留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锆钛酸钡钙基陶瓷-聚合物复合材料的性能

李锐海 曾金玲 许一文 罗兵 张福增 姚英邦

李锐海, 曾金玲, 许一文, 等. 锆钛酸钡钙基陶瓷-聚合物复合材料的性能[J]. 复合材料学报, 2023, 40(8): 4831-4839. doi: 10.13801/j.cnki.fhclxb.20221122.001
引用本文: 李锐海, 曾金玲, 许一文, 等. 锆钛酸钡钙基陶瓷-聚合物复合材料的性能[J]. 复合材料学报, 2023, 40(8): 4831-4839. doi: 10.13801/j.cnki.fhclxb.20221122.001
LI Ruihai, ZENG Jinling, XU Yiwen, et al. Properties of barium-calcium zirconate titanate ceramics-polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4831-4839. doi: 10.13801/j.cnki.fhclxb.20221122.001
Citation: LI Ruihai, ZENG Jinling, XU Yiwen, et al. Properties of barium-calcium zirconate titanate ceramics-polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4831-4839. doi: 10.13801/j.cnki.fhclxb.20221122.001

锆钛酸钡钙基陶瓷-聚合物复合材料的性能

doi: 10.13801/j.cnki.fhclxb.20221122.001
基金项目: 特高压电力技术与新型电工装备基础国家工程研究中心
详细信息
    通讯作者:

    姚英邦,博士,教授,硕士生导师,研究方向为铁电及半导体功能陶瓷及薄膜、面向物联网及智能家居、智能机器人的嗅觉/触觉传感器 E-mail: ybyao@gdut.edu.cn

  • 中图分类号: TB332

Properties of barium-calcium zirconate titanate ceramics-polymer composites

Funds: National Engineering Research Center of UHV Technology and Novel Electrical Equipment Basis
  • 摘要: 利用冷冻取向的方法制备得到了锆钛酸钡钙陶瓷的二维框架结构,通过在这个结构中填充聚醚酰亚胺(PEI),制备成一种陶瓷复合材料。结果发现:陶瓷浆料固体载荷量为30vol%时可以得到更好的陶瓷片层状二维结构体。其中,三羟甲基氨基甲烷盐酸盐(Tris-HCl)作为分散剂的分散效果较好。聚合物在陶瓷复合材料中的填充率受浆料的分散剂种类及填充液浓度的影响,复合材料介电常数大多在100 以下,而本实验制备的锆钛酸钡钙基陶瓷-聚合物复合材料的相对介电常数达到了446。结果表明:Tris-HCl的分散效果最好,此时,当聚醚酰亚胺/二氯甲烷(PEI/DCM)溶液的浓度为15wt%时,陶瓷复合材料的聚合物填充率最高(18.63%)。随着PEI填充率的增大,陶瓷样品的最大应变值增大,最大应力值减小;面内的导热系数则随温度的升高而升高,在保证其具有一定力学强度的同时,提高了材料的介电性能。

     

  • 图  1  (a)水晶体生长动力学的各向异性;(b)水悬浮液的冷冻取向过程

    Figure  1.  (a) Anisotropy of crystal growth kinetics; (b) Freezing orientation process of water suspension

    图  2  (a)含乙酸锆(ZRA)的溶液在冷冻过程中形成的蜂窝状孔;(b)含明胶(GEL)的溶液在冷冻过程中形成的方形孔

    Figure  2.  (a) Honeycomb pores formed during freezing of zirconium acetate (ZRA)-containing solution; (b) Square pores formed during freezing of gelatin (GEL)-containing solution

    图  3  (a)自制冷冻取向设备示意图;(b)冷冻取向工艺得到的陶瓷二维框架结构

    Figure  3.  (a) Diagram of self-made freezing orientation equipment; (b) Two-dimensional frame structure of ceramic obtained by freezing orientation process

    图  4  陶瓷复合材料的制备工艺流程

    Figure  4.  Preparation process of ceramic composites

    图  5  悬浮液分散剂为CE64时的陶瓷SEM图像:(a)固体载荷量为30vol%的冰晶生长方向;(b)固体载荷量为30vol%的冷冻方向;(c)固体载荷量为40vol%的冷冻方向;(d)固体载荷量为50vol%的冷冻方向

    Figure  5.  SEM images of ceramics with CE64 suspension dispersant: (a) Ice crystal growth direction with solid load of 30vol%; (b) Freezing direction with solid load of 30vol%; (c) Freezing direction with solid load of 40vol%; (d) Freezing direction with solid load of 50vol%

    图  6  (a)悬浮液的分散剂为Tris-HCl、固体载荷量为30vol%的陶瓷二维框架结构SEM图像;(b)晶粒层的局部放大

    Figure  6.  (a) SEM image of a two-dimensional ceramic frame structure with Tris-HCl as dispersant and 30vol% solid loading; (b) Partial enlargement of the grain layer

    图  7  固体载荷量为30vol%时被聚合物填充后的陶瓷SEM图像:(a)分散剂为CE64,聚醚酰亚胺/二氯甲烷(PEI/DCM)溶液浓度为10wt%;(b)分散剂为CE64,PEI/DCM溶液浓度为15wt%;(c)分散剂为Tris-HCl,PEI/DCM溶液浓度为10wt%;(d)分散剂为Tris-HCl,PEI/DCM溶液浓度为15wt%

    Figure  7.  SEM images of ceramic filled with polymer when the solid loading is 30vol%: (a) Dispersant is CE64, the concentration of polyethylenimine/dichloromethane (PEI/DCM) solution is 10wt%; (b) Dispersant is CE64, the concentration of PEI/DCM solution is 15wt%; (c) Dispersant is Tris-HCl, the concentration of PEI/DCM solution is 10wt%; (d) Dispersant is Tris-HCl, and the concentration of PEI/DCM solution is 15wt%

    图  8  10wt%CE64 (a)、15wt%CE64 (b)、10wt%Tris-HCl (c)、15wt%-Tris-HCl (d)热压后的微观形貌

    Figure  8.  Micromorphology of ceramic samples for 10wt%CE64 (a), 15wt%CE64 (b), 10wt%Tris-HCl (c), 15wt%Tris-HCl (d)

    图  9  陶瓷复合材料的热重分析曲线

    Figure  9.  Thermogravimetric analysis curves of ceramic composites

    图  10  热压后陶瓷复合材料的介电频谱曲线(a)和外加电场为50 kV/cm的电滞回线(b)

    Figure  10.  Dielectric spectrum curves of ceramic composites after hot pressing (a) and ferroelectric hysteresis loop with applied electric field of 50 kV/cm (b)

    图  11  (a)三点弯曲实验测试示意图;(b)热压后陶瓷复合材料三点弯曲应力-应变曲线

    Figure  11.  (a) Three-point bending test diagram; (b) Three-point bending stress-strain curves of ceramic composites after hot pressing

    图  12  陶瓷复合材料:(a)热容;(b)面间热扩散系数;(c)面内热扩散系数;(d)面间导热系数;(e)面内导热系数;(f)面间与面内方向示意图

    Figure  12.  Ceramic composites: (a) Heat capacity; (b) Inter-plane thermal diffusion coefficient; (c) In-plane thermal diffusion coefficient; (d) Inter-plane thermal conductivity; (e) In-plane thermal conductivity; (f) Inter-plane and in-plane direction diagram

  • [1] VERMA R, CHAUHAN A, BATOO K M, et al. Structural, optical, and electrical properties of vanadium-doped, lead-free BCZT ceramics[J]. Journal of Alloys and Compounds,2021,869:159520. doi: 10.1016/j.jallcom.2021.159520
    [2] ABDMOULEH H, KRIAA I, ABDELMOULA N, et al. The effect of Zn2+ and Nb5+ substitution on structural, dielectric, electrocaloric properties, and energy storage density of Ba0.95Ca0.05Ti0.95Zr0.05O3 ceramics[J]. Journal of Alloys and Compounds,2021,878:160355. doi: 10.1016/j.jallcom.2021.160355
    [3] SHI Z, CAO S, ARAÚJO A J M, et al. Plate-like Ca3Co4O9: A novel lead-free piezoelectric material[J]. Applied Surface Science,2021,536:147928. doi: 10.1016/j.apsusc.2020.147928
    [4] NAYAK R L, DASH S S, ZHANG Y J, et al. Enhanced dielectric, thermal stability, and energy storage properties in compositionally engineered lead-free ceramics at morphotropic phase boundary[J]. Ceramics International,2021,47(12):17220-17233. doi: 10.1016/j.ceramint.2021.03.033
    [5] KOZIELSKI L, WILK A, BUĆKO M M, et al. A large piezoelectric strain recorded in BCT ceramics obtained by a modified pechini method[J]. Materials,2020,13(7):1620. doi: 10.3390/ma13071620
    [6] HAERTLING G H. Ferroelectric ceramics: History and technology[J]. Journal of the American Ceramic Society,1999,82(4):797-818. doi: 10.1111/j.1151-2916.1999.tb01840.x
    [7] VERMA R, CHAUHAN A, BATOO K M, et al. Structural, morphological, and optical properties of strontium doped lead-free BCZT ceramics[J]. Ceramics International,2021,47(11):15442-15457. doi: 10.1016/j.ceramint.2021.02.110
    [8] HONG Q X, XU Z X, ZHANG Y Y, et al. Improved upconversion photoluminescence properties of 0.965K0.4Na0.58Li0.02Nb0.96Sb0.04O3-0.035 Bi0.5K0.5ZrO3: 0.25% Er/xIn lead-free piezoelectric ceramics with balanced piezoelectric coefficient and curie temperature.[J]. Journal of Materials Science Materials in Electronics,2018,29(24):20923-20930. doi: 10.1007/s10854-018-0236-1
    [9] WANG K, YAO F Z, JO W, et al. Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics[J]. Advanced Functional Materials,2013,23(33):4079-4086. doi: 10.1002/adfm.201203754
    [10] XU K, LI J, LYU X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Advanced Materials,2016,28(38):8519-8523. doi: 10.1002/adma.201601859
    [11] LEE M H, KIM D J, PARK J S, et al. High-performance lead-free piezoceramics with high curie temperatures[J]. Advanced Materials,2015,27(43):6976-6982. doi: 10.1002/adma.201502424
    [12] TAKENAKA T, MARUYAMA K M K, SAKATA K S K. (Bi0.5Na0.5)TiO3-BaTiO3 system for lead free piezoelectric ceramics[J]. Japanese Journal of Applied Physics,1991,30(9S):2236.
    [13] CHEN M, XU Q, KIM B H, et al. Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics[J]. Journal of the European Ceramic Society,2008,28(4):843-849. doi: 10.1016/j.jeurceramsoc.2007.08.007
    [14] ZHANG S T, KOUNGA A B, AULBACH E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system[J]. Applied Physics Letters,2007,91(11):112906. doi: 10.1063/1.2783200
    [15] TAN L M, WANG X C, ZHU W J, et al. Excellent piezoelectric performance of KNNS-based lead-free piezoelectric ceramics through powder pretreatment by hydrothermal method[J]. Journal of Alloys and Compounds,2021,874:159770. doi: 10.1016/j.jallcom.2021.159770
    [16] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Physical Review Letters,2009,103(25):257602. doi: 10.1103/PhysRevLett.103.257602
    [17] CHEN M, YIN J, FENG Y, et al. Effect of content on dielectric performance of barium titanate/polyimide films[C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin: Institute of Electrical and Electronics Engineers (IEEE) , 2011, 4: 2033-2036.
    [18] GUO J, ZHAO X T, HERISSON DE BEAUVOIR T, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Advanced Functional Materials,2018,28(39):1801724. doi: 10.1002/adfm.201801724
    [19] ZHANG Q Q, GAO F, HU G X, et al. Characterization and dielectric properties of modified Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites with high dielectric tunability[J]. Composites Science and Technology,2015,118:94-100. doi: 10.1016/j.compscitech.2015.08.013
    [20] GUO Y T, MENG N, ZHANG Y M, et al. Characterization and performance of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) composites with high permittivity and low loss[J]. Polymer,2020,203:122777. doi: 10.1016/j.polymer.2020.122777
    [21] XIA W M, XU Z, WEN F, et al. Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites[J]. Ceramics International,2012,38(2):1071-1075. doi: 10.1016/j.ceramint.2011.08.033
    [22] GUPTA P, KUMAR A, TOMAR M, et al. Enhanced dielectric properties and suppressed leakage current density of PVDF composites flexible film through small loading of submicron Ba0.7Sr0.3TiO3 crystallites[J]. Journal of Materials Science: Materials in Electronics,2017,28(16):11806-11812. doi: 10.1007/s10854-017-6987-2
    [23] JO H, KIM M J, CHOI H, et al. Morphological study of directionally freeze-cast nickel foams[J]. Metallurgical and Materials Transactions E,2016,3(1):46-54. doi: 10.1007/s40553-016-0068-y
    [24] ROUSSEL D, LICHTNER A, JAUFFRÈS D, et al. Strength of hierarchically porous ceramics: Discrete simulations on X-ray nanotomography images[J]. Scripta Materialia,2016,113:250-253. doi: 10.1016/j.scriptamat.2015.11.015
    [25] SEPULVEDA P, BINNER J G P. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers[J]. Journal of the European Ceramic Society,1999,19(12):2059-2066. doi: 10.1016/S0955-2219(99)00024-2
    [26] MILLER S M, XIAO X, FABER K T. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium[J]. Journal of the European Ceramic Society,2015,35(13):3595-3605. doi: 10.1016/j.jeurceramsoc.2015.05.012
    [27] PEKOR C M, KISA P, NETTLESHIP I. Effect of polyethylene glycol on the microstructure of freeze-cast alumina[J]. Journal of the American Ceramic Society,2008,91(10):3185-3190. doi: 10.1111/j.1551-2916.2008.02616.x
    [28] CLEARFIELD D, WEI M. Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds[J]. Journal of Materials Science: Materials in Medicine,2016,27(1):1-8. doi: 10.1007/s10856-015-5616-y
    [29] AN S, KIM B, LEE J. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent[J]. Journal of Crystal Growth,2017,469:106-113. doi: 10.1016/j.jcrysgro.2016.08.057
    [30] DEVILLE S. Freeze-casting of porous ceramics: A review of current achievements and issues[J]. Advanced Engineering Materials,2008,10(3):155-169. doi: 10.1002/adem.200700270
    [31] SCOTTI K L, DUNAND D C. Freeze casting–A review of processing, microstructure and properties via the open data repository[J]. Progress in Materials Science,2018,94:243-305. doi: 10.1016/j.pmatsci.2018.01.001
    [32] DURÁN P, LACHÉN J, PLOU J, et al. Behaviour of freeze-casting iron oxide for purifying hydrogen streams by steam-iron process[J]. International Journal of Hydrogen Energy,2016,41(43):19518-19524. doi: 10.1016/j.ijhydene.2016.06.062
    [33] NALEWAY S E, YU C F, PORTER M M, et al. Bioinspired composites from freeze casting with clathrate hydrates[J]. Materials & Design,2015,71:62-67.
    [34] GHOSH D, DHAVALE N, BANDA M, et al. A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes[J]. Ceramics International,2016,42(14):16138-16147. doi: 10.1016/j.ceramint.2016.07.131
    [35] WANG L, TIU C, LIU T J. Effects of nonionic surfactant and associative thickener on the rheology of polyacrylamide in aqueous glycerol solutions[J]. Colloid and Polymer Science,1996,274(2):138-144. doi: 10.1007/BF00663445
    [36] DEVILLE S, VIAZZI C, LELOUP J, et al. Ice shaping properties, similar to that of antifreeze proteins of a zirconium acetate complex[J]. PlOS One,2011,6(10):e26474. doi: 10.1371/journal.pone.0026474
    [37] ARABI N, ZAMANIAN A. Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds[J]. Biotechnology and Applied Biochemistry,2013,60(6):573-579. doi: 10.1002/bab.1120
  • 加载中
图(12)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  324
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-11-01
  • 录用日期:  2022-11-10
  • 网络出版日期:  2022-11-23
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回