Preparation and Properties of High Emissivity Coatings on the Surface of High Thermal Conductivity Cabon/carbon Composites
-
摘要: 高导热碳/碳(HTC-C/C)复合材料表面的红外发射率较低,导致其辐射散热能力较差,为进一步提高其热管控能力,需要在其表面涂覆高发射率涂层。通过使用压缩空气喷涂法在HTC-C/C复合材料表面制备了兼具高红外辐射和抗热震性能的碳纳米管(CNTs)/炭黑(CB)复合涂层,在沉积一定量的热解碳(PyC)后,使涂层在保持高红外发射率的同时获得了更强的界面结合性能。探究了热震和高温热处理对高发射率涂层组织和性能的影响。结果表明,当CNTs与CB质量比达到最优比例时,制备得到的涂层发射率达0.94以上,经60次300℃↔−196℃热循环的抗热震性能测试后未发生开裂和剥落现象,具有良好的热稳定性。涂层中的纳米碳材料在热处理后微观有序程度发生改变,导致涂层发射率呈现波长依赖性,但是由于各个波段的协同作用,全测试波段(1-22 μm)发射率波动较小。Abstract: The infrared emissivity of high thermal conductivity carbon/carbon (HTC-C/C) composite surface is low, resulting in poor radiative heat dissipation ability. In order to further improve its thermal control ability, it is necessary to coat its surface with high emissivity coating. Carbon nanotube (CNTs)/carbon black (CB) composite coating with high infrared radiation and thermal shock resistance was prepared on the surface of HTC-C/C composite material by compressed air spraying method. After a certain amount of pyrogenic carbon (PyC) was deposited, the coating obtained stronger interface bonding performance while maintaining high infrared emissivity. The effects of thermal shock and high temperature heat treatment on the microstructure and properties of high emissivity coatings were investigated. The results showed that When the mass ratio of CNTs to CB reached the optimal ratio, the emissivity of the prepared coating reached more than 0.94, and no cracking and spalling occurred after 60 thermal shock resistance tests at 300℃↔−196℃, indicating good thermal stability. After heat treatment, the microstructure order of the nano-carbon materials in the coating changes, resulting in wavelength dependence of the coating emissivity. However, due to the synergistic effect of each band, the emissivity of the whole test band (1-22 μm) fluctuates little.
-
表 1 复合涂层的主要组分质量比
Table 1. Mass ratios of main components of composite coatings
Mass Ratio Isopropanol
(IPA)Carbon nanotube
(CNTs)Carbon black (CB) Sodium dodecyl
benzene sulfonate (SDBS)phenolic resin (PF) Samples CNTs/CB-1 1000 4 16 3 2 CNTs/CB-2 1000 8 12 3 2 CNTs/CB-3 1000 12 8 3 2 CNTs/CB-4 1000 16 4 3 2 Notes: The above ratio is the mass ratio of each component in the slurry used for spraying. Only the proportion of CNTs and CB is different, and other conditions are the same. -
[1] CHAUHAN S N M D V, India I. Synthesis of high emissivity coating for ceramic substrate towards energy conservation[J]. International Journal of Scientific Engineering & Technology, 2012, 1(3): 383-394. [2] YONGBIN W FEI H, CHAO S , et al. Synthesis of SiC Coatings and Evaluation of Their Emissivity[J]. Rare Metal Materials & Engineering, 2012, 41(11): 275-277. [3] BRANDT R , BIRD C , NEUER G . Emissivity reference paints for high temperature applications[J]. Measurement, 2008, 41(7): 731-736. [4] COCKERAM B V , HOLLENBECK J L . The spectral emittance and long-term thermal stability of coatings for thermophotovoltaic (TPV) radiator applications[J]. Surface & Coatings Technology, 2001, 157(2-3): 274-281. [5] 吴虎基, 廖英强, 郑金煌. 二维高导热碳/碳复合材料力学性能影响因素的研究现状[J]. 炭素, 2023, (1): 24-29.WU Huji, LIAO Yingqiang, ZHENG Jinhuang. Research status of influencing factors on mechanical properties of two-dimensional carbon/carbon composites[J]. Carbon, 2023, (1): 24-29(in Chinese). [6] 杨强, 刘洪新, 何端鹏等. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 216-223.YANG Qiang, LIU Hongxin, HE Duanpeng, etal. Application status and prospect of high thermal conductivity pitch-based carbon fiber composites in spacecraft[J]. Materials Review, 2024, 38(1): 216-223(in Chinese). [7] 姚彧敏, 李红, 刘正启等. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.YAO Yumin, LI Hong, LIU Zhengqi etal. Microstructure and thermal conductivity of carbon/carbon composites with high thermal conductivity[J]. Journal of Materials Engineering, 2020, 48(11): 155-161(in Chinese). [8] 李秀丽. NiO-Cr2O3-SiC高发射率涂层的制备及性能优化[D]. 哈尔滨工业大学, 2014: 103-104.LI Xiuli. Preparation and performance optimization of NiO-Cr2O3-SiC high emissivity coating [D]. Harbin Institute of Technology, 2014: 103-104(in Chinese). [9] 任首龙, 唐波, 戴远哲等. 高发射率陶瓷材料研究进展[J]. 化学通报, 2020, 83(12): 1113-1121.REN Shulong, TANG Bo, DAI Yuanzhe, etal. Research progress of ceramic materials with high emissivity[J]. Chinese Chemical Bulletin, 20, 83(12): 1113-1121(in Chinese). [10] 徐冰洁, 陈琦, 刘鹏飞等. 高发射率红外辐射材料的研究进展[J]. 功能材料, 2018, 49(12): 12062-12070.XU Bingjie, CHEN Qi, LIU Pengfei et al. Research progress of infrared materials with high emissivity[J]. Journal of Functional Materials, 2018, 49(12): 12062-12070(in Chinese). [11] 陈武. 高温高发射率红外辐射涂层的制备与研究[D]. 武汉理工大学, 2008: 33-79.CHEN Wu. Preparation and research of infrared radiation coating with high temperature and high emissivity [D]. Wuhan University of Technology, 2008: 33-79(in Chinese). [12] 隋超. SiC高发射率涂层的制备及性能表征[D]. 哈尔滨工业大学, 2011: 45-46.SUI Chao. Preparation and characterization of SiC high emissivity coating [D]. Harbin Institute of Technology, 2011: 45-46(in Chinese). [13] KRIVCHENKO V A, EVLASHIN S A, MIRONOVICH K V, etal. Carbon nanowalls: The next step for physical manifestation of the black body coating[J]. Scientific Reports, 2013, 3: 3328-3334. doi: 10.1038/srep03328 [14] LEI L, YAO Z, ZHOU J, etal. 3D printing ofcarbon black/polypropylene composites with excellent microwave absorption performance[J]. Composites Science and Technology, 2020, 200: 108479. doi: 10.1016/j.compscitech.2020.108479 [15] 武玉琳, 丁彤. 碳纳米管增强陶瓷基复合材料的研究进展[J]. 沧州师范学院学报, 2024, 40(1): 10-14+26.WU Yulin, DING Tong. Carbon nanotubes research progress of reinforced ceramic matrix composites[J]. Journal of cangzhou normal university, 2024, 40(1): 10-14+26(in Chinese). [16] 葛冬冬. 多壁碳纳米管增强APA6复合材料的制备及性能研究[D]. 湖南工业大学, 2023.GE Dongdong. Increase APA6 multi-walled carbon nanotubes composite material preparation and properties of research [D]. Hunan university of technology, 2023(in Chinese). [17] 姜代平. 碳纳米管/Al2O3-SiO2气凝胶复合隔热材料的制备和性能研究[D]. 中南大学, 2022.JIANG Daiping. Preparation and properties of carbon nanotubes /Al2O3-SiO2 aerogel composite thermal insulation materials [D]. Central South University, 2022(in Chinese). [18] 赵骁. 碳纳米管掺杂SiO2/SiO2-PbO双层高辐射率涂层的设计与研究[D]. 哈尔滨工业大学, 2011.ZHAO Xiao. Design and study of carbon nanotube-doped SiO2/ SiO2-PBO double-layer high emissivity coating [D]. Harbin Institute of Technology, 2011(in Chinese). [19] KRAUSE B, PÖTSCHKE P, HÄUßLER L. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites[J]. Composites Science and Technology, 2009, 69(10): 1505-1515. doi: 10.1016/j.compscitech.2008.07.007 [20] KASALIWAL G, GÖLDEL A, PÖTSCHKE P. Influence of processing conditions in small-scale melt mixing and compression molding on the resistivity and morphology of polycarbonate–MWNT composites[J]. Journal of applied polymer science, 2009, 112(6): 3494-3509. doi: 10.1002/app.29930 [21] PORTEUS J O. Relation between the height distribution of a rough surface and the reflectance at normal incidence[J]. Journal of the Optical Society of America, 1963, 53(12): 1394-1402. doi: 10.1364/JOSA.53.001394 [22] BENNETT H E, PORTEUS J O. Relation between surface roughness and specular reflectance at normal incidence[J]. Journal of the Optical Society of America, 1961, 51(2): 123-129. doi: 10.1364/JOSA.51.000123 [23] BENNETT H E. Specular reflectance of aluminized ground glass and the height distribution of surface irregularities[J]. Journal of the Optical Society of America, 1963, 53(12): 1389-1394. doi: 10.1364/JOSA.53.001389 [24] 张庆枭. 纳米/超细晶高强钢制备工艺研究及组织性能调控[D]. 武汉科技大学, 2023.ZHANG Qingxiao. Ultrafine nano/crystal high strength steel for technological research and organization performance control [D]. Wuhan university of science and technology, 2023. The (in Chinese). [25] 姜毅. 纳米晶粒304不锈钢的制备及晶粒尺寸效应研究[D]. 中国科学技术大学, 2023.JIANG Yi. The preparation of nanocrystalline 304 stainless steel and grain size effect research [D]. University of science and technology of China, 2023. (in Chinese). [26] 廖宁, 李亚伟, 桑绍柏, 等. 纳米炭黑和鳞片石墨对低碳铝碳材料性能的影响[J]. 耐火材料, 2015, (1): 6-12.LIAO Ning, LI Yawei, SANG Shaobo, et al. Effect of nano-carbon black and flake graphite on properties of low carbon Al carbon materials[J]. Refractory Materials, 2015, (1): 6-12(in Chinese). [27] 黄珂, 杨伏良, 陈力学等. 划痕法测定TiAlN涂层结合强度的研究[J]. 表面技术, 2013, 42(5): 107-111.HUANG Ke, YANG Fuliang, CHEN Lixue, etal. Study on the bonding strength of TiAlN coating by Scratch Method[J]. Surface Technology, 2013, 42(5): 107-111(in Chinese). [28] 李建国, 胡文军. 金刚石涂层基体间结合力的测定[J]. 中国测试, 2012, 38(2): 13-16.LI Jianguo, HU Wenjun. Determination of intermatrix bonding strength of diamond coating[J]. China Test and Measurement, 2012, 38(2): 13-16(in Chinese). [29] ROUZAUD J N, OBERLIN A. Structure, microtexture, and optical properties of anthracene and saccharose-based carbons[J]. Carbon, 1989, 27(4): 517-529. doi: 10.1016/0008-6223(89)90002-X [30] PAWLYTA M, ROUZAUD J N, DUBER S. Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information[J]. Carbon, 2015, 84: 479-490. doi: 10.1016/j.carbon.2014.12.030 [31] 孙佳琳, 邹志云, 刘英莉. 在线拉曼光谱技术的应用综述[J]. 化工自动化及仪表, 2023, 50(3): 280-284.SUN Jialin, ZOU Zhiyun, LIU Yingli. Applications of on-line Raman spectroscopy[J]. Chemical Industry Automation & Instrumentation, 2023, 50(3): 280-284(in Chinese). [32] 徐艳茹. 基于近场拉曼热测量的低维碳材料热物性研究[D]. 武汉大学, 2019.XU Yanru. Thermal properties of low-dimensional carbon materials based on near-field Raman thermal measurement [D]. Wuhan University, 2019(in Chinese). [33] WANG Y Y, NI Z H, SHEN Z X, et al. Interference enhancement of Raman signal of graphene[J]. Applied Physics Letters, 2008, 92(4): 043121. doi: 10.1063/1.2838745 [34] CHOTIKAPANICH D, GRIFFITHS W E. Estimating Lorenz curves using a Dirichlet distribution[J]. Journal of Business & Economic Statistics, 2002, 20(2): 290-295. [35] CASIRAGHI C, PISANA S, NOVOSELOV K S, etal. Raman fingerprint of charged impurities in graphene[J]. Applied physics letters, 2007, 91(23): 233108. doi: 10.1063/1.2818692 [36] 储佩珠. 乙醇浓度拉曼光谱分析方法研究[D]. 桂林电子科技大学, 2023.CHU Pei Zhu. Ethanol concentration in the Raman spectra analysis method research [D]. Guilin university of electronic science and technology, 2023. (in Chinese). [37] 张辉, 汤泽辉, 黄毅涵. 纺织纤维的拉曼光谱分析[J]. 纺织报告, 2023, 42(7): 7-10 .ZHANG Hui, TANG Zehui, HUANG Yihan. Raman spectroscopic analysis of textile fibers[J]. Textile Report, 2023, 42(7): 7-10 (in Chinese). [38] 欧阳德刚, 胡铁山, 罗安智, 等. 高辐射材料辐射机理的研究[J]. 钢铁研究, 2002, 30(1): 40-43.OUYANG Degang, HU Tieshan, LUO Anzhi, etal. Study on radiation mechanism of high radiation materials[J]. Iron and Steel Research, 2002, 30(1): 40-43(in Chinese). [39] 程华金. 多元素掺杂对LaAlO3红外辐射性能的影响[D]. 江西理工大学, 2022.CHENG Huajin. Effect of multi-element doping on infrared radiation properties of LaAlO3 [D]. Jiangxi University of Science and Technology, 2022(in Chinese). [40] 曹伟伟, 朱波, 王成国. 碳纤维微结构与热辐射性能的相关性研究[J]. 材料工程, 2009, (1): 5.CAO Weiwei, ZHU Bo, WANG Chengguo. Study on the correlation between microstructure and thermal radiation properties of carbon fiber[J]. Materials Engineering, 2009, (1): 5(in Chinese).
点击查看大图
计量
- 文章访问数: 53
- HTML全文浏览量: 29
- 被引次数: 0