留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-CFRP接头胶-编混合搭接模式及力学性能

赵新波 何晓红 吕健 翟少杰 詹志新 杨尚谕

赵新波, 何晓红, 吕健, 等. 钢-CFRP接头胶-编混合搭接模式及力学性能[J]. 复合材料学报, 2024, 43(0): 1-16.
引用本文: 赵新波, 何晓红, 吕健, 等. 钢-CFRP接头胶-编混合搭接模式及力学性能[J]. 复合材料学报, 2024, 43(0): 1-16.
ZHAO Xinbo, HE Xiaohong, LV Jian, et al. Hybrid adhesive-woven lap mode and mechanical properties of steel-CFRP joints[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Xinbo, HE Xiaohong, LV Jian, et al. Hybrid adhesive-woven lap mode and mechanical properties of steel-CFRP joints[J]. Acta Materiae Compositae Sinica.

钢-CFRP接头胶-编混合搭接模式及力学性能

基金项目: 国家自然科学基金(52104004)
详细信息
    通讯作者:

    赵新波,博士,副教授,博士生导师,研究方向为复合材料力学、油气井套管柱安全评估和油气井井筒系统完整性 Email: zxbups@163.com

  • 中图分类号: TB333

Hybrid adhesive-woven lap mode and mechanical properties of steel-CFRP joints

Funds: National Natural Science Foundation of China (52104004)
  • 摘要: CFRP (Carbon Fiber Reinforced Polymer, CFRP)以其轻质高强的特性在航天、汽车、土木和石油等领域广泛应用,但其与钢材的连接强度成为当前研究的重要问题。本文进行了五种试验,每种试验设有三个平行试件,总计15组试验,研究了单层钢-CFRP胶-编混合搭接接头在不同孔距和孔形组合下的最优设计。基于单层试验结果,进一步开展了六种试验,每种试验设有三个平行试样,总计18组试验,探讨了三种不同搭接形式和四种不同搭接长度对多层钢-CFRP胶-编混合搭接接头力学性能的影响。实验分析了不同搭接形式和长度下的接头荷载-位移曲线、失效模式、单位厚度峰值强度和极限承载力。同时,结合数字图像相关方法详细分析了接头的应变分布和演化过程。研究结果显示,相较于椭圆形开孔,单层矩形开孔接头的强度提高了23.51%,并且在孔距为20 mm时达到了最高强度。在多层搭接接头中,双层碳纤维布和双层钢带搭接形式显著提高了接头的强度,分别比前两种形式提升了160.33%和119.26%。进一步分析表明,增加搭接长度有效提升了接头的承载能力,但随着搭接长度进一步增加,接头强度逐渐趋于稳定甚至略有下降;当搭接长度增至60 mm时,接头强度达到最高点,比40 mm长度的接头提升了20.94%。

     

  • 图  1  钢-CFRP 钻杆应用场景示意图

    Figure  1.  Schematic diagram of the application scenarios of steel-CFRP drill pipes

    图  2  碳纤维布、UHU300胶黏剂及304超薄不锈钢带实物图(单位:mm)

    Figure  2.  Physical display of carbon fiber fabric, UHU300 adhesive and 304 ultra-thin stainless steel strip (Unit: mm)

    图  3  试验加载装置

    Figure  3.  Test loading device

    图  4  钢-CFRP胶-编混合搭接接头试件制备流程图

    Figure  4.  Preparation process diagram of steel-CFRP hybrid adhesive-woven lap joints specimens

    图  5  钢-CFRP胶-编混合搭接接头散斑处理试件图

    Figure  5.  Speckle treatment specimen diagram of steel-CFRP hybrid adhesive-woven lap joints

    图  6  钢-CFRP胶-编混合搭接接头拉伸试验及应变采集设备

    Figure  6.  Tensile test and strain collection equipment of steel-CFRP hybrid adhesive-woven lap joints

    图  7  单层钢-CFRP胶-编混合搭接接头的拉伸过程

    Figure  7.  Process of tensile failure of single-layer steel-CFRP hybrid adhesive-woven lap joints

    图  8  不同孔距单层钢-CFRP胶-编混合搭接接头荷载-位移曲线

    Figure  8.  Load-displacement curve of single-layer steel-CFRP hybrid adhesive-woven lap joints with different hole spacing

    图  9  不同孔形单层钢-CFRP胶-编混合搭接接头荷载-位移曲线

    Figure  9.  Load-displacement curve of single-layer steel-CFRP hybrid adhesive-woven lap joints with different hole shape

    (The second number in specimen number is the parallel specimen serial number)

    图  10  单层钢-CFRP胶-编混合搭接接头典型失效模式ssss

    Figure  10.  Typical failure modes of single-layer steel-CFRP hybrid adhesive-woven lap joint

    图  11  不同开孔间距单层钢-CFRP胶-编混合搭接接头应变分布

    Figure  11.  Strain distribution of single-layer steel-CFRP hybrid adhesive-woven lap joints with different hole spacing

    图  12  多层钢-CFRP胶-编混合搭接接头的拉伸过程

    Figure  12.  Process of tensile failure of multi-layer steel-CFRP hybrid adhesive-woven lap joints

    图  13  不同搭接长度多层钢-CFRP胶-编混合搭接接头荷载-位移曲线

    Figure  13.  Load-displacement curves of multi-layer steel-CFRP hybrid adhesive-woven lap joints with different lap lengths

    图  14  不同搭接形式多层钢-CFRP胶-编混合搭接接头荷载-位移曲线

    Figure  14.  Load-displacement curves of multi-layer steel-CFRP hybrid adhesive-woven lap joints with different overlapping

    图  15  多层钢-CFRP胶-编混合搭接接头破坏模式

    Figure  15.  Failure modes of multi-layer steel-CFRP hybrid adhesive-woven lap joints

    图  16  不同搭接长度多层钢-CFRP胶-编混合搭接接头应变分布

    Figure  16.  Strain distribution of multi-layer steel-CFRP hybrid adhesive-woven lap joints with different lap lengths

    图  17  不同搭接形式多层钢-CFRP胶-编混合搭接接头应变分布

    Figure  17.  Strain distribution of multi-layer steel-CFRP hybrid adhesive-woven lap joints with different lap forms

    图  18  不同搭接形式多层钢-CFRP胶-编混合搭接接头强度和极限承载力

    Figure  18.  Strength and ultimate load-bearing capacity of multi-layer steel-CFRP hybrid adhesive-woven lap joints with different lap configurations

    图  19  不同搭接长度多层钢-CFRP胶-编混合搭接接头强度和极限承载力

    Figure  19.  Strength and ultimate load of multi-layer steel-CFRP hybrid adhesive-woven joints with different lap lengths

    表  1  碳纤维布、304超薄不锈钢带及UHU300胶黏剂材料参数

    Table  1.   Material parameters of carbon fiber cloth, 304 ultra-thin stainless steel strip, and UHU300 adhesive

    Material name Tensile strength/MPa Tensile Young's modulus/GPa Thickness/mm
    1 K double-sided plain weave CFRP 3800 230 0.15
    304 ultra-thin stainless steel strip 510 190 0.15
    UHU300 epoxy adhesive 12 2
    下载: 导出CSV

    表  2  钢-CFRP胶-编混合搭接接头试验方案

    Table  2.   Test plan for steel-CFRP hybrid adhesive-woven lap joints

    Serial number Specimen number Perforation spacing/mm Perforation shape Overlap length (L)/mm Overlap forms
    1 SHJ-R-5 5 Rectangular 40 Single-layer Overlap: A single layer of carbon fiber fabric is overlapped with a single layer of ultra-thin stainless steel strip.
    2 SHJ-R-10 10
    3 SHJ-R-15 15
    4 SHJ-R-20 20
    5 SHJ-E-15 15 Elliptical
    6 MHJ1-40 20 Rectangular 40 Overlap forms 1: Two layers of carbon fiber fabric are bonded with adhesive and then combined with a single layer of steel to form a hybrid adhesive-woven lap joint
    7 MHJ1-50 50
    8 MHJ1-60 60
    9 MHJ1-70 70
    10 MHJ2-40 40 Overlap forms 2: One layer of carbon fiber fabric and two layers of steel bonded with adhesive to form a hybrid adhesive-woven lap joint
    11 MHJ3-40 40 Overlap forms 3: Two layers of carbon fiber fabric and two layers of steel, each bonded with adhesive, are combined to form a hybrid adhesive-woven lap joint
    Notes: The SHJ represents the single-layer hybrid adhesive-woven lap joint, The MHJ represents the multi-layer hybrid adhesive-woven lap joint; R represents the rectangular opening, E represents the elliptical opening; the number represent the lap length for SHJ, the first number represents the lap forms, the second number represents the lap length for MHJ.
    下载: 导出CSV

    表  3  不同搭接形式和搭接长度多层钢-CFRP胶-编混合搭接接头试件参数

    Table  3.   Specimen parameters of multi-layer steel-CFRP hybrid adhesive-woven lap joints with different lap configurations and lap lengths

    Overlap forms Overlap lenth/mm Serial number Ultimate load/N Effective joint area/mm2 Unit thickness peak strength/(MPa/mm) Failure modes
    Single-layer Overlap: A single layer of carbon fiber fabric is overlapped with a single layer of ultra-thin stainless steel strip 40 SHJ-R-5 945.33 950 6.63 Steel-adhesive interface failure; Cohesion failure; CFRP (damage) breaks; CFRP slippage
    SHJ-R-10 1034.17 7.26
    SHJ-R-15 1183.00 8.30
    SHJ-R-20 1268.83 8.90
    SHJ-E-15 958.17 6.72
    Overlap forms 1 70 MHJ1-70 2015.33 1700 3.95 Cohesion failure; Steel-adhesive interface failure; CFRP slippage; Steel warping
    60 MHJ1-60 1903.17 1450 4.38 Cohesion failure; Steel-adhesive interface failure; CFRP slippage
    50 MHJ1-50 1557.67 1200 4.33 Steel-adhesive interface failure; CFRP slippage; The steel breaks
    40 MHJ1-40 1034.17 950 3.63 Steel-adhesive interface failure; CFRP slippage
    Overlap forms 2 40 MHJ2-40 1228.67 950 4.31 Steel-adhesive interface failure; CFRP (damage) breaks; CFRP slippage
    Overlap forms 3 40 MHJ3-40 2694.33 950 9.45 Steel-adhesive interface failure; CFRP slippage; Delamination failure
    Notes: Overlap forms 1:Two layers of carbon fiber fabric are bonded with adhesive and then combined with a single layer of steel to form a hybrid adhesive-woven lap joint; Overlap forms 2: One layer of carbon fiber fabric and two layers of steel bonded with 40 adhesive to form a hybrid adhesive-woven lap joint; Overlap forms 3: Two layers of carbon fiber fabric and two layers of steel, each bonded with adhesive, are combined to form a hybrid adhesive-woven lap joint.
    下载: 导出CSV
  • [1] SHANG Wei, NING Xinbo, LIU Jinzhao, et al. Failure analysis and evaluation for cracked concrete beam reinforced with CFRP[J]. Theoretical and Applied Fracture Mechanics, 2024, 129: 104222. doi: 10.1016/j.tafmec.2023.104222
    [2] ANGELONE R, CAGGIANO A, NELE L, et al. Optimal cutting parameters and tool geometry in drilling of CFRP/CFRP stack laminates for aeronautical applications[J]. Procedia CIRP, 2021, 99: 398-403. doi: 10.1016/j.procir.2021.03.056
    [3] 兰凯, 侯树刚, 闫光庆, 等. 国外轻质高强度钻杆研究与应用[J]. 石油机械, 2010, 38(4): 77-81.

    LAN Kai, HOU Shugang, YAN Guangqin, et al. Research and Applications of Lightweight High-Strength Drill Pipes Abroad[J]. China Petroleum Machinery, 2010, 38(4): 77-81(in Chinese).
    [4] 郭瑞云, 姜玉侠. 石油钻井杆的现状与应用研究[J]. 化工管理, 2017, (20): 90. doi: 10.3969/j.issn.1008-4800.2017.20.082

    GUO Ruiyun, JIANG Yuxia. Current Status and Application Research of Oil Drilling Pipes[J]. Chemical Engineering Management, 2017, (20): 90(in Chinese). doi: 10.3969/j.issn.1008-4800.2017.20.082
    [5] PRAMANIK A. Developments in the non-traditional machining of particle reinforced metal matrix composites[J]. International Journal of Machine Tools and Manufacture, 2014, 86: 44-61. doi: 10.1016/j.ijmachtools.2014.07.003
    [6] GROCHE P, WOHLETZ S, BRENNEIS M, et al. Joining by forming—a review on joint mechanisms, applications and future trends[J]. Journal of Materials Processing Technology, 2014, 214(10): 1972-1994. doi: 10.1016/j.jmatprotec.2013.12.022
    [7] PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys–A review[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 1-29. doi: 10.1016/j.compositesa.2017.06.007
    [8] GAO Youwei, LI Chuanxi, YAN Yibin, et al. Enhancing tensile performance and CFRP/steel interface properties of CFRP plates with nano-SiO2 and MWCNTs[J]. Construction and Building Materials, 2024, 411: 134689. doi: 10.1016/j.conbuildmat.2023.134689
    [9] WANG Haitao, WU Qiong, LI Lin, et al. Mechanical behaviors of steel-CFRP plate bonded joints after freezing-thawing cycles[J]. Construction and Building Materials, 2024, 412: 134876. doi: 10.1016/j.conbuildmat.2024.134876
    [10] BANEA M D, DA SILVA L. F. M. Adhesively bonded joints in composite materials: An overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223(1): 1-18. doi: 10.1243/14644207JMDA219
    [11] RIZKALLA S, DAWOOD M, SCHNERCH D. Development of a carbon fiber reinforced polymer system for strengthening steel structures[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 388-397. doi: 10.1016/j.compositesa.2007.10.009
    [12] XU Wei, WEI Yueguang. Strength and interface failure mechanism of adhesive joints[J]. International journal of adhesion and adhesives, 2012, 34: 80-92. doi: 10.1016/j.ijadhadh.2011.12.004
    [13] CASTAGNETTI D, SPAGGIARI A, DRAGONI E. Effect of bondline thickness on the static strength of structural adhesives under nearly-homogeneous shear stresses[J]. The Journal of Adhesion, 2011, 87(7-8): 780-803. doi: 10.1080/00218464.2011.597309
    [14] ARENAS J M, NARBON J J, AL A C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution[J]. International Journal of Adhesion and Adhesives, 2010, 30(3): 160-165. doi: 10.1016/j.ijadhadh.2009.12.003
    [15] WEI Kai, CHEN Yiwei, LI Maojun, et al. Strength and failure mechanism of composite-steel adhesive bond single lap joints[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-10.
    [16] HASHIM S, BERGGREEN C, TSOUVALIS N, et al. Fabrication, testing and analysis of steel/composite DLS adhesive joints[J]. Ships and Offshore Structures, 2011, 6(1-2): 115-126. doi: 10.1080/17445302.2010.522019
    [17] OSNES H, GUTHU G O, MCGEORGE D. Strength of bonded overlap composite joints in marine applications[M]. Composite Joints and Connections. Woodhead Publishing, 2011: 399-422.
    [18] HASHIM S, NISAR J, TSOUVALIS N, et al. Fabrication, testing and analysis of steel/composite DLS adhesive joints[J]. Soares, G. & Das (eds.) Analysis and design of marine structures, 2009: 379-385.
    [19] MATSUZAKI R, SHIBATA M, TODOROKI A. Improving performance of GFRP/aluminum single lap joints using bolted/co-cured hybrid method[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 154-163. doi: 10.1016/j.compositesa.2007.11.009
    [20] 荆楠. 碳纤维复合材料连接技术研究[J]. 科技风, 2019, (4): 206-207.

    JING Nan. The research of joint techniques for carbon fiber composite materials[J]. Technology Wind, 2019, (4): 206-207(in Chinese).
    [21] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A: applied science and manufacturing, 2007, 38(12): 2383-2397. doi: 10.1016/j.compositesa.2007.08.016
    [22] POTLURI P, HOGG P, ARSHAD M, et al. Influence of fibre architecture on impact damage tolerance in 3D woven composites[J]. Applied Composite Materials, 2012, 19: 799-812. doi: 10.1007/s10443-012-9256-9
    [23] POTLURI P, RAWAL A, RIVALDI M, et al. Geometrical modelling and control of a triaxial braiding machine for producing 3D preforms[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(6): 481-492. doi: 10.1016/S1359-835X(03)00061-7
    [24] HADER-KREGL L, WALLNER G M, KRALOVEC C, et al. Effect of inter-plies on the short beam shear delamination of steel/composite hybrid laminates[J]. The Journal of Adhesion2019, 95(12): 1088-1100.
    [25] HART-SMITH L J. Bonded-bolted composite joints[J]. Journal of Aircraft, 1985, 22(11): 993-1000. doi: 10.2514/3.45237
    [26] CHOWDHURY N M, WANG J, CHIU W K, et al. Static and fatigue testing bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy laminates used on aircraft structures[J]. Composite Structures, 2016, 142: 96-106. doi: 10.1016/j.compstruct.2016.01.078
    [27] CHEN Yiwei, YANG Xujing, LI Maojun, et al. Mechanical behavior and progressive failure analysis of riveted, bonded and hybrid joints with CFRP-aluminum dissimilar materials[J]. Thin-Walled Structures, 2019, 139: 271-280. doi: 10.1016/j.tws.2019.03.007
    [28] 王衔, 陈涛, 张天骏. CFRP板与钢板胶-螺混合双搭接接头拉伸性能试验研究[J]. 工业建筑, 2014, 44(10): 10-15,50.

    WANG Xian, CHEN Tao, ZHANG Tianjun. Experimental Study on Tensile Behaviors of Hybrid CFRP-Steel Double-Lap Joints Using Bolts And Adhesive[J]. Industrial Construction, 2014, 44(10): 10-15,50(in Chinese).
    [29] 卢嘉伟, 何晓聪, 丁文有, 等. 复合材料/铝合金黏接-自冲铆接头力学性能[J]. 兵器材料科学与工程, 2019, 42(2): 77-81.

    LU Jiawei, HE Xiaocong, DING Wenyou, et. al. Mechanical properties of adhesive SPR joint of CFRP and aluminum alloy[J]. Ordnance Material Science and Engineering, 2019, 42(2): 77-81(in Chinese).
    [30] 宋承裕, 何晓聪, 魏文杰, 等. 粘接剂对复合材料/钢自冲铆接头力学性能的影响[J]. 有色金属工程, 2020, 10(3): 13-17. doi: 10.3969/j.issn.2095-1744.2020.03.003

    SONG Chengyu, HE Xiaocong, WEI Wenjie, et. al. Effect of Adhesive on Mechanical Properties of Composite/Steel Self-piercing Joints[J]. Nonferrous Metals Engineering, 2020, 10(3): 13-17(in Chinese). doi: 10.3969/j.issn.2095-1744.2020.03.003
    [31] LOPEZ-CRUZ P, LALIBERT J, LESSARD L. Investigation of bolted/bonded composite joint behaviour using design of experiments[J]. Composite Structures, 2017, 170: 192-201. doi: 10.1016/j.compstruct.2017.02.084
    [32] 邓雅琼, 陈洋, 栗娜, 等. 三维编织复合材料与金属胶接结构的力学性能及优化[J]. 复合材料学报, 2018, 35(10): 2760-2767.

    DENG Yaqiong, CHEN Yang, LI Na, et. al. Mechanical Properties and Optimization Adhesive Structure of Three Dimensional Braided Composites and Metal[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2760-2767(in Chinese).
    [33] AL-MOSAWE A, AL-MAHAIDI R. Performance of CFRP-steel joints enhanced with bi-directional CFRP fabric[J]. Construction and Building Materials, 2019, 197: 72-82. doi: 10.1016/j.conbuildmat.2018.11.235
    [34] BOHLMANN R E, FOGARTY J H. Demonstration of a composite to steel deck joint on a Navy destroyer [C] //9th International Conference on Marine Applications of Composite Materials: paper L, Melbourne, FL, USA. 2002: 19-21.
    [35] 袁牧. 钻杆用碳纤维增强7075铝合金材料摩擦磨损性能研究[D]. 吉林大学, 2024.

    YUAN Mu. Study on the Friction and Wear Properties of Carbon Fiber Reinforced 7075 Aluminum Alloy Materials for Drill Rods [D]. Jilin University, 2024. (in Chinese)
    [36] 何晓红, 吕健, 翟少杰, 等. 钢/碳纤维复合材料胶-编混合搭接接头破坏试验及强度分析[J/OL]. 复合材料科学与工程, 1-10[2024-10-14]. http://kns.cnki.net/kcms/detail/10.1683.TU.20240625.1135.006.html.

    HE Xiaohong, LV Jian, ZHAI Shaojie, et. al. Experimental investigation and strength analysis of hybrid adhesive-woven bonding joints in steel/carbon fiber reinforced plastics [J/OL]. Composites Science and Engineering: 1-10. [2024-10-14]. http://kns.cnki.net/kcms/detail/10.1683.TU.20240625.1135.006.html (in Chinese).
    [37] ZHAO Zhongwei, ZHANG Mengzhou, GAO Youran, et al. Investigations on shear capacity of steel plates with local opening[J]. Journal of Constructional Steel Research, 2021, 179: 106518. doi: 10.1016/j.jcsr.2020.106518
    [38] Khan N A, Srivastava G. Models for strength and stiffness of steel plate shear walls with openings[C] //Structures. Elsevier, 2020, 27: 2096-2113.
    [39] SAAD-ELDEEN S, GARBATOV Y, SOARES C G. Buckling collapse tests of deteriorated steel plates with multiple circular openings[J]. Ocean Engineering, 2019, 172: 523-530. doi: 10.1016/j.oceaneng.2018.11.051
    [40] AL-ZUBAIDY H, AL-MAHAIDI R, ZHAO Xiaoling. Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads[J]. Composite Structures, 2012, 94(2): 510-518. doi: 10.1016/j.compstruct.2011.08.018
    [41] HU Bo, LI Yuan, JIANG Yuntian et al. Bond behavior of hybrid FRP-to-steel joints[J]. Composite Structures, 2020, 237: 111936. doi: 10.1016/j.compstruct.2020.111936
    [42] AKBAR I, OEHLERS D J, ALI M S M. Derivation of the bond-slip characteristics for FRP plated steel members[J]. Journal of Constructional Steel Research, 2010, 66(8-9): 1047-1056. doi: 10.1016/j.jcsr.2010.03.003
    [43] AL-ZUBAIDY H, AL-MAHAIDI R, ZHAO X L. Finite element modelling of CFRP/steel double strap joints subjected to dynamic tensile loadings[J]. Composite Structures, 2013, 99: 48-61. doi: 10.1016/j.compstruct.2012.12.003
    [44] AL-MOSAWE A, AL-MAHAIDI R. Performance of CFRP-steel joints enhanced with bi-directional CFRP fabric[J]. Construction and Building Materials, 2019, 197: 72-82. doi: 10.1016/j.conbuildmat.2018.11.235
    [45] 邹田春, 符记, 李龙辉, 等. 搭接长度对CFRP单搭接胶接接头拉伸性能及破坏特征的影响[J]. 材料工程, 2021, 49(7): 158-165. doi: 10.11868/j.issn.1001-4381.2020.000819

    ZOU Tianchun, FU Ji, LI Longhui, et. al. Effect of overlap length on tensile properties and failure characteristics of CFRP single lap adhesive joints[J]. Journal of Materials Engineering, 2021, 49(7): 158-165(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000819
    [46] 陈洋. 二维三轴混合编织复合材料和钢板单搭接接头的力学性能研究[D]. 重庆大学, 2019.

    CHEN Yang. Study on the Mechanical Properties of Single Lap Joints Made by Two-dimensional Triaxial Hybrid Braided Composites and Steel Sheet[D]. ChongQing University, 2019. (in Chinese)
    [47] 马威, 管海陆, 张晓琼, 等. 碳纤维/不锈钢极薄带纤维金属层板制备工艺及其弯曲性能研究[J]. 复合材料学报, 2023, 41: 1-11.

    MA Wei, GUAN Hailu, ZHANG Xiaoqiong, et. al. Preparation process and bending properties of CFRP/stainless steel ultra-thin strip fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2023, 41: 1-11(in Chinese).
    [48] ASTM D3039/D3039M-00. Standard test method for tensile properties of polymer matrix composite materials. American Society for Testing Materials; 2004.
    [49] 中国国家标准化管理委员会(标准制定单位). 胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124-2008[S]. 北京: 中国标准出版社, 2005.

    China National Standardization Administration (standard setting unit). Adhesives—Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124-2008[S]. BeiJing: Standards Press of China, 2005. (in Chinese)
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-09-16
  • 录用日期:  2024-10-02
  • 网络出版日期:  2024-10-24

目录

    /

    返回文章
    返回