留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚己内酯-明胶-生物玻璃基不对称润湿性三明治结构复合膜的制备及其性能

胡蝶 刘涛 高付蕾 丁新波

胡蝶, 刘涛, 高付蕾, 等. 聚己内酯-明胶-生物玻璃基不对称润湿性三明治结构复合膜的制备及其性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 胡蝶, 刘涛, 高付蕾, 等. 聚己内酯-明胶-生物玻璃基不对称润湿性三明治结构复合膜的制备及其性能[J]. 复合材料学报, 2024, 42(0): 1-12.
HU Die, LIU Tao, GAO Fulei, et al. Preparation and properties of polycaprolactone-gelatin-bioglass-based asymmetrically infiltrated sandwich-structured composite membranes[J]. Acta Materiae Compositae Sinica.
Citation: HU Die, LIU Tao, GAO Fulei, et al. Preparation and properties of polycaprolactone-gelatin-bioglass-based asymmetrically infiltrated sandwich-structured composite membranes[J]. Acta Materiae Compositae Sinica.

聚己内酯-明胶-生物玻璃基不对称润湿性三明治结构复合膜的制备及其性能

基金项目: 国家自然科学基金 (31900964)
详细信息
    通讯作者:

    丁新波,博士,副教授,硕士生导师,研究方向为纺织复合材料 E-mail: dxblt@zstu.edu.cn

  • 中图分类号: TB332

Preparation and properties of polycaprolactone-gelatin-bioglass-based asymmetrically infiltrated sandwich-structured composite membranes

Funds: National Natural Science Foundation of China (31900964)
  • 摘要: 伤口愈合时敷料不仅需要提供止血作用,还需吸收过多的渗出物为伤口提供一个相对湿润又不过于干燥的环境。因此,本研究利用静电纺丝技术设计了一种三明治结构且具有不对称润湿性的Janus复合膜,外层为聚己内酯(PCL)纳米纤维膜,内层为明胶(Gel)和PCL混合的纳米纤维膜(PCL/Gel),而负载无机生物玻璃(BG)的纳米纤维膜(PCL/Gel-BG)作为中间层。对Janus复合膜形貌、结构以及力学、溶胀率、止血等性能进行了系统研究与探讨分析。结果表明:Janus复合膜力学性能、孔隙率等均符合医用敷料要求;此外,其溶胀率可高达990%能吸收大量渗出液,同时外层可以抗水和血液的渗透能防止伤口过度脱水;且在体外的血液吸收率、凝血指数、凝血时间测试中还表现出比传统医用纱布更优的止血能力,有望作为新型创面敷料应用于伤口愈合领域。

     

  • 图  1  生物玻璃纳米颗粒的形貌(a)、直径分布(b)和EDS-mapping元素分布(c-e)图

    Figure  1.  Morphology (a), diameter distribution (b) and EDS-mapping (c-e) of bioglass nanoparticles

    图  2  不同纳米纤维膜SEM 图像(a-b)和直径分布图(c)

    Figure  2.  SEM images (a-b) and diameter distribution(c) of different fibrous membranes

    图  3  Janus2复合膜截面SEM图像(a); 不同纳米纤维膜红外图(b)和EDS-mapping元素分布图(c)

    Figure  3.  SEM image of cross-section of Janus2 composite membrane (a); Infrared spectra (b) and EDS mapping distribution diagram of elements (c) of different fibrous membranes

    图  4  单层纤维膜及Janus复合膜的力学性能

    Figure  4.  Mechanical properties of monolayer fiber membrane and Janus composite membrane

    图  5  单层纤维膜及Janus复合膜的孔隙率

    Figure  5.  Porosity of monolayer fibre membranes and Janus composite membranes

    图  6  不同纳米纤维膜润湿性(a); Janus2复合膜的血液渗透性(b); Janus复合膜疏水面(c)和亲水面(d)水接触角以及渗透性

    Figure  6.  Wettability of different nanofiber membranes (a); Blood permeability of Janus2 composite membrane (b); Hydrophobic (c) and hydrophilic (d) water contact Angle and permeability behavior of different Janus composite membranes

    图  7  单层纤维膜及Janus复合膜的溶胀率(a); 保湿性(b)

    Figure  7.  Swelling ratio (a); Moisture retention (b) of monolayer fibre membrane and Janus composite membrane

    图  8  纱布、不同单层纤维膜及Janus复合膜血液吸收率(a); 体外凝血时间(b)

    Figure  8.  Blood absorption ratio(a) and in vitro clotting time(b) of gauze, different monolayer fibre membranes and Janus composite membrane

    图  9  纱布、不同单层纤维膜及Janus复合膜体外凝血指数(a); 血细胞黏附(b)

    Figure  9.  In vitro coagulation index of gauze, different monolayer fibre membranes and Janus composite membranes (a); haemocyte adhesion (b)

    表  1  不同Janus复合膜的组成

    Table  1.   Composition of different Janus composite membranes

    Sample Outer layer Inter layer Inner layer
    Janus1 PCL PCL/Gel-1G PCL/Gel
    Janus2 PCL PCL/Gel-5BG PCL/Gel
    Janus3 PCL PCL/Gel-10BG PCL/Gel
    Notes: PCL—Polycaprolactone; Gel—Gelatin
    下载: 导出CSV

    表  2  不同纳米纤维膜的静电纺丝条件

    Table  2.   Electrostatic spinning conditions for different nanofibre membranes

    Solution Needle-Collector
    Distance/cm
    Voltage/
    kV
    Flow Rate/
    (mL·h−1)
    PCL 12 20 3.5
    PCL/Gel 15 15 0.4
    PCL/Gel-1BG 15 15 0.4
    PCL/Gel-5BG 15 15 0.4
    PCL/Gel-10BG 15 15 0.4
    下载: 导出CSV
  • [1] CHAMBERS E S, VUKMANOVIC-STEJIC M. Skin barrier immunity and ageing[J]. Immunology, 2020, 160(2): 116-125. doi: 10.1111/imm.13152
    [2] 张天蔚, 刘方, 田卫群. 促皮肤创面愈合新型敷料研究现状与进展[J]. 生物医学工程学杂志, 2019, 36(6): 1055-1059+1068. doi: 10.7507/1001-5515.201811023

    ZHANG T W, LIU F, TIAN W Q. Research Status and Progress on New Dressings for Promoting Skin Wound Healing[J]. Journal of Biomedical Engineering, 2019, 36(6): 1055-1059+1068(in Chinese). doi: 10.7507/1001-5515.201811023
    [3] KIM H J, PARK J, KIM S K, et al. Autophagy: Guardian of Skin Barrier[J]. Biomedicines, 2022, 10(8): 1817. doi: 10.3390/biomedicines10081817
    [4] CIOCE A, CAVANI A, CATTANI C, et al. Role of the Skin Immune System in Wound Healing[J]. Cells, 2024, 13(7): 624. doi: 10.3390/cells13070624
    [5] PATRICK A L, CHEN-CHARPENTIER B. Building erudition in the wound healing process: an inflammation model analysis[J]. International Journal of Computer Mathematics, 2024: 1–20.
    [6] LAN J Z, SHI L X, XIAO W Y, et al. An enhanced fractal self-pumping dressing with continuous drainage for accelerated burn wound healing[J]. Frontiers in Bioengineering and Biotechnology, 2023, (11): 1188782.
    [7] SAITO1 C T M H, BERNABÉ2 P F E, OKAMOTO3 T, et al. Evaluation of tissue response to periodontal dressings: histological study in tooth sockets of rats[J]. Journal of Applied Oral Science, 2008, 16(3): 219-25. doi: 10.1590/S1678-77572008000300011
    [8] NYGREN E, GEFEN A. Little news is good news? What is missing in the recently published EN 13726: 2023 test standard for wound dressings[J]. International Wound Journal, 2024, 3(21): e14787.
    [9] BOATENG J, CATANZANO O. Advanced Therapeutic Dressings for Effective Wound Healing—A Review[J]. Journal of Pharmaceutical Sciences, 2015, 104(11): 3653-3680. doi: 10.1002/jps.24610
    [10] SHEOKAND B, VATS M, KUMAR A, et al. Natural polymers used in the dressing materials for wound healing: Past, present and future[J]. Journal of Applied Polymer Science, 2023, 61(14): 1389-1414. doi: 10.1002/pol.20220734
    [11] Chen Fan, Qing Xu, Ruiqi Hao, et. al. Multifunctional wound dressings based on silicate bioactive materials[J]. Biomaterials, 2022, 287.
    [12] BOATENG J, CATANZANO O. Advanced Therapeutic Dressings for Effective Wound Healing—A Review[J]. Journal of Pharmaceutical Sciences, 2015, 104(11): 3653-3680. doi: 10.1002/jps.24610
    [13] LI X N, WANG X N, ZHENG L X, et al. Smart Janus textiles for biofluid management in wearable applications[J]. IScience, 2024, 27(3): 2589-0042.
    [14] HOU L, LIU J, LI D, et al. Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications[J]. Chemical Research in Chinese Universities, 2021, 37: 337-354. doi: 10.1007/s40242-021-0010-4
    [15] 刘思彤, 金丹, 孙东明, 等. 静电纺丝制备Janus微纳米纤维研究进展[J]. 复合材料学报, 2024, 41(5): 2321-2332.

    LIU Sitong, JIN Dan, SUN Dongming, et al. Advances in the preparation of Janus micro and nanofibres by electrostatic spinning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2321-2332(in Chinese).
    [16] ZHANG Z, LI W, LIU Y, et al. Design of a biofluid-absorbing bioactive sandwich-structured Zn–Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing[J]. Bioactive materials, 2021, 6(7): 1910-1920. doi: 10.1016/j.bioactmat.2020.12.006
    [17] ZHANG M, CHU L, CHEN J, et al. Asymmetric wettability fibrous membranes: Preparation and biologic applications[J]. Composites Part B: Engineering, 2024, 269: 1359-8368.
    [18] Woodruff M A, Hutmacher D H. The return of a forgotten polymer—Polycaprolactone in the 21st century[J]. Progress in Polymer Science, 2010, 35(10): 1217-1256. doi: 10.1016/j.progpolymsci.2010.04.002
    [19] Nair L S, Laurencin C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science, 2007, 32(8-9): 762-798. doi: 10.1016/j.progpolymsci.2007.05.017
    [20] SASMAL P K, GANGULY S. Polymer in hemostasis and follow-up wound healing[J]. Applied Polymer, 2023, 140(9).
    [21] DEMIR A U, AHI Z B, SANCAKLI A, et al. A comparative study of gelatin-based nanofiber and sponge wound dressings[J]. Journal of Bioactive and Compatible Polymers, 2024, 39(3): 145-161 doi: 10.1177/08839115241241297
    [22] ZAHID S, SHAH A T, JAMAL A, et al. Biologcal behavior of bioactive glasses and their compsites[J]. RSC Advances, 2016, 6(74): 70197-70214. doi: 10.1039/C6RA07819B
    [23] OSTOMEL T A, SHI Q, STUCKY G D. Oxide Hemostatic Activity[J]. Journal of the Am-erican Chemical Society, 2006, 128(26): 8384-8385. doi: 10.1021/ja061717a
    [24] BOKOV D, JALIL A T, CHUPRADIT S, et al. Nanomaterial by Sol-Gel Method: Synthesis and Application[J]. Advances in Materials Science and Engineering, 2021.
    [25] CORREIA T R, ANTUNES B P, CASTILHO P H, et al. A bi-layer electrospun nanofiber membrane for plasmid DNA recovery from fermentation broths[J]. Separation and Purification Technology, 2013, 112: 20-25. doi: 10.1016/j.seppur.2013.03.049
    [26] LIU J, XIE X, WANG T, et al. Promotion of Wound Healing Using Nanoporous Silk Fibroin Sponges[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 12696-12707.
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-07-30
  • 录用日期:  2024-08-03
  • 网络出版日期:  2024-08-27

目录

    /

    返回文章
    返回