留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属螯合三维交联结构聚丙烯腈中空纤维膜的制备及其自清洁性能

韩旭 陶云 赵磊 韩昕燃 赵宝宝 王鹏 凤权

韩旭, 陶云, 赵磊, 等. 金属螯合三维交联结构聚丙烯腈中空纤维膜的制备及其自清洁性能[J]. 复合材料学报, 2023, 40(10): 5841-5848. doi: 10.13801/j.cnki.fhclxb.20230207.002
引用本文: 韩旭, 陶云, 赵磊, 等. 金属螯合三维交联结构聚丙烯腈中空纤维膜的制备及其自清洁性能[J]. 复合材料学报, 2023, 40(10): 5841-5848. doi: 10.13801/j.cnki.fhclxb.20230207.002
HAN Xu, TAO Yun, ZHAO Lei, et al. Metal coordinated PAN hollow fiber membranes with triaxial cross-linked structure and its self-cleaning performance[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5841-5848. doi: 10.13801/j.cnki.fhclxb.20230207.002
Citation: HAN Xu, TAO Yun, ZHAO Lei, et al. Metal coordinated PAN hollow fiber membranes with triaxial cross-linked structure and its self-cleaning performance[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5841-5848. doi: 10.13801/j.cnki.fhclxb.20230207.002

金属螯合三维交联结构聚丙烯腈中空纤维膜的制备及其自清洁性能

doi: 10.13801/j.cnki.fhclxb.20230207.002
基金项目: 安徽省重点研究与开发计划项目(2022a05020069);安徽省高校重点实验室2021年度联合开放基金项目(2021AETKL07);安徽工程大学科研启动基金资助项目(2020YQQ013);安徽工程大学校级科研项目(Xjky03201901);安徽省自然科学基金面上项目(2008085ME139);安徽省自然科学基金资助项目(2208085QE139);安徽省科研编制计划项目(2022AH050990)
详细信息
    通讯作者:

    韩旭,博士,讲师,硕士生导师,研究方向为纤维基水净化材料 E-mail: hanxu@ahpu.edu.cn

    凤权,博士,教授,博士生导师,研究方向为膜分离材料及其功能性整理 E-mail: fengquan@ahpu.edu.cn

  • 中图分类号: TQ340.6;X703;TB333

Metal coordinated PAN hollow fiber membranes with triaxial cross-linked structure and its self-cleaning performance

Funds: Key Research and Development Program of Anhui Province (2022a05020069); 2021 Joint Open Fund Project of Anhui University Key Laboratory (2021AETKL07); Research Start-up Fund of Anhui Institute of Technology (2020YQQ013); Anhui Engineering University Scientific Research Project (Xjky03201901); Anhui Provincial Natural Science Foundation Project (2008085ME139); Anhui Provincial Natural Science Foundation Project (2208085QE139); Anhui Provincial Scientific Research Planning Project (2022AH050990)
  • 摘要: 为探究一种具有自清洁性能的三维交联结构中空纤维膜(HFM)材料,采用湿法工艺制备了聚丙烯腈(PAN)基中空纤维膜,经不同反应条件对其进行肟化改性,并与金属离子(Fe3+)进行配位制备金属螯合三维交联结构中空纤维膜。对该中空纤维膜的制备工艺、结构组成、表面形貌、亲疏水性能、膜通量和截留率、自清洁性能等进行了表征与测试。结果表明:聚丙烯腈肟化率会随着改性时间、温度和盐酸羟胺浓度的增加而增加;肟化反应导致聚合物非晶结构增加,有利于小分子向纤维材料内部的吸附;铁离子与偕胺肟化中空纤维膜形成的交联网络结构,虽然使其蕴晶结构、亲水性能和膜通量受到一定程度影响,但使其对牛血清白蛋白(BSA)截留率提升至88%。此外,Fe(III)与H2O2形成的Fenton催化体系赋予中空纤维膜较好的抗污自清洁性能,膜通量恢复率达到84.6 %。

     

  • 图  1  反应条件对AOPAN-中空纤维膜(HFM)改性情况的影响

    Figure  1.  Effect of reaction conditions on AOPAN-hollow fiber membrane (HFM) anmidoximation

    CR—Conversion rate of cyanide group; PAN—Polyacrylonitrile; t—Time; T—Temperature; c—Concentration

    图  2  聚丙烯腈(PAN)-HFM在肟化改性(AOPAN-HFM)和Fe配位反应(FePAN-HFM)前后的FTIR图谱(a)和XRD图谱(b)

    Figure  2.  FTIR spectra (a) and XRD patterns (b) for PAN-HFM, AOPAN-HFM and FePAN-HFM

    图  3  PAN-HFM ((a), (b))、AOPAN-HFM ((c), (d))和FePAN-HFM ((e), (f))的SEM图像及FePAN-HFM的EDS能谱(g)

    Figure  3.  SEM images for PAN-HFM ((a), (b)), AOPAN-HFM ((c), (d)), FePAN-HFM ((e), (f)) and EDS for FePAN-HFM (g)

    图  4  PAN-HFM (a)、AOPAN-HFM (b)、FePAN-HFM (c)的静态接触角

    Figure  4.  Static contact angle for PAN-HFM (a), AOPAN-HFM (b) and FePAN-HFM (c)

    图  5  FePAN-HFM自清洁性能在膜分离过程中的表现:中空纤维膜样品在纯水、牛血清白蛋白(BSA)中的通量变化((a), (b))及其截留率(c)

    Figure  5.  Self-cleaning performance of FePAN-HFM in membrane separation process: Membrane flux variation in pure water, bovine serum albumin (BSA) ((a), (b)) and its retention ratio (c)

    FRR—Flux recovery rate; Rr—Reversible ratio; Rir—Irreversibility rate

    图  6  Fe离子负载量对FePAN-HFM自清洁性能的影响(a)及其动力学分析(b)

    Figure  6.  Effect of different Fe ions loading desage on FePAN-HFM self-cleaning performance (a) and its kinetic study (b)

    D—Degradation rate

    图  7  FePAN-HFM在水净化过程中的自清洁作用原理

    Figure  7.  Mechanism of the self-cleaning performance for FePAN-HFM during the water purification process

  • [1] HE Y Q, SHI J, YANG Q, et al. Co-doped 3D petal-like ZnIn2S4/GaN heterostructures for efficient removal of chlortetracycline residue from real pharmaceutical wastewater[J]. Chemical Engineering Journal,2022,446:137355. doi: 10.1016/j.cej.2022.137355
    [2] NASAR A, MASHKOOR F. Application of polyaniline-based adsorbents for dye removal from water and wastewater—A review[J]. Environmental Science and Pollution Research,2019,26(6):5333-5356. doi: 10.1007/s11356-018-3990-y
    [3] LIM Y J, GOH K, WANG R. The coming of age of water channels for separation membranes: From biological to biomimetic to synthetic[J]. Chemical Society Reviews,2022,51(11):4537-4582. doi: 10.1039/D1CS01061A
    [4] LIN H, WU J, ZHOU F, et al. Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis[J]. Journal of Environmental Sciences,2023,124:570-590. doi: 10.1016/j.jes.2021.11.017
    [5] MANGLA D, ANNU, SHARMA A, et al. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective[J]. Journal of Hazardous Materials,2022,425:127946. doi: 10.1016/j.jhazmat.2021.127946
    [6] 容凡丁. 膜分离技术在生物化工中的应用[J]. 化工管理, 2022(3):73-75.

    RONG Fanding. Application of membrane separation technology in biochemical industry[J]. Chemical Management,2022(3):73-75(in Chinese).
    [7] 穆思图, 樊慧菊, 韩秉均, 等. 中空纤维膜的膜污染过程及数学模型研究进展[J]. 膜科学与技术, 2018, 38(1):114-121.

    MU Situ, FAN Huiju, HAN Bingjun, et al. Review of membrane fouling stages and mathematical models for hollow fiber membrane[J]. Membrane Science and Technology,2018,38(1):114-121(in Chinese).
    [8] 武利顺. 酚酞型聚醚砜对聚偏氟乙烯中空纤维膜结构及性能的影响[J]. 精细化工, 2013, 30(6):661-664.

    WU Lishun. Effect of PES-C on the structure and property of PVDF hollow fiber membrane[J]. Fine Chemicals,2013,30(6):661-664(in Chinese).
    [9] ZHANG L, SHI X X, SUN M, et al. Precisely engineered photoreactive titanium nanoarray coating to mitigate biofouling in ultrafiltration[J]. ACS Applied Materials & Interfaces,2021,13(8):9975-9984.
    [10] 杨洋. 自清洁超滤膜构建、结构调控及分离特性研究[D]. 广州: 广州大学, 2022.

    YANG Yang. Construction, structural control and separation characteristics of self-cleaning membranes[D]. Guangzhou: Guangzhou University, 2022(in Chinese).
    [11] WANG X X, SUN M, ZHAO Y M, et al. In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-cleaning[J]. Environmental Science & Technology,2020,54(11):6997-7007. doi: 10.1021/acs.est.0c01590
    [12] HAN Z, HAN X, ZHAO X, et al. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes[J]. Journal of Hazardous Materials,2016,320:27-35. doi: 10.1016/j.jhazmat.2016.08.004
    [13] HAN X, HAN Z, LI J, et al. Coordinative integration of copper (II) and iron (II) phthalocyanine into amidoximated PAN fiber for enhanced photocatalytic activity under visible light irradiation[J]. Journal of Colloid and Interface Science,2019,533:333-343. doi: 10.1016/j.jcis.2018.08.076
    [14] HAN X, HAN Z, ZHAO J, et al. Photocatalytic degradation of formaldehyde by PAN nonwoven supported Fe(III) catalysts under visible light irradiation[J]. New Journal of Chemistry,2017,41(17):9380-9387. doi: 10.1039/C7NJ00964J
    [15] DONG Y, DONG W, CAO Y, et al. Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation[J]. Catalysis Today,2011,175(1):346-355. doi: 10.1016/j.cattod.2011.03.035
    [16] 高婷婷, 周蓉, 丁彬, 等. PAN/CNT复合纳米纤维膜的制备及其红外辐射特性[J]. 东华大学学报(自然科学版), 2019, 45(2):169-175.

    GAO Tingting, ZHOU Rong, DING Bin, et al. Preparation and infrared radiative properties of the PAN/CNT composite nanofiber mat[J]. Journal of Donghua University (Natural Science),2019,45(2):169-175(in Chinese).
    [17] YANG S, YU B, WANG Z, et al. Research on the modification of PAN hollow fiber membrane with high heavy metal ions adsorption[J]. Ferroelectrics,2019,547(1):121-128. doi: 10.1080/00150193.2019.1592491
    [18] WANG W, DONG A, WEN Z. Preparation of a rough hydrophobic surface on jute fibers via silica hydrosol modification and properties of fiber-reinforced polylactic acid composites[J]. BioResources,2020,15(1):290-301. doi: 10.15376/biores.15.1.290-301
    [19] WANG M, SUN F, ZENG H, et al. Modified polyethersulfone ultrafiltration membrane for enhanced antifouling capacity and dye catalytic degradation efficiency[J]. Separations,2022,9(4):92. doi: 10.3390/separations9040092
    [20] SUN S B, YAO H, FU W Y, et al. Reactive photo-Fenton ceramic membranes: Synthesis, characterization and antifouling performance[J]. Water Research,2018,144:690-698. doi: 10.1016/j.watres.2018.08.002
    [21] BARON C, REFSGAARD H H, SKIBSTED L H, et al. Oxidation of bovine serum albumin initiated by the Fenton reaction—Effect of EDTA, tert-butylhydroperoxide and tetrahydrofuran[J]. Free Radical Research,2006,40(4):409-417. doi: 10.1080/10715760600565752
    [22] 杨桂芹, 李朝晖, 林章祥, 等. TiO2对牛血清白蛋白的光催化降解的研究[J]. 光谱学与光谱分析, 2005, 25(8):1309-1311.

    YANG Guiqin, LI Zhaohui, LIN Zhangxiang, et al. Investigation of TiO2 photocatalytic degradation of bovine serum albumin[J]. Spectroscopy and Spectral Analysis,2005,25(8):1309-1311(in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  187
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-01-13
  • 录用日期:  2023-01-16
  • 网络出版日期:  2023-02-08
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回