留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钒-聚二乙炔热致变色复合薄膜及其调光性能

王彬彬 高阳 杨帅军 徐慧妍 聂永 蒋绪川

王彬彬, 高阳, 杨帅军, 等. 二氧化钒-聚二乙炔热致变色复合薄膜及其调光性能[J]. 复合材料学报, 2023, 40(6): 3417-3427. doi: 10.13801/j.cnki.fhclxb.20221028.002
引用本文: 王彬彬, 高阳, 杨帅军, 等. 二氧化钒-聚二乙炔热致变色复合薄膜及其调光性能[J]. 复合材料学报, 2023, 40(6): 3417-3427. doi: 10.13801/j.cnki.fhclxb.20221028.002
WANG Binbin, GAO Yang, YANG Shuaijun, et al. Vanadium dioxide-polydiacetylene thermochromic composite films and their solar regulation properties[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3417-3427. doi: 10.13801/j.cnki.fhclxb.20221028.002
Citation: WANG Binbin, GAO Yang, YANG Shuaijun, et al. Vanadium dioxide-polydiacetylene thermochromic composite films and their solar regulation properties[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3417-3427. doi: 10.13801/j.cnki.fhclxb.20221028.002

二氧化钒-聚二乙炔热致变色复合薄膜及其调光性能

doi: 10.13801/j.cnki.fhclxb.20221028.002
基金项目: 国家自然科学基金 (21805045);济南大学科技计划项目(XKY2067);济南大学学科重大课题
详细信息
    通讯作者:

    杨帅军,博士,讲师,硕士生导师,研究方向为有机-无机复合功能材料 E-mail: ism_yangsj@ujn.edu.cn

    蒋绪川,博士,教授,博士生导师,研究方向为光、热、电、磁等外界刺激响应型无机功能材料;隔热节能玻璃的工程化 E-mail: ism_jiangxc@ujn.edu.cn

  • 中图分类号: TB381;TB332

Vanadium dioxide-polydiacetylene thermochromic composite films and their solar regulation properties

Funds: National Natural Science Foundation of China (21805045); Science and Technology Program of University of Jinan (XKY2067); The Major Subject Project of the University of Jinan
  • 摘要: 热致相变二氧化钒(VO2)具有良好的近红外光调制能力,被广泛应用于智能窗领域,但在实际应用中VO2基智能窗仍面临诸多挑战,其中VO2薄膜不太美观的棕黄色及相变前后无可视的颜色变化是限制其应用的重要因素。为解决上述问题,本文将具有可逆颜色变化(由蓝到红)的聚二乙炔(PDA-1)与VO2复合,成功制备了具有双层结构的多功能复合薄膜,该复合薄膜中PDA-1可改善薄膜颜色,并起到指示变色效果,VO2可调节近红外光透过率,起到调温作用;所得复合薄膜不仅表现出较易接受的灰蓝色,还表现出良好的调光性能(太阳光调制能力ΔTsol=7.64%,低温下可见光透射率Tl, lum=56.23%,高温下可见光透射率Th, lum=62.37%)。此外,PDA-1的变色温度与单斜相VO2的相变温度(~68℃)接近,随着温度升高,复合薄膜在调节近红外光透过率的同时,其外观颜色可由灰蓝色变为红色,有利于智能窗自动调温功能的直观展示及进一步推广和应用。

     

  • 图  1  含有乙二胺基团的聚二乙炔(PDA-1)(EDA-6,8-19-DA)的合成路线

    Figure  1.  Synthetic route of monomer polydiacetylene (PDA-1) with ethylenediamine group (EDA-6,8-19-DA)

    DCC—Dicyclohexylcarbodimide; EDA—Ethylenediamine; DA—Diactylene; RT—Room temperature

    图  2  EDA-6,8-19-DA的白色粉末和其聚合物PDA-1的热致变色照片

    Figure  2.  Images of EDA-6,8-19-DA as white powder and corresponding polymer PDA-1 exhibiting thermochromic behavior

    图  3  (a) PDA-1的DSC曲线;(b) PDA-1的TGA和DTG曲线

    Figure  3.  (a) DSC curves of PDA-1;(b) TGA and DTG curves of PDA-1

    图  4  PDA-1薄膜的制备及其热致变色现象

    Figure  4.  Preparation and thermochromic behavior of PDA-1 thin film

    图  5  (a) PDA-1薄膜的透过率随温度变化图;(b) 薄膜在542 nm、565 nm和619 nm处的透过率随温度变化的曲线

    Figure  5.  (a) Transmittance spectra of PDA-1 film as a function of temperature; (b) Plot of film transmittance at 542 nm, 565 nm and 619 nm as a function of temperature

    图  6  (a) VO2纳米粒子的XRD图谱;(b) VO2纳米粒子的DSC曲线

    Figure  6.  (a) XRD pattern of VO2 nanoparticles; (b) DSC curve of VO2 nanoparticles

    图  7  VO2纳米粒子的SEM图像 (a) 及其粒径分布 (b)

    Figure  7.  SEM image (a) and size distribution (b) of VO2 nanoparticles

    图  8  VO2-PDA-1复合薄膜结构和制备示意图

    Figure  8.  Schematic diagram of structure and preparation of VO2-PDA-1 composite film

    图  9  VO2-PDA-1复合薄膜的SEM图像及EDS元素映射图

    Figure  9.  SEM image and EDS element mapping images of VO2-PDA-1 composite film

    图  10  VO2-PDA-1复合薄膜截面的SEM图像

    Figure  10.  SEM image of the cross-section of VO2-PDA-1 composite film

    图  11  VO2薄膜 (a)、PDA-1薄膜 (b)、VO2-PDA-1复合薄膜 (c)在20℃(上)和80℃(下)时的照片

    Figure  11.  Photographs of VO2 film (a), PDA-1 film (b), VO2-PDA-1 composite film (c) at 20℃ (top) and 80℃ (bottom)

    图  12  VO2薄膜、PDA-1薄膜和VO2-PDA-1复合薄膜在20℃和80℃下的透射光谱

    Figure  12.  Transmittance spectra of VO2 film, PDA-1 film, VO2-PDA-1 composite film at 20℃ and 80℃

    图  13  VO2薄膜和不同单体溶液浓度制备的VO2-PDA-1复合薄膜在20℃和80℃时的照片

    Figure  13.  Photographs of VO2 film and VO2-PDA-1 composite films prepared by monomer solutions with different concentrations at 20℃ and 80℃

    图  14  (a) 不同单体溶液浓度制备的VO2-PDA-1复合薄膜的透射光谱图;(b) 复合薄膜的TlumTsol及ΔTsol随单体浓度变化的曲线

    Figure  14.  (a) Transmittance spectra of VO2-PDA-1 composite films prepared using monomer solutions with different concentrations; (b) Plot of Tlum, Tsol and ΔTsol of the composite films as a function of monomer concentration

    图  15  VO2薄膜截面的SEM图像

    Figure  15.  SEM images of the cross-section of VO2 films

    图  16  不同VO2厚度的复合薄膜的热致变色照片

    Figure  16.  Photographs of thermochromic VO2-PDA-1 composite films with different thicknesses of VO2 layers

    图  17  (a) 不同VO2厚度的复合薄膜在20℃和80℃下的透射光图谱;(b) 复合薄膜的TlumTsol及ΔTsol随VO2厚度变化的曲线

    Figure  17.  (a) Transmittance spectra of thermochromic VO2-PDA-1 composite films with different VO2 thickness; (b) Plot of Tlum, Tsol and ΔTsol of the composite films as a function of the thickness of VO2 layer

    表  1  VO2薄膜、PDA-1薄膜和VO2-PDA-1复合薄膜的可见光透过率(Tlum)、太阳光透过率(Tsol)和太阳光调制能力(ΔTsol)

    Table  1.   Visible transmittance (Tlum), solar transmittance (Tsol) and solar modulation ability (ΔTsol) of VO2 film, PDA-1 film, and VO2-PDA-1 composite film

    filmsTlum/%Tsol/%ΔTsol/%
    20℃80℃20℃80℃
    VO267.1568.9880.1671.748.42
    PDA-183.9787.0295.9896.53−0.54
    VO2-PDA-156.2362.3776.6569.017.64
    下载: 导出CSV

    表  2  不同单体EDA-6,8-19-DA浓度(20、30和40 mg/mL)和不同VO2层厚度(2.2、4.0和5.2 μm)复合薄膜的可见光透光率(Tlum)、太阳光透过率(Tsol)和太阳光调节能力(ΔTsol)

    Table  2.   Visible transmittance (Tlum), solar transmittance (Tsol) and solar modulation abilities (ΔTsol) of the composite films prepared with different concentrations of monomer EDA-6,8-19-DA (20, 30 and 40 mg/mL) and different thickness of VO2 layer (2.2, 4.0, and 5.2 μm)

    No.Composite filmsTlum/%Tsol/%ΔTsol/%
    VO2/μmEDA-6,8-19 DA/(mg·mL−1)20℃80℃20℃80℃
    15.22056.2362.3776.6569.017.64
    25.23053.9960.7775.8168.996.81
    35.24041.5748.4068.2562.156.10
    42.22057.6764.4081.0176.994.02
    54.02057.1163.7178.9172.386.53
    下载: 导出CSV
  • [1] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review[J]. Solar Energy Materials and Solar Cells,2010,94(2):87-105. doi: 10.1016/j.solmat.2009.08.021
    [2] REZAEI S D, SHANNIGRAHI S, RAMAKRISHNA S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment[J]. Solar Energy Materials and Solar Cells,2017,159:26-51. doi: 10.1016/j.solmat.2016.08.026
    [3] ABURAS M, SOEBARTO V, WILLIAMSON T, et al. Thermochromic smart window technologies for building application: A review[J]. Applied Energy,2019,255:113522. doi: 10.1016/j.apenergy.2019.113522
    [4] FENG W, ZOU L, GAO G, et al. Gasochromic smart window: Optical and thermal properties, energy simulation and feasibility analysis[J]. Solar Energy Materials and Solar Cells,2016,144:316-323. doi: 10.1016/j.solmat.2015.09.029
    [5] TÄLLBERG R, JELLE B P, LOONEN R, et al. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies[J]. Solar Energy Materials and Solar Cells,2019,200:109828. doi: 10.1016/j.solmat.2019.02.041
    [6] WU L Y L, ZHAO Q, HUANG H, et al. Sol-gel based photochromic coating for solar responsive smart window[J]. Surface and Coatings Technology,2017,320:601-607. doi: 10.1016/j.surfcoat.2016.10.074
    [7] WANG S F, LIU M S, KONG L B, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science,2016,81:1-54. doi: 10.1016/j.pmatsci.2016.03.001
    [8] CUI Y, KE Y, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule, 2018, 2: 1-40.
    [9] XU F, CAO X, LUO H J, et al. Recent advances in VO2-based thermochromic composites for smart windows[J]. Journal of Materials Chemistry C,2018,6(8):1903-1919. doi: 10.1039/C7TC05768G
    [10] CHANG T C, CAO X, BAO S H, et al. Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application[J]. Advances in Manufacturing,2018,6(1):1-19. doi: 10.1007/s40436-017-0209-2
    [11] LI M, MAGDASSI S, GAO Y F, et al. Hydrothermal synthesis of VO2 polymorphs: Advantages, challenges and prospects for the application of energy efficient smart windows[J]. Small,2017,13(36):1701147. doi: 10.1002/smll.201701147
    [12] CAO X, CHANG T, SHAO Z, et al. Challenges and opportunities toward real application of VO2-based smart glazing[J]. Matter,2020,2(4):862-881. doi: 10.1016/j.matt.2020.02.009
    [13] DAI L, CHEN S, LIU J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J]. Physical Chemistry Chemical Physics,2013,15(28):11723-11729. doi: 10.1039/c3cp51359a
    [14] ZHAO Z, LIU Y, WANG D, et al. Sn dopants improve the visible transmittance of VO2 films achieving excellent thermochromic performance for smart window[J]. Solar Energy Materials and Solar Cells,2020,209:110443. doi: 10.1016/j.solmat.2020.110443
    [15] ZHOU J, GAO Y, LIU X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal–insulator transition temperature[J]. Physical Chemistry Chemical Physics,2013,15(20):7505-7511. doi: 10.1039/c3cp50638j
    [16] CHEN S, LIU J, WANG L, et al. Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: A joint experimental and theoretical study[J]. The Journal of Physical Chemistry C,2014,118(33):18938-18944. doi: 10.1021/jp5056842
    [17] JI C, WU Z, WU X, et al. Al-doped VO2 films as smart window coatings: Reduced phase transition temperature and improved thermochromic performance[J]. Solar Energy Materials and Solar Cells,2018,176:174-180. doi: 10.1016/j.solmat.2017.11.026
    [18] LI Y, JI S, GAO Y, et al. Modification of Mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy[J]. ACS Applied Materials & Interfaces,2013,5(14):6603-6614.
    [19] CHEN Y, ZENG X, ZHU J, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles[J]. ACS Applied Materials & Interfaces,2017,9(33):27784-27791.
    [20] ZHANG J, WANG J, YANG C M, et al. Mesoporous SiO2/VO2 double-layer thermochromic coating with improved visible transmittance for smart window[J]. Solar Energy Materials and Solar Cells,2017,162:134-141. doi: 10.1016/j.solmat.2016.12.048
    [21] CHU X, TAO H, LIU Y, et al. VO2/AZO double-layer films with thermochromism and low-emissivity for smart window applications[J]. Journal of Non-Crystalline Solids,2014,383:121-125. doi: 10.1016/j.jnoncrysol.2013.04.041
    [22] CHANG T, CAO X, DEDON L R, et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy,2018,44:256-264. doi: 10.1016/j.nanoen.2017.11.061
    [23] HAO Q, LI W, XU H, et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications[J]. Advanced Materials,2018,30(10):1705421. doi: 10.1002/adma.201705421
    [24] CAO X, WANG N, LAW J Y, et al. Nanoporous thermochromic VO2 (M) thin films: Controlled porosity, largely enhanced luminous transmittance and solar modulating ability[J]. Langmuir,2014,30(6):1710-1715. doi: 10.1021/la404666n
    [25] LU X, XIAO X, CAO Z, et al. A novel method to modify the color of VO2-based thermochromic smart films by solution-processed VO2@SiO2@Au core-shell nanoparticles[J]. RSC Advances,2016,6(53):47249-47257. doi: 10.1039/C6RA07594K
    [26] ZHU J, HUANG A, MA H, et al. Composite film of vanadium dioxide nanoparticles and ionic liquid-nickel-chlorine complexes with excellent visible thermochromic performance[J]. ACS Applied Materials & Interfaces,2016,8(43):29742-29748.
    [27] ZHU J T, HUANG A B, MA H B, et al. Solar-thermochromism of a hybrid film of VO2 nanoparticles and CoII-Br-TMP complexes[J]. RSC Advances,2016,6(71):67396-67399. doi: 10.1039/C6RA14232J
    [28] CHEN Y, ZHU J, MA H, et al. VO2/nickel-bromine-ionic liquid composite film for thermochromic application[J]. Solar Energy Materials and Solar Cells,2019,196:124-130. doi: 10.1016/j.solmat.2019.03.047
    [29] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10):3412-3423.

    QIN Chengyuan, GAO Ying, WANG Cheng, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica,2021,38(10):3412-3423(in Chinese).
    [30] 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报, 2022, 39(8):3828-3844. doi: 10.13801/j.cnki.fhclxb.20211027.003

    GAO Ying, QIN Chengyuan, NIE Yong, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica,2022,39(8):3828-3844(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211027.003
    [31] WEN J T, ROPER J M, TSUTSUI H. Polydiacetylene supramolecules: Synthesis, characterization, and emerging applications[J]. Industrial & Engineering Chemistry Research,2018,57(28):9037-9053.
    [32] QIAN X M, STÄDLER B. Recent developments in polydiacetylene-based sensors[J]. Chemistry of Materials,2019,31(4):1196-1222. doi: 10.1021/acs.chemmater.8b05185
    [33] JELINEK R, RITENBERG M. Polydiacetylenes-recent molecular advances and applications[J]. RSC Advances,2013,3(44):21192-21201. doi: 10.1039/c3ra42639d
    [34] PHOLLOOKIN C, WACHARASINDHU S, AJAVAKOM A, et al. Tuning down of color transition temperature of thermochromically reversible bisdiynamide polydiacetylenes[J]. Macromolecules,2010,43(18):7540-7548. doi: 10.1021/ma101264k
    [35] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: high luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Applied Materials & Interfaces,2015,7(50):27796-27803.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  331
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-10-18
  • 录用日期:  2022-10-22
  • 网络出版日期:  2022-10-31
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回