Experimental study on the bonding performance between GFRP reinforcement and coal gangue concrete
-
摘要: 为研究不同影响因素对玻璃纤维增强树脂基复合材料GFRP (Glass fiber reinforced polymer)筋和煤矸石混凝土粘结性能的影响,进行了48个GFRP筋煤矸石混凝土试件的拉拔试验,分析了煤矸石取代率、GFRP筋直径、煤矸石混凝土强度、锚固长度等影响因素对GFRP筋与煤矸石混凝土粘结性能的影响。结果表明:GFRP筋和煤矸石混凝土试件的破坏形态有拔出破坏和劈裂破坏两种。GFRP筋与煤矸石混凝土的粘结-滑移曲线大致分3个阶段:上升段、下降段和残余段。随着煤矸石取代率的升高,极限粘结强度随之降低。在煤矸石混凝土基准强度C35组,煤矸石骨料取代率由0%增加到100%,极限粘结强度由5.5%下降至25.2%,高于煤矸石混凝土基准强度C50组的4.7%~21.2%;由于剪切滞后及泊松效应的影响,粘结强度随着筋直径的增大逐渐减小,直径16 mm的极限粘结强度大致为直径10 mm的77%;当锚固长度增加到一定值时,荷载不再增加,锚固长度从30 mm (2.5 d)增加到120 mm (10 d),极限粘结强度降低了22.89%。采用三段式粘结应力-滑移关系建立了GFRP筋煤矸石混凝土粘结滑移本构模型,为此类构件粘结锚固性能的研究奠定了理论基础。Abstract: To investigate the influence of different influencing factors on the bonding performance between glass fiber reinforced polymer reinforcement and coal gangue concrete, 48 GFRP reinforcement coal gangue concrete specimens were subjected to pull-out tests. The influence of factors such as coal gangue substitution rate, GFRP reinforcement diameter, coal gangue concrete strength, and anchoring length on the bonding performance between GFRP reinforcement and coal gangue concrete was analyzed. The results indicate that the failure modes of GFRP reinforcement and coal gangue concrete specimens include pull-out failure and splitting failure. The bond slip curve between GFRP reinforcement and coal gangue concrete can be roughly divided into three stages: ascent stage, descent stage, and residual stage. As the replacement rate of coal gangue increases, the ultimate bonding strength decreases. In the coal gangue concrete benchmark strengh C35 group, the replacement rate of coal gangue aggregate increases from 0% to 100%, and the ultimate bonding strength decreases from 5.5% to 25.2%, which is higher than the 4.7%-21.2% of coal gangue concrete benchmark strengh C50 group. Due to the influence of shear lag and Poisson's effect, the bond strength gradually decreases with the increase of reinforcement diameter. The ultimate bonding strength of 16 mm diameter is approximately 77% of that of 10 mm diameter. When the anchorage length increases to a certain value, the load no longer increases. The anchorage length increases from 30 mm (2.5 d) to 120 mm (10 d), and the ultimate bonding strength decreases by 22.89%. A three-stage bonding stress slip relationship was used to establish a bonding slip constitutive model for GFRP reinforced coal gangue concrete, laying a theoretical foundation for the study of bonding and anchoring performance of such components.
-
Key words:
- coal gangue concrete /
- GFRP reinforcement /
- pullout test /
- bond slip /
- experimental research
-
表 1 材料基本物理性能指标
Table 1. Basic physical propertier of materials
Type of coarse aggregate Apparent density/(kg·m−3) Bulk density/(kg·m−3) Water absorption rate/% Crushing value/% Coal gangue 2490 1254 9.6 18.9 Natural aggregate 2789 1470 1.3 7.4 表 2 煤矸石混凝土与普通混凝土配合比
Table 2. Mix proportion of defferent gangue substitution ratio
Concrete strength at 100% rate of coal gangue aggregate Coal gangue replacement rate/% Gangue/
(kg·m−3)Stone/
(kg·m−3)Sand/
(kg·m−3)Cement/
(kg·m−3)Water/
(kg·m−3)Fly ash/
(kg·m−3)Water reducing agent/
(kg·m−3)Additional water/
(kg·m−3)Cubic compressive strength/
MPaC35 0 — 769 769 376 171 94 3.8 0 44.38 25 192.3 603.7 769 376 171 94 3.8 13.8 42.34 50 384.5 384.5 769 376 171 94 3.8 27.5 40.71 75 603.7 192.3 769 376 171 94 3.8 41.3 39.95 100 769 — 769 376 171 94 3.8 55 38.27 C50 0 — 769 660 540 160 40 6.4 0 62.85 25 192.3 603.7 660 540 160 40 6.4 13.8 60.27 50 384.5 384.5 660 540 160 40 6.4 27.5 59.01 75 603.7 192.3 660 540 160 40 6.4 41.3 58.16 100 769 — 660 540 160 40 6.4 55 55.34 表 3 GFRP筋的力学性能及肋参数
Table 3. Mechanical properties and rib parameters of GFRP reinforcement
Reinforcement
materialDiameter/
mmElastic modulus/
GPaTensile strength/
MPaGFRP rib width/
mmConcrete rib
width/mmRib height/
mmGFRP 10 45.7 1032.7 8.01 2.19 0.29 12 45.0 951.3 8.11 2.23 0.33 14 44.6 807.0 8.15 2.13 0.34 16 43.2 729.2 8.83 2.14 0.36 表 4 试件设计参数
Table 4. Design parameters of test pieces
Number Specimen number Coal gangue replacement rate/% GFRP reinforcement diameter/mm Anchor length/mm 1 GC0-G-12-60 0 12 60 2 GC25-G-12-60 25 12 60 3 GC50-G-12-60 50 12 60 4 GC75-G-12-60 75 12 60 5 GC100-G-12-60 100 12 60 6 GC100-G-12-30 100 12 30 7 GC100-G-12-90 100 12 90 8 GC100-G-12-120 100 12 120 9 GC100-G-10-60 100 10 60 10 GC100-G-14-60 100 14 60 11 GC100-G-16-60 100 16 60 12 GC0-P-12-60 0 12 60 13 GC25-P-12-60 25 12 60 14 GC50-P-12-60 50 12 60 15 GC75-P-12-60 75 12 60 16 GC100-P-12-60 100 12 60 Notes: The naming convention for specimens is as follows: coal gangue replacement rate+concrete benchmark strength at 100% coal gangue aggregate substitution rate+GFRP reinforcement diameter+anchorage length. G represents the benchmark strength C50 of coal gangue concrete. P represents the benchmark strength C35 of coal gangue concrete. For example, specimen GC0-G-12-60 represents the coal gangue substitution rate of 0%, the coal gangue concrete benchmark strength of C50, the GFRP reinforcement diameter of 12 mm, and the anchorage length of 60 mm. 表 5 GFRP筋-煤矸石混凝土试件试验结果
Table 5. Test results of GFRP reinforcement-coal gangue concrete pieces
Number Specimen
numberUltimate
load/kNBond
strength/MPaAverage bond
strength/MPaPeak slip
amount/mmResidual
strength/MPaResidual slip
amount/mmFailure
mode1 GC0-G-12-60-1 34.56 15.28 15.14 4.69 5.33 12.15 P GC0-G-12-60-2 34.00 15.03 P GC0-G-12-60-3 34.20 15.12 P 2 GC25-G-12-60-1 33.43 14.78 14.42 4.54 3.90 11.72 P GC25-G-12-60-2 31.44 13.90 P GC25-G-12-60-3 33.00 14.59 P 3 GC50-G-12-60-1 31.19 13.79 13.10 4.21 3.48 10.97 P GC50-G-12-60-2 28.98 12.81 P GC50-G-12-60-3 28.73 12.70 P 4 GC75-G-12-60-1 27.17 12.01 12.74 4.05 3.47 12.12 P GC75-G-12-60-2 28.98 12.81 S GC75-G-12-60-3 30.29 13.39 P 5 GC100-G-12-60-1 26.17 11.57 11.93 4.15 3.95 11.96 P GC100-G-12-60-2 27.87 12.32 P GC100-G-12-60-3 26.89 11.89 P 6 GC100-G-12-30-1 15.09 13.34 13.02 3.90 4.14 10.78 P GC100-G-12-30-2 14.21 12.56 P GC100-G-12-30-3 14.87 13.15 P 7 GC100-G-12-90-1 37.02 10.91 10.92 4.4 3.79 9.73 P GC100-G-12-90-2 36.98 10.90 S GC100-G-12-90-3 37.19 10.96 P 8 GC100-G-12-120-1 46.73 10.33 10.04 4.61 3.32 11.21 S GC100-G-12-120-2 43.79 9.68 P GC100-G-12-120-3 45.78 10.12 S 9 GC100-G-10-60-1 24.73 13.12 13.17 4.06 3.88 11.23 P GC100-G-10-60-2 23.66 12.55 P GC100-G-10-60-3 26.11 13.85 P 10 GC100-G-14-60-1 30.16 11.43 11.10 3.90 3.90 11.85 P GC100-G-14-60-2 27.10 10.27 P GC100-G-14-60-3 30.64 11.61 S 11 GC100-G-16-60-1 29.38 9.74 10.16 4.07 4.14 11.45 P GC100-G-16-60-2 32.40 10.74 S GC100-G-16-60-3 30.19 10.01 P 12 GC0-P-12-60-1 32.05 14.17 14.63 4.42 4.22 10.92 S GC0-P-12-60-2 34.81 15.39 P GC0-P-12-60-3 32.39 14.32 P 13 GC25-P-12-60-1 28.46 12.58 13.82 4.36 4.42 10.06 P GC25-P-12-60-2 31.69 14.01 S GC25-P-12-60-3 33.59 14.85 P 14 GC50-P-12-60-1 26.85 11.87 12.84 4.14 3.68 9.87 P GC50-P-12-60-2 32.10 14.19 P GC50-P-12-60-3 28.16 12.45 S 15 GC75-P-12-60-1 25.72 11.37 11.09 3.97 3.97 10.42 P GC75-P-12-60-2 24.13 10.67 P GC75-P-12-60-3 25.40 11.23 S 16 GC100-P-12-60-1 22.78 10.07 9.95 3.67 3.31 11.00 S GC100-P-12-60-2 22.10 9.76 P GC100-P-12-60-3 22.62 10.00 P Notes: P represents pull-out failure; S represents splitting failure. 表 6 文献${\tau _{\text{u}}}$试验值与计算值对比
Table 6. Comparison of experimental and calculated ${\tau _{\text{u}}}$values in literature
Reference $ {f_{\text{c}}}^\prime $ $ c/{d_{\text{f}}} $ $ {d_{\text{f}}}/l $ Experimental value/MPa Calculated value/MPa Relative error/% Won[21] 73.68 5.27 0.25 18.91 17.12 6.10 93.83 5.27 0.25 21.48 20.04 6.71 Basaran[22] 29.14 4.50 0.10 10.74 9.46 11.89 Hu Chengchao[23] 28.20 4.19 0.20 10.44 9.64 7.67 Solyom[24] 66.10 5.75 0.20 18.09 17.04 5.80 Wang Yan[25] 40.60 1.60 0.20 9.27 8.60 7.28 Xue Weichen[26] 30.02 4.50 0.10 8.53 9.60 12.60 Dai Qianqian[27] 30.00 4.93 0.20 10.96 10.67 2.63 Notes: $ {f_{\text{c}}}^\prime $—Concrete compressive strength; $ c $—Thickness of concrete protective layer; $ {d_{\text{f}}} $—FRP reinforcement diameter; $ l $—Anchor length. -
[1] 李启辉. 煤矸石的性质及综合利用研究进展[J]. 应用化工, 2023, 52(5): 1576-1581. doi: 10.3969/j.issn.1671-3206.2023.05.053LI Qihui. Research progress on properties and comprehensive utilization of coal gangue[J]. Applied Chemical Industry, 2023, 52(5): 1576-1581(in Chinese). doi: 10.3969/j.issn.1671-3206.2023.05.053 [2] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165-178.LI Zhen, XUE Jia, ZHU Zhanglei, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utiliaztion of Mineral Resources, 2021, 41(6): 165-178(in Chinese). [3] GAO S, GUO L. Utilization of coal gangue as coarse aggregates in structural concrete[J]. Construction and Building Materials, 2020, (12): 121212. [4] LI Y, LIU S, GUAN X. Multitechnique investigation of concrete with coal gangue[J]. Construction and Building Materials, 2021, 301(9): 124114. [5] ZHAO Zhongwei, GAO Tian, LIU Jiaxing, et al. Local bearing capacity of steel beam webs with random pit corrosion[J]. Structures, 2023, 48: 1259-1270. doi: 10.1016/j.istruc.2023.01.044 [6] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials, 2013, 38: 274-284. doi: 10.1016/j.conbuildmat.2012.08.021 [7] LI J , WANG J . Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. [8] ZHANG Ni, JU Tengfei, QIU Rui. Experimental study on the bond-slip behavior of steel tube-coal gangue concrete[J]. International Journal of Pressure Vessels and Piping, 2024, (209): 105209. [9] ZHAN Ni, ZHAO Zhongwei, ZHENG Chenyang. Compression behavior of GFRP-coal gangue concrete-steel tubular columns[J]. International Journal of Pressure Vessels and Piping, 2022, 197: 104650. doi: 10.1016/j.ijpvp.2022.104650 [10] WANG Chaoqiang, DUAN Dingyi , LI Xin, et al. Safe and environmentally friendly use of coal gangue in C30 concrete[J]. Sustainable Chemistry and Pharmacy, 2024, 38101502. [11] MOUSSADIK A, FADILI E H, SAADI M , et al. Lightweight aerated concrete based on activated powders of coal gangue and fly ash[J]. Construction and Building Materials, 2024, 417135333. [12] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T20152-2012[S]. 北京: 中国建筑工业出版社, 2012.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of concrete structures: GB/T20152-2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese). [13] 吴丽丽, 王慧, 杨畅涵, 等. GFRP 筋与自密实混凝土黏结性能的试验研究[J]. 复合材料学报, 2021, 38(10): 3484-3494.WU Lili, WANG Hui, YANG Changhan, et al. Experimental study on bond properties between GFRP bars and self compacting concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3484-3494(in Chinese). [14] FAYSAL R M, BHUIYAN M M H, Al M K, et al. A review on the advances of the study on FRP-Concrete bond under hygrothermal exposure[J]. Construction and Building Materials, 2023, 363: 129818. doi: 10.1016/j.conbuildmat.2022.129818 [15] MALVAR L J. Bond stress-slip characteristics of FRP rebars[J]. Naval Facilities Engineering Service Center, 1995, 12(1): 34-47. [16] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of composites for construction, 2007, 1(2): 40-51. [17] COSENZA E, MANFREDI G, REALFONZO R. Analytical modelling of bond between frp reinforcing bars and concrete[J]. Non-metallic (FRP) reinforcement for concrete structures, 2005, 29: 164. [18] 郝庆多, 王言磊, 侯吉林, 等. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 158-165.HAO Qinguo, WANG Yanlei, HOU Jinlin, et al. Experimental study on bond behavior of GFRP ribbed rebars[J]. Engineering Mechanics, 2008, 25(10): 158-165(in Chinese). [19] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 7: 41-43+82.GAO Danying, ZHU Haitang, XIE Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 7: 41-43+82 (in Chinese). [20] 张海霞, 朱浮声. 考虑粘结滑移本构关系的FRP筋锚固长度[J]. 四川建筑科学研究, 2007, (4): 43-46.ZHANG Haixia, ZHU Fusheng. Study on the anchorage length of FRP bars with bond-slip constitutibe relationship[J]. Sichuan Building Science, 2007, (4): 43-46 (in Chinese). [21] WON J P, PARK C G, KIM H H, et al. Effect of fibers on the bonds between FRP reinforcing bars and high strength concrete[J]. Composites Part B: Engineering, 2008, 39(5): 747-755. doi: 10.1016/j.compositesb.2007.11.005 [22] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite structures, 2020, 242: 112185. doi: 10.1016/j.compstruct.2020.112185 [23] 胡成超, 高奎, 涂建维, 等. GFRP筋与箍筋约束混凝土之间粘结性能的试验研究[J]. 复合材料科学与工程, 2020, (10): 13-20. doi: 10.3969/j.issn.1003-0999.2020.10.002HU Chengchao, GAO Kui, TU Jianwei, et al. Experimental research on bond behavior between GFRP bars and stirrups-confined concret[J]. Composites Science and Engineering, 2020, (10): 13-20 (in Chinese). doi: 10.3969/j.issn.1003-0999.2020.10.002 [24] SOLYOM S, BALAZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials, 2020, 264: 119839. doi: 10.1016/j.conbuildmat.2020.119839 [25] 王言磊, 王密锋, 张学, 等. BFRP侧向约束对GFRP带肋筋与混凝土粘结性能的影响[J]. 复合材料科学与工程, 2020, (4): 5-12. doi: 10.3969/j.issn.1003-0999.2020.04.001WANG Yanlei, WANG Mifeng, ZHANG Xue, et al. Effects of BFRP lateral confinement on bond behavior between GFRP ribbed bars and concrete[J]. Composites Science and Engineering, 2020, (4): 5-12 (in Chinese). doi: 10.3969/j.issn.1003-0999.2020.04.001 [26] 薛伟辰, 郑乔文, 杨雨. 黏砂变形GFRP筋黏结性能研究[J]. 土木工程学报, 2007, 12: 59-68.XUE Weichen, ZHENG Qiaowen, YANG Yu. A study on the bond behavior of sand-coated and deformed GFRP rebars[J]. China Civil Engineering Journal, 2007, 12: 59-68 (in Chinese). [27] 代前前. GFRP筋与混凝土粘结性能试验研究[D]. 大连: 大连理工大学, 2017.DAI Qianqian. The experimental research on bond-slip performance of GFRP bar embedded in concrete [D]. Dalian: Dalian University of Technology, 2017 (in Chinese).
计量
- 文章访问数: 42
- HTML全文浏览量: 20
- 被引次数: 0