Vanadium dioxide-polydiacetylene thermochromic composite films and their solar regulation properties
-
摘要:
单斜相二氧化钒(VO2)因具有独特的半导体到金属态的可逆相变,且表现出良好的近红外光调制能力,被广泛应用于智能窗领域,但在实际应用中VO2基智能窗仍面临诸多挑战,其中VO2薄膜不太美观的棕黄色以及相变前后无可视的颜色变化是限制其应用的重要因素。为解决上述问题,本文将具有可逆热致变色功能(由蓝到红)的聚二乙炔(PDA-1)与VO2复合,通过双层结构策略成功制备了既可变色又可调温的多功能复合薄膜。复合薄膜中PDA-1可调节可见光,改善薄膜颜色,并起到指示变色效果,而VO2可调节近红外光,起到调温作用。所得复合薄膜在低温和高温下均可改善VO2薄膜颜色,低温下复合薄膜表现为灰蓝色,高温下表现为红色。同时,复合薄膜还表现出良好的调光性能(ΔTsol = 7.64%,Tl, lum = 56.23%,Th, lum = 62.37%)。此外,复合薄膜通过改变制备条件(如聚合物单体浓度和辊涂棒型号)可进一步调控复合薄膜的颜色和太阳光调制能力。此复合薄膜的制备工艺简单,利于工业化生产,复合薄膜的变色功能有利于智能窗自动调温功能的直观展示以及进一步推广和应用。 VO2薄膜、PDA-1薄膜和VO2-PDA-1复合薄膜在20°C和80°C下的照片(a)和透射光谱(b) Abstract: Vanadium dioxide (VO2) with thermally induced phase transition has demonstrated a good regulation ability in the range of near-infrared light, and widely used in smart windows. However, the VO2-based smart windows still face critical challenges in practical use, such as the unfavorable brown-yellow color of the VO2 thin film, and lack of indicative color-changing for the phase transition process, which are key factors limiting its applications in smart glass. Combining VO2 with other chromogenic materials could effectively improve the appearance color of smart window coatings and endow it indicative color-changing function. In this study, it is successful to obtain VO2 multifunctional composite film with reversible thermochromic polydiacetylene (PDA-1, from blue to red) through a bilayer structure strategy. The composite film not only shows favorable grayish-blue color, but also exhibits good solar light regulation ability and luminescence transmittance (solar light regulation ability ΔTsol=7.64%, luminescence transmittance at low temperature Tl, lum=56.23%, luminescence transmittance at high temperature Th, lum=62.37%). In addition, the thermochromic temperature of the PDA-1 is close to the phase transition temperature of monoclinic VO2 (~68℃). With the temperature increases, the appearance color of the composite film can change from grayish-blue to red color, and also regulating the near-infrared transmittance, which is conducive to the visual display and further promotion for the thermochromic smart windows.-
Key words:
- polydiacetylene /
- vanadium dioxide (VO2) /
- thermochromism /
- composite films /
- smart windows
-
表 1 VO2薄膜、PDA-1薄膜和VO2-PDA-1复合薄膜的可见光透过率(Tlum)、太阳光透过率(Tsol)和太阳光调制能力(ΔTsol)
Table 1. Visible transmittance (Tlum), solar transmittance (Tsol) and solar modulation ability (ΔTsol) of VO2 film, PDA-1 film, and VO2-PDA-1 composite film
films Tlum/% Tsol/% ΔTsol/% 20℃ 80℃ 20℃ 80℃ VO2 67.15 68.98 80.16 71.74 8.42 PDA-1 83.97 87.02 95.98 96.53 −0.54 VO2-PDA-1 56.23 62.37 76.65 69.01 7.64 表 2 不同单体EDA-6,8-19-DA浓度(20、30和40 mg/mL)和不同VO2层厚度(2.2、4.0和5.2 μm)复合薄膜的可见光透光率(Tlum)、太阳光透过率(Tsol)和太阳光调节能力(ΔTsol)
Table 2. Visible transmittance (Tlum), solar transmittance (Tsol) and solar modulation abilities (ΔTsol) of the composite films prepared with different concentrations of monomer EDA-6,8-19-DA (20, 30 and 40 mg/mL) and different thickness of VO2 layer (2.2, 4.0, and 5.2 μm)
No. Composite films Tlum/% Tsol/% ΔTsol/% VO2/μm EDA-6,8-19 DA/(mg·mL−1) 20℃ 80℃ 20℃ 80℃ 1 5.2 20 56.23 62.37 76.65 69.01 7.64 2 5.2 30 53.99 60.77 75.81 68.99 6.81 3 5.2 40 41.57 48.40 68.25 62.15 6.10 4 2.2 20 57.67 64.40 81.01 76.99 4.02 5 4.0 20 57.11 63.71 78.91 72.38 6.53 -
[1] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review[J]. Solar Energy Materials and Solar Cells,2010,94(2):87-105. doi: 10.1016/j.solmat.2009.08.021 [2] REZAEI S D, SHANNIGRAHI S, RAMAKRISHNA S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment[J]. Solar Energy Materials and Solar Cells,2017,159:26-51. doi: 10.1016/j.solmat.2016.08.026 [3] ABURAS M, SOEBARTO V, WILLIAMSON T, et al. Thermochromic smart window technologies for building application: A review[J]. Applied Energy,2019,255:113522. doi: 10.1016/j.apenergy.2019.113522 [4] FENG W, ZOU L, GAO G, et al. Gasochromic smart window: Optical and thermal properties, energy simulation and feasibility analysis[J]. Solar Energy Materials and Solar Cells,2016,144:316-323. doi: 10.1016/j.solmat.2015.09.029 [5] TÄLLBERG R, JELLE B P, LOONEN R, et al. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies[J]. Solar Energy Materials and Solar Cells,2019,200:109828. doi: 10.1016/j.solmat.2019.02.041 [6] WU L Y L, ZHAO Q, HUANG H, et al. Sol-gel based photochromic coating for solar responsive smart window[J]. Surface and Coatings Technology,2017,320:601-607. doi: 10.1016/j.surfcoat.2016.10.074 [7] WANG S F, LIU M S, KONG L B, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science,2016,81:1-54. doi: 10.1016/j.pmatsci.2016.03.001 [8] CUI Y, KE Y, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule, 2018, 2: 1-40. [9] XU F, CAO X, LUO H J, et al. Recent advances in VO2-based thermochromic composites for smart windows[J]. Journal of Materials Chemistry C,2018,6(8):1903-1919. doi: 10.1039/C7TC05768G [10] CHANG T C, CAO X, BAO S H, et al. Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application[J]. Advances in Manufacturing,2018,6(1):1-19. doi: 10.1007/s40436-017-0209-2 [11] LI M, MAGDASSI S, GAO Y F, et al. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows[J]. Small,2017,13(36):1701147. doi: 10.1002/smll.201701147 [12] CAO X, CHANG T, SHAO Z, et al. Challenges and opportunities toward real application of VO2-based smart glazing[J]. Matter,2020,2(4):862-881. doi: 10.1016/j.matt.2020.02.009 [13] DAI L, CHEN S, LIU J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J]. Physical Chemistry Chemical Physics,2013,15(28):11723-11729. doi: 10.1039/c3cp51359a [14] ZHAO Z, LIU Y, WANG D, et al. Sn dopants improve the visible transmittance of VO2 films achieving excellent thermochromic performance for smart window[J]. Solar Energy Materials and Solar Cells,2020,209:110443. doi: 10.1016/j.solmat.2020.110443 [15] ZHOU J, GAO Y, LIU X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal–insulator transition temperature[J]. Physical Chemistry Chemical Physics,2013,15(20):7505-7511. doi: 10.1039/c3cp50638j [16] CHEN S, LIU J, WANG L, et al. Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: A joint experimental and theoretical study[J]. The Journal of Physical Chemistry C,2014,118(33):18938-18944. doi: 10.1021/jp5056842 [17] JI C, WU Z, WU X, et al. Al-doped VO2 films as smart window coatings: Reduced phase transition temperature and improved thermochromic performance[J]. Solar Energy Materials and Solar Cells,2018,176:174-180. doi: 10.1016/j.solmat.2017.11.026 [18] LI Y, JI S, GAO Y, et al. Modification of Mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy[J]. ACS Applied Materials & Interfaces,2013,5(14):6603-6614. [19] CHEN Y, ZENG X, ZHU J, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles[J]. ACS Applied Materials & Interfaces,2017,9(33):27784-27791. [20] ZHANG J, WANG J, YANG C M, et al. Mesoporous SiO2/VO2 double-layer thermochromic coating with improved visible transmittance for smart window[J]. Solar Energy Materials and Solar Cells,2017,162:134-141. doi: 10.1016/j.solmat.2016.12.048 [21] CHU X, TAO H, LIU Y, et al. VO2/AZO double-layer films with thermochromism and low-emissivity for smart window applications[J]. Journal of Non-Crystalline Solids,2014,383:121-125. doi: 10.1016/j.jnoncrysol.2013.04.041 [22] CHANG T, CAO X, DEDON L R, et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy,2018,44:256-264. doi: 10.1016/j.nanoen.2017.11.061 [23] HAO Q, LI W, XU H, et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications[J]. Advanced Materials,2018,30(10):1705421. doi: 10.1002/adma.201705421 [24] CAO X, WANG N, LAW J Y, et al. Nanoporous thermochromic VO2 (M) thin films: Controlled porosity, largely enhanced luminous transmittance and solar modulating ability[J]. Langmuir,2014,30(6):1710-1715. doi: 10.1021/la404666n [25] LU X, XIAO X, CAO Z, et al. A novel method to modify the color of VO2-based thermochromic smart films by solution-processed VO2@SiO2@Au core-shell nanoparticles[J]. RSC Advances,2016,6(53):47249-47257. doi: 10.1039/C6RA07594K [26] ZHU J, HUANG A, MA H, et al. Composite film of vanadium dioxide nanoparticles and ionic liquid-nickel-chlorine complexes with excellent visible thermochromic performance[J]. ACS Applied Materials & Interfaces,2016,8(43):29742-29748. [27] ZHU J T, HUANG A B, MA H B, et al. Solar-thermochromism of a hybrid film of VO2 nanoparticles and CoII-Br-TMP complexes[J]. RSC Advances,2016,6(71):67396-67399. doi: 10.1039/C6RA14232J [28] CHEN Y, ZHU J, MA H, et al. VO2/nickel-bromine-ionic liquid composite film for thermochromic application[J]. Solar Energy Materials and Solar Cells,2019,196:124-130. doi: 10.1016/j.solmat.2019.03.047 [29] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10):3412-3423.QIN Chengyuan, GAO Ying, WANG Cheng, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica,2021,38(10):3412-3423(in Chinese). [30] 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报, 2022, 39(8):3828-3844. doi: 10.13801/j.cnki.fhclxb.20211027.003GAO Ying, QIN Chengyuan, NIE Yong, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica,2022,39(8):3828-3844(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211027.003 [31] WEN J T, ROPER J M, TSUTSUI H. Polydiacetylene supramolecules: Synthesis, characterization, and emerging applications[J]. Industrial & Engineering Chemistry Research,2018,57(28):9037-9053. [32] QIAN X M, STÄDLER B. Recent developments in polydiacetylene-based sensors[J]. Chemistry of Materials,2019,31(4):1196-1222. doi: 10.1021/acs.chemmater.8b05185 [33] JELINEK R, RITENBERG M. Polydiacetylenes-recent molecular advances and applications[J]. RSC Advances,2013,3(44):21192-21201. doi: 10.1039/c3ra42639d [34] PHOLLOOKIN C, WACHARASINDHU S, AJAVAKOM A, et al. Tuning down of color transition temperature of thermochromically reversible bisdiynamide polydiacetylenes[J]. Macromolecules,2010,43(18):7540-7548. doi: 10.1021/ma101264k [35] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: high luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Applied Materials & Interfaces,2015,7(50):27796-27803. -

计量
- 文章访问数: 233
- HTML全文浏览量: 140
- 被引次数: 0