHEN T, LIU S, YUE X, et al. High-performance fibrous strain sensor with synergistic sensing layer for human motion recognition and robot control[J]. Advanced Composites and Hybrid Mater-ials, 2023, 6(4): 127. doi: 10.1007/s42114-023-00701-9
    [62] TANG J, WU Y, MA S, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineer-ing, 2022, 232: 109605. doi: 10.1016/j.compositesb.2021.109605
    [63] 蔡明坤. 碳纳米管/水性聚氨酯涂层导电纱线的制备及其性能和应用研究[D]. 东华大学, 2023. -sity, 2023(in chinese).

    CAI Mingkun. Preparation of carbon nanotube/waterborne polyurethane coated conductive yarn and its performance and application research[D]. Donghua Univer
    [64] 纪辉. 纱线应力传感器的制备与性能研究[D]. 武汉纺织大学, 2020.

    JI Hui. Preparation and properties of wearable strain fabric sensors[D]. Wuhan Textile University, 2020(in chinese).
    [65] 郑贤宏, 胡侨乐, 聂文琪, 等. 高弹性MXene/TPU纳米纤维纱线的制备及其应变传感性能[J]. 精细化工, 2022, 39(1): 80-85.

    ZHENG Xxianhong, HU Qiaole, NIE Wenqi, et al. Preparation and strain sens-ing performance of highly stretchable MXene/TPU nanofiber yarn[J]. FINE CHEMICALS, 2022, 39(1): 80-85(in chinese).
    [66] GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nano-fibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14(3): 3442-3450. doi: 10.1021/acsnano.9b09533
    [67] LIAO X, WANG W, WANG L, et al. Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2431-2440.
    [68] ZHANG M, FENG P, LIAN X, et al. Design of MWCNTs and rGO co-decorated elastic core-spun yarn towards multifunctional flexible strain sensor with low detection limit and wide working range[J]. Journal of Applied Polymer Science, 2023, 140(33): e54288. doi: 10.1002/app.54288
    [69] ISLAM G M N, COLLIE S, QASIM M, et al. Highly stretchable and flexible melt spun thermoplastic conductive yarns for smart textiles[J]. Nanomaterials, 2020, 10(12): 2324. doi: 10.3390/nano10122324
    [70] TANG X, CHENG D, RAN J, et al. Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor[J]. Nanotechnology Reviews, 2021, 10(1): 221-236. doi: 10.1515/ntrev-2021-0021
    [71] HUANG F, HU J, YAN X. A wide-linear-range and low-hysteresis resistive strain sensor made of double-threaded conducti-ve yarn for human movement detection[J]. Journal of Materials Science & Technolo-gy, 2024, 172: 202-212.
    [72] DAI H, ZHOU X, GU Z, et al. Highly sensitive and stretchable strain sensor based on modified carboxylic carbon nanotubes/chitosan/polyurethane yarn[J]. The Journal of The Textile Institute, 2023: 1–14.
    [73] HUANG F, HU J, YAN X, et al. High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves[J]. Journal of Industrial Textiles, 2022, 51(3_suppl): 4554S-4570S. doi: 10.1177/15280837221084369
    [74] AI J, WANG Q, LI Z, et al. Highly stretchable and fluorescent visualizable thermoplastic polyurethane/tetrapheny-lethylene plied yarn strain sensor with heterogeneous and cracked structure for human health monitoring[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1428-1438.
    [75] DAI Y, QI K, OU K, et al. Ag NW-embedded coaxial nanofiber-coated yarns with high stretchability and sensitivity for wearable multi-Sensing textiles[J]. ACS Applied Materials & Inter-faces, 2023, 15(8): 11244-11258.
    [76] ZHOU Y, LIAO H, QI Q, et al. Polypyrrole-coated graphene oxide-doped polyacrylonitrile nanofibers for stretchab-le strain sensors[J]. ACS Applied Nano Materials, 2022, 5(6): 8224-8231. doi: 10.1021/acsanm.2c01298
    [77] ZHANG S, XU J. PDMS/Ag/Mxene/-polyurethane conductive yarn as a highly reliable and stretchable strain sensor for human motion monitoring[J]. Polymers, 2022, 14(24): 5401. doi: 10.3390/polym14245401
    [78] GAO Y, SUN J, TIAN X, et al. Ultra-highly sensitive graphene/polyaniline@-epoxidized natural rubber strain sensors for human motion monitoring[J]. Sensors and Actuators A: Physical, 2023, 358: 114421. doi: 10.1016/j.sna.2023.114421
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-06-24
  • 录用日期:  2024-06-28
  • 网络出版日期:  2024-07-13

目录

    /

    返回文章
    返回