Effect of glycerol polymerization degree on the structure and humidity response of cellulose nanocrystals composite iridescent films
-
摘要: 为了探究添加物聚合度对纤维素纳米晶体(CNC)复合虹彩膜的影响,利用不同聚合度的甘油与CNC通过蒸发诱导自组装的方法制备了CNC/(聚)甘油复合虹彩薄膜。系统地研究了甘油聚合度对CNC复合虹彩膜结构色、力学性能和湿度响应能力的影响。结果表明,随甘油聚合度的增加,复合膜中CNC手性向列相结构的螺距变小,复合虹彩膜的颜色蓝移,最大反射波长降低了最多约40 nm。甘油的加入显著提高了复合虹彩膜的湿度响应能力,甘油聚合度越低,复合虹彩膜湿度响应能力越强,在高湿度下反射波长越大。其中甘油添加量为20wt%的虹彩膜在相对湿度为98%的环境中发生了170 nm的红移,膜颜色由青色变为红色;相较于纯CNC膜,(聚)甘油复合虹彩膜的力学性能显著提升。对于复合虹彩膜,随(聚)甘油分子链增长,虹彩膜的断裂伸长率和抗拉强度最大分别提升了1.58倍和2.48倍。Abstract: In order to investigate the effect of glycerol with different polymerization degrees on mechanical and humidity response of cellulose nanocrystalls (CNC), CNC were mixed with glycerol, triglycerol, hexamylglycerol and decaglycerol at different mass ratios to prepared a series of CNC/polyglycerol composite iridescent films by evaporation-induced self-assembly. The effect of glycerol polymerization degrees on structural color, mechanical and humidity response property of CNC composite iridescence film was systematically studied. The iridescent color of the composite iridescent film is blueshifted with the increase of the degree of polymerization due to the decrease of pitch of CNC chiral nematic sturcture, the maximum reflective wavelength decreases by up to 40 nm. The addition of glycerol (and polyglycerol) significantly improved the humidity response ability of CNC films. For the composite film with the same amount of addition, the lower the degree of polymerization of polyglycerol, the stronger the humidity response ability and the redder in high humidity enviroment. The color of 20wt% sample with glycerol change from cyan to red in RH 98%, redshift about 170 nm. Compared with pure CNC film, the mechanical properties of the composite films were significantly improved. And compared with glycerol, the the elongation at break and the tensile strength of decaglycerol composite films increased by 1.58 times and 2.48 times respectively.
-
Key words:
- Cellulose nanocrystals /
- glycerol /
- degree of polymerization /
- chiral nematic phase /
- structural color
-
图 1 (a) CNC/G, (b) CNC/3G, (c) CNC/6G和(d) CNC/10G复合彩虹膜的照片和紫外-可见反射光谱。(e) CNC/G40、CNC/3G40、CNC/ 6G40、CNC/10G40的照片和紫外-可见反射光谱。(f) CNC/G、(g) CNC/3G、(h) CNC/6G和(i) CNC/10G的圆二色(CD)光谱。
Figure 1. Digital photographs and UV-Vis reflection spectra of the (a) CNC/G, (b) CNC/3G, (c) CNC/6G and (d) CNC/10G composite iridescence films. Digital photographs and UV-Vis reflection spectra of the composite iridescence films of (e) CNC/G40, CNC/3G40, CNC/6G40 and CNC/10G40. Circular dichroism (CD) spectra of (f) CNC/G, (g) CNC/3G, (h) CNC/6G and (i) CNC/10G.
图 3 (a) CNC膜的SEM侧视图;(b) CNC膜的SEM截面图;(c) CNC/G10、(d) CNC/G20、(e) CNC/G30、(f) CNC/G40的SEM侧视图;(g) CNC/10G10、(h) CNC/10G20、(i) CNC/10G30、(j) CNC/10G40的SEM侧视图
Figure 3. (a) side view SEM image of CNC; (b) cross section SEM image of CNC. Side view of SEM image of (c) CNC/G10, (d) CNC/G20, (e) CNC/G30 and (f) CNC/G40; Side view of SEM image of (g) CNC/10G10, (h) CNC/10G20, (i) CNC/10G30 and (j) CNC/10G40
图 5 (a) CNC复合膜的应力应变曲线。(b) CNC复合膜的抗拉强度和断裂伸长率。 (c) CNC、CNC/G10、CNC/G20、CNC/G20和CNC/G30复合膜的XRD谱图。(d) CNC、CNC/G40、CNC/3G40、CNC/6G40和CNC/10G40复合膜的XRD谱图。
Figure 5. (a) Stress–strain curves of the CNC composite films. (b) Tensile strength and strain to failure of the CNC composite films. (c) XRD spectra of CNC, CNC/G10, CNC/G20,CNC/G20 and CNC/G30 films. (d) XRD spectra of the CNC, CNC/G40, CNC/3G40,CNC/6G40 and CNC/10G40 films.
图 7 在不同湿度下的(a) CNC, (b) CNC/G20, (c) CNC/3G20, (d) CNC/6G20 以及 (e) CNC/10G20 的紫外-可见反射光谱。(f)不同CNC复合膜在相对湿度为35%下的紫外-可见反射光谱。
Figure 7. UV-vis reflection spectra of the (a) CNC, (b) CNC/G20, (c) CNC/3G20, (d) CNC/6G20 and (e) CNC/10G20 films under different RH. (f) UV-vis reflection spectra of the different CNC composite films under RH 35%.
表 1 复合膜的最大反射波长(λmax)
Table 1. the maximum reflective wavelength (λmax) of composite films
Sample λmax (nm) Sample λmax (nm) CNC 411 CNC/G30 530 CNC/G10 442 CNC/3G30 521 CNC/3G10 432 CNC/6G30 516 CNC/6G10 437 CNC/10G30 501 CNC/10G10 434 CNC/G40 583 CNC/G20 473 CNC/3G40 561 CNC/3G20 461 CNC/6G40 552 CNC/6G20 466 CNC/10G40 542 CNC/10G20 460 表 2 复合膜的结晶度(Cr)
Table 2. The crystallinity (Cr) of composite films
Sample Cr (%) Sample Cr (%) CNC 87.8 CNC/6G10 90.2 CNC/G10 89.6 CNC/6G20 90.1 CNC/G20 89.4 CNC/6G30 89.3 CNC/G30 88.7 CNC/6G40 84.2 CNC/G40 86.0 CNC/10G10 89.9 CNC/3G10 91.0 CNC/10G20 90.7 CNC/3G20 89.9 CNC/10G30 77.1 CNC/3G30 89.0 CNC/10G40 72.4 CNC/3G40 86.1 -
[1] RÅNBY B G. The colloidal properties of cellulose micelles[J]. Discussions of the Faraday Society, 1951, 11: 158-164 doi: 10.1039/DF9511100158 [2] RAO S, TINKLE S, WEISSMAN D, et al. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx[J]. Journal of Toxicology and Environmental Health, Part A, 2003, 66(15-16): 1441-1452. doi: 10.1080/15287390306417 [3] YANAMALA N, FARCAS T, HATFIELD K, et al. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1691-1698. [4] YADAV M, LIU K, CHIU C, Fabrication of cellulose nanocrystal/silver/alginate bionanocomposite films with enhanced mechanical and barrier properties for food packaging application[J]. Nanomaterials, 2019, 9(11): 1523. [5] HE X X, LU W, SUN C X, et al. Cellulose and cellulose derivatives: Different colloidal states and food-related applications[J]. Carbohydrate Polymers, 2021, 255: 117334. doi: 10.1016/j.carbpol.2020.117334 [6] KAMITA G, FRKA-PETESIC B, ALLARD A, et al. Biocompatible and sustainable optical strain sensors for large-area applications[J]. Advanced Optical Materials, 2016, 4(12): 1950-1954. doi: 10.1002/adom.201600451 [7] MARCHESSAULT H, MOREHEAD F, WALTER M, Liquid crystal systems from fibrillar polysaccharides[J]. Nature, 1959, 184(4686): 632-633. [8] REVOL F, BRADFORD H, GIASSON J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension[J]. International Journal of Biological Macromolecules, 1992, 14(3): 170-172. doi: 10.1016/S0141-8130(05)80008-X [9] TRAN A, HAMAD W Y, MACLACHLAN M J. Fabrication of Cellulose Nanocrystal Films through Differential Evaporation for Patterned Coatings[J]. ACS Applied Nano Materials, 2018, 1(7): 3098-3104 doi: 10.1021/acsanm.8b00947 [10] BECK S, BOUCHARD J, BERRY R, Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose[J]. Biomacromolecules, 2011, 12(1): 167-172. [11] PAN J, HAMAD W, STRAUS K, Parameters affecting the chiral nematic phase of nanocrystalline cellulose films[J]. Macromolecules, 2010, 43(8): 3851-3858. [12] FRKA-PETESIC B, GUIDETTI G, KAMITA G, et al. Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets[J]. Advanced Materials, 2017, 29(32): 1701469. doi: 10.1002/adma.201701469 [13] FRKA-PETESIC B, RADAVIDSON H, JEAN B, et al. Dynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fields[J]. Advanced Materials, 2017, 29(11): 1606208. doi: 10.1002/adma.201606208 [14] GIESE M, KHAN M, HAMAD W, et al. Imprinting of photonic patterns with thermosetting amino-formaldehyde-cellulose composites[J]. ACS Macro Letters, 2013, 2(9): 818-821. doi: 10.1021/mz4003722 [15] DONG X, KIMURA T, REVOL J, et al. Effects of ionic strength on the isotropic− chiral nematic phase transition of suspensions of cellulose crystallites[J]. Langmuir, 1996, 12(8): 2076-2082. doi: 10.1021/la950133b [16] XU M, LI W, MA C, et al. Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings[J]. Journal of Materials Chemistry C, 2018, 6(20): 5391-5400. doi: 10.1039/C8TC01321G [17] HE Y, ZHANG Z, XUE J, et al. Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5805-5811. [18] WAN H, LI X, ZHANG L, et al. Rapidly responsive and flexible chiral nematic cellulose nanocrystal composites as multifunctional rewritable photonic papers with eco-friendly inks[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5918-5925. [19] WALTERS C, BOOTT C, NGUYEN T, et al. Iridescent cellulose nanocrystal films modified with hydroxypropyl cellulose[J]. Biomacromolecules, 2020, 21(3): 1295-1302. doi: 10.1021/acs.biomac.0c00056 [20] 余梦, 林涛, 殷学风, 等. 基于纤维素纳米晶体的多功能传感器的应用研究[J]. 复合材料学报, 2023, 42: 1-11YU M, LIN T, YIN X, et al. Application research of multi-functional sensor based on cellulose nanocrystals[J]. Acta Materiae Compositae Sinica, 2023, 42): 1-11(in Chinese) [21] 沈湘凌, 陈广杰, 李知行, 等. 纳米纤维素基湿度响应智能器件的研究进展[J]. 复合材料学报, 2024, 41(5): 2304-2317SHEN X, CHEN G, LI Z, et al. Recent advances in the nanocellulose-based humidity-responsive smart devices[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2304-2317(in Chinese) [22] XU M, MA C, ZHOU J, et al. Assembling semiconductor quantum dots in hierarchical photonic cellulose nanocrystal films: Circularly polarized luminescent nanomaterials as optical coding labels[J]. Journal of Materials Chemistry C, 2019, 7(44): 13794-13802. doi: 10.1039/C9TC04144C [23] XU M, WU X, YANG Y, et al. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence[J]. ACS Nano, 2020, 14(9): 11130-11139. doi: 10.1021/acsnano.0c02060 [24] DAI S, PREMPEH N, LIU D, et al. Cholesteric film of cu (ii)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas[J]. Carbohydrate polymers, 2017, 174: 531-539. doi: 10.1016/j.carbpol.2017.06.098 [25] SONG W, LEE J-K, GONG M, et al. Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10353-10361. [26] GEN, Kamita, BRUNO, et al. Antoine; Allard; Marielle; Dargaud; Katie; King. Biocompatible and sustainable optical strain sensors for large-area applications[J]. Advanced Optical Materials, 2016. [27] SUN C, ZHU D, JIA H, et al. Humidity and heat dual response cellulose nanocrystals/poly(n-isopropylacrylamide) composite films with cyclic performance[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39192-39200. [28] Schütz C, Agthe M, Fall A B, et al. Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle x-ray scattering and laser diffraction[J]. Langmuir, 2015, 31(23): 6507-6513. doi: 10.1021/acs.langmuir.5b00924 [29] 曹佳丽, 董慧琳, 许阳蕾, 等. 用于食品新鲜度监测的纳米SiO2/花青素/再生纤维素智能比色传感膜的制备与性能[J]. 复合材料学报, 2024, 42: 1-12CAO J, DONG H, XU Y, et al. Preparation and properties of nano-SiO2/anthocyanidin/ regenerated cellulose smart colorimetric sensing film for food freshness monitoring[J]. Acta Materiae Compositae Sinica, 2024, 42): 1-12(in Chinese) [30] DE VRIES H, Rotatory power and other optical properties of certain liquid crystals[J]. Acta Crystallographica, 1951, 4(3): 219-226. [31] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. doi: 10.1177/004051755902901003 [32] TRAN A, HAMAD W Y, MACLACHLAN M J, Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures[J]. Langmuir, 2018, 34(2): 646-652. [33] MENG Y, HE Z, DONG C, et al. Multi-stimuli-responsive photonics films based on chiral nematic cellulose nanocrystals[J]. Carbohydrate Polymers, 2022, 277: 118756. doi: 10.1016/j.carbpol.2021.118756 [34] MU X, GRAY D, Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process[J]. Langmuir, 2014, 30(31): 9256-9260. [35] YUAN C, JI W, XING R, et al. Hierarchically oriented organization in supramolecular peptide crystals[J]. Nature Reviews Chemistry, 2019, 3: 567-588. doi: 10.1038/s41570-019-0129-8
计量
- 文章访问数: 118
- HTML全文浏览量: 86
- 被引次数: 0