留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP筋与煤矸石混凝土粘结性能试验

张霓 邱睿 顾雪甜 董建强

张霓, 邱睿, 顾雪甜, 等. GFRP筋与煤矸石混凝土粘结性能试验[J]. 复合材料学报, 2024, 42(0): 1-18.
引用本文: 张霓, 邱睿, 顾雪甜, 等. GFRP筋与煤矸石混凝土粘结性能试验[J]. 复合材料学报, 2024, 42(0): 1-18.
ZHANG Ni, QIU Rui, GU Xuetian, et al. Experimental study on the bonding performance between GFRP reinforcement and coal gangue concrete[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Ni, QIU Rui, GU Xuetian, et al. Experimental study on the bonding performance between GFRP reinforcement and coal gangue concrete[J]. Acta Materiae Compositae Sinica.

GFRP筋与煤矸石混凝土粘结性能试验

基金项目: 辽宁省自然科学基金计划面上项目 (2022-MS-399);辽宁省大学生创新创业训练计划项目(S202310147010)
详细信息
    通讯作者:

    张霓,博士,副教授,硕士生导师,研究方向为固体废弃物资源化利用 E-mail: zhangni@lntu.edu.cn

  • 中图分类号: TU398

Experimental study on the bonding performance between GFRP reinforcement and coal gangue concrete

Funds: Liaoning Provincial Natural Science Foundation Program (2022-MS-399); Liaoning Province College Students' Innovation and Entrepreneurship Training Program Project (S202310147010)
  • 摘要: 为研究不同影响因素对玻璃纤维增强树脂基复合材料GFRP (Glass fiber reinforced polymer)筋和煤矸石混凝土粘结性能的影响,进行了48个GFRP筋煤矸石混凝土试件的拉拔试验,分析了煤矸石取代率、GFRP筋直径、煤矸石混凝土强度、锚固长度等影响因素对GFRP筋与煤矸石混凝土粘结性能的影响。结果表明:GFRP筋和煤矸石混凝土试件的破坏形态有拔出破坏和劈裂破坏两种。GFRP筋与煤矸石混凝土的粘结-滑移曲线大致分3个阶段:上升段、下降段和残余段。随着煤矸石取代率的升高,极限粘结强度随之降低。在煤矸石混凝土基准强度C35组,煤矸石骨料取代率由0%增加到100%,极限粘结强度由5.5%下降至25.2%,高于煤矸石混凝土基准强度C50组的4.7%~21.2%;由于剪切滞后及泊松效应的影响,粘结强度随着筋直径的增大逐渐减小,直径16 mm的极限粘结强度大致为直径10 mm的77%;当锚固长度增加到一定值时,荷载不再增加,锚固长度从30 mm (2.5 d)增加到120 mm (10 d),极限粘结强度降低了22.89%。采用三段式粘结应力-滑移关系建立了GFRP筋煤矸石混凝土粘结滑移本构模型,为此类构件粘结锚固性能的研究奠定了理论基础。

     

  • 图  1  粗骨料

    Figure  1.  Coarse aggregate and natural aggregate

    图  2  煤矸石骨料与天然骨料累计筛余曲线

    Figure  2.  Cumulative screening curve of coal gangue aggregate

    图  3  GFRP筋几何特征

    Figure  3.  Geometrical features of GFRP reinforcement

    图  4  拉拔试件模具

    Figure  4.  Mould of pull-out specimen

    图  5  拉拔试件示意图

    Figure  5.  Size chart of pull-out specimen

    图  6  试件制作

    Figure  6.  Test specimen production

    图  7  试验加载装置

    Figure  7.  Loading device of test

    图  8  GFRP筋拔出破坏

    Figure  8.  Pull-out failure of GFRP reinforcement

    图  9  混凝土劈裂破坏

    Figure  9.  Splitting failure of concrete

    图  10  GFRP筋与煤矸石混凝土粘结-滑移曲线

    Figure  10.  Bond slip curve between GFRP reinforcement and coal gangue concrete

    图  11  GFRP筋与煤矸石混凝土粘结力示意图

    Figure  11.  Schematic diagram of bonding force between GFRP reinforcement and coal gangue concrete

    图  12  煤矸石取代率对GFRP筋-煤矸石混凝土极限荷载和粘结强度的影响

    Figure  12.  Effect of coal gangue substitution rate on ultimate load and bond strength of GFRP reinforcement-coal gangue concrete

    图  13  煤矸石骨料取代率对GFRP筋-煤矸石混凝土粘结-滑移曲线的影响

    Figure  13.  Effect of aggregate substitution rate of coal gangue on bond-slip curve of GFRP reinforcement-coal gangue concrete

    图  14  GFRP筋直径对GFRP筋-煤矸石混凝土极限荷载和粘结强度的影响

    Figure  14.  Effect of GFRP bar diameter on ultimate load and bond strength of GFRP reinforcement-coal gangue concrete

    图  15  GFRP筋纵向受力时的横截面正应力分布图

    Figure  15.  Normal stress distribution diagram of GFRP bar under longitudinal stress

    图  16  GFRP筋直径对GFRP筋-煤矸石混凝土粘结-滑移曲线的影响

    Figure  16.  Effect of GFRP bar diameter on bond-slip curve of GFRP reinforcement-coal gangue concrete

    图  17  煤矸石混凝土强度对GFRP筋-煤矸石混凝土极限荷载和粘结强度的影响

    Figure  17.  Effect of coal gangue concrete strength on ultimate load and bond strength of GFRP reinforcement-coal gangue concrete

    图  18  煤矸石混凝土强度对GFRP筋-煤矸石混凝土粘结-滑移曲线的影响

    Figure  18.  Influence of strength of coal gangue concrete on bond-slip curve of GFRP reinforcement-coal gangue concrete

    图  19  锚固长度对GFRP筋-煤矸石混凝土极限荷载和粘结强度的影响

    Figure  19.  Effect of anchorage length on ultimate load and bond strength of GFRP reinforcement-coal gangue concrete

    图  20  锚固长度对GFRP筋-煤矸石混凝土粘结-滑移曲线的影响

    Figure  20.  Influence of anchorage length on bond-slip curve of GFRP reinforcement-coal gangue concrete

    图  21  GFRP筋-煤矸石混凝土粘结应力分布

    Figure  21.  Bond stress distribution of GFRP reinforcement-coal gangue concrete

    图  22  GFRP筋-煤矸石混凝土试验曲线与现有模型拟合

    Figure  22.  Fitting experimental curves with existing models for GFRP reinforcement-coal gangue concrete

    图  23  本文建议GFRP筋-煤矸石混凝土粘结-滑移本构关系

    Figure  23.  Bond-slip curve of GFRP reinforcement-coal gangue concrete proposed in this paper

    图  24  特征点处试验值与计算值对比

    Figure  24.  Comparison of test and calculated values at characteristic points

    表  1  材料基本物理性能指标

    Table  1.   Basic physical propertier of materials

    Type of coarse aggregate Apparent density/(kg·m−3) Bulk density/(kg·m−3) Water absorption rate/% Crushing value/%
    Coal gangue 2490 1254 9.6 18.9
    Natural aggregate 2789 1470 1.3 7.4
    下载: 导出CSV

    表  2  煤矸石混凝土与普通混凝土配合比

    Table  2.   Mix proportion of defferent gangue substitution ratio

    Concrete strength at 100% rate of coal gangue aggregate Coal gangue replacement rate/% Gangue/
    (kg·m−3)
    Stone/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Water/
    (kg·m−3)
    Fly ash/
    (kg·m−3)
    Water reducing agent/
    (kg·m−3)
    Additional water/
    (kg·m−3)
    Cubic compressive strength/
    MPa
    C35 0 769 769 376 171 94 3.8 0 44.38
    25 192.3 603.7 769 376 171 94 3.8 13.8 42.34
    50 384.5 384.5 769 376 171 94 3.8 27.5 40.71
    75 603.7 192.3 769 376 171 94 3.8 41.3 39.95
    100 769 769 376 171 94 3.8 55 38.27
    C50 0 769 660 540 160 40 6.4 0 62.85
    25 192.3 603.7 660 540 160 40 6.4 13.8 60.27
    50 384.5 384.5 660 540 160 40 6.4 27.5 59.01
    75 603.7 192.3 660 540 160 40 6.4 41.3 58.16
    100 769 660 540 160 40 6.4 55 55.34
    下载: 导出CSV

    表  3  GFRP筋的力学性能及肋参数

    Table  3.   Mechanical properties and rib parameters of GFRP reinforcement

    Reinforcement
    material
    Diameter/
    mm
    Elastic modulus/
    GPa
    Tensile strength/
    MPa
    GFRP rib width/
    mm
    Concrete rib
    width/mm
    Rib height/
    mm
    GFRP 10 45.7 1032.7 8.01 2.19 0.29
    12 45.0 951.3 8.11 2.23 0.33
    14 44.6 807.0 8.15 2.13 0.34
    16 43.2 729.2 8.83 2.14 0.36
    下载: 导出CSV

    表  4  试件设计参数

    Table  4.   Design parameters of test pieces

    Number Specimen number Coal gangue replacement rate/% GFRP reinforcement diameter/mm Anchor length/mm
    1 GC0-G-12-60 0 12 60
    2 GC25-G-12-60 25 12 60
    3 GC50-G-12-60 50 12 60
    4 GC75-G-12-60 75 12 60
    5 GC100-G-12-60 100 12 60
    6 GC100-G-12-30 100 12 30
    7 GC100-G-12-90 100 12 90
    8 GC100-G-12-120 100 12 120
    9 GC100-G-10-60 100 10 60
    10 GC100-G-14-60 100 14 60
    11 GC100-G-16-60 100 16 60
    12 GC0-P-12-60 0 12 60
    13 GC25-P-12-60 25 12 60
    14 GC50-P-12-60 50 12 60
    15 GC75-P-12-60 75 12 60
    16 GC100-P-12-60 100 12 60
    Notes: The naming convention for specimens is as follows: coal gangue replacement rate+concrete benchmark strength at 100% coal gangue aggregate substitution rate+GFRP reinforcement diameter+anchorage length. G represents the benchmark strength C50 of coal gangue concrete. P represents the benchmark strength C35 of coal gangue concrete. For example, specimen GC0-G-12-60 represents the coal gangue substitution rate of 0%, the coal gangue concrete benchmark strength of C50, the GFRP reinforcement diameter of 12 mm, and the anchorage length of 60 mm.
    下载: 导出CSV

    表  5  GFRP筋-煤矸石混凝土试件试验结果

    Table  5.   Test results of GFRP reinforcement-coal gangue concrete pieces

    Number Specimen
    number
    Ultimate
    load/kN
    Bond
    strength/MPa
    Average bond
    strength/MPa
    Peak slip
    amount/mm
    Residual
    strength/MPa
    Residual slip
    amount/mm
    Failure
    mode
    1 GC0-G-12-60-1 34.56 15.28 15.14 4.69 5.33 12.15 P
    GC0-G-12-60-2 34.00 15.03 P
    GC0-G-12-60-3 34.20 15.12 P
    2 GC25-G-12-60-1 33.43 14.78 14.42 4.54 3.90 11.72 P
    GC25-G-12-60-2 31.44 13.90 P
    GC25-G-12-60-3 33.00 14.59 P
    3 GC50-G-12-60-1 31.19 13.79 13.10 4.21 3.48 10.97 P
    GC50-G-12-60-2 28.98 12.81 P
    GC50-G-12-60-3 28.73 12.70 P
    4 GC75-G-12-60-1 27.17 12.01 12.74 4.05 3.47 12.12 P
    GC75-G-12-60-2 28.98 12.81 S
    GC75-G-12-60-3 30.29 13.39 P
    5 GC100-G-12-60-1 26.17 11.57 11.93 4.15 3.95 11.96 P
    GC100-G-12-60-2 27.87 12.32 P
    GC100-G-12-60-3 26.89 11.89 P
    6 GC100-G-12-30-1 15.09 13.34 13.02 3.90 4.14 10.78 P
    GC100-G-12-30-2 14.21 12.56 P
    GC100-G-12-30-3 14.87 13.15 P
    7 GC100-G-12-90-1 37.02 10.91 10.92 4.4 3.79 9.73 P
    GC100-G-12-90-2 36.98 10.90 S
    GC100-G-12-90-3 37.19 10.96 P
    8 GC100-G-12-120-1 46.73 10.33 10.04 4.61 3.32 11.21 S
    GC100-G-12-120-2 43.79 9.68 P
    GC100-G-12-120-3 45.78 10.12 S
    9 GC100-G-10-60-1 24.73 13.12 13.17 4.06 3.88 11.23 P
    GC100-G-10-60-2 23.66 12.55 P
    GC100-G-10-60-3 26.11 13.85 P
    10 GC100-G-14-60-1 30.16 11.43 11.10 3.90 3.90 11.85 P
    GC100-G-14-60-2 27.10 10.27 P
    GC100-G-14-60-3 30.64 11.61 S
    11 GC100-G-16-60-1 29.38 9.74 10.16 4.07 4.14 11.45 P
    GC100-G-16-60-2 32.40 10.74 S
    GC100-G-16-60-3 30.19 10.01 P
    12 GC0-P-12-60-1 32.05 14.17 14.63 4.42 4.22 10.92 S
    GC0-P-12-60-2 34.81 15.39 P
    GC0-P-12-60-3 32.39 14.32 P
    13 GC25-P-12-60-1 28.46 12.58 13.82 4.36 4.42 10.06 P
    GC25-P-12-60-2 31.69 14.01 S
    GC25-P-12-60-3 33.59 14.85 P
    14 GC50-P-12-60-1 26.85 11.87 12.84 4.14 3.68 9.87 P
    GC50-P-12-60-2 32.10 14.19 P
    GC50-P-12-60-3 28.16 12.45 S
    15 GC75-P-12-60-1 25.72 11.37 11.09 3.97 3.97 10.42 P
    GC75-P-12-60-2 24.13 10.67 P
    GC75-P-12-60-3 25.40 11.23 S
    16 GC100-P-12-60-1 22.78 10.07 9.95 3.67 3.31 11.00 S
    GC100-P-12-60-2 22.10 9.76 P
    GC100-P-12-60-3 22.62 10.00 P
    Notes: P represents pull-out failure; S represents splitting failure.
    下载: 导出CSV

    表  6  文献${\tau _{\text{u}}}$试验值与计算值对比

    Table  6.   Comparison of experimental and calculated ${\tau _{\text{u}}}$values in literature

    Reference $ {f_{\text{c}}}^\prime $ $ c/{d_{\text{f}}} $ $ {d_{\text{f}}}/l $ Experimental value/MPa Calculated value/MPa Relative error/%
    Won[21] 73.68 5.27 0.25 18.91 17.12 6.10
    93.83 5.27 0.25 21.48 20.04 6.71
    Basaran[22] 29.14 4.50 0.10 10.74 9.46 11.89
    Hu Chengchao[23] 28.20 4.19 0.20 10.44 9.64 7.67
    Solyom[24] 66.10 5.75 0.20 18.09 17.04 5.80
    Wang Yan[25] 40.60 1.60 0.20 9.27 8.60 7.28
    Xue Weichen[26] 30.02 4.50 0.10 8.53 9.60 12.60
    Dai Qianqian[27] 30.00 4.93 0.20 10.96 10.67 2.63
    Notes: $ {f_{\text{c}}}^\prime $—Concrete compressive strength; $ c $—Thickness of concrete protective layer; $ {d_{\text{f}}} $—FRP reinforcement diameter; $ l $—Anchor length.
    下载: 导出CSV
  • [1] 李启辉. 煤矸石的性质及综合利用研究进展[J]. 应用化工, 2023, 52(5): 1576-1581. doi: 10.3969/j.issn.1671-3206.2023.05.053

    LI Qihui. Research progress on properties and comprehensive utilization of coal gangue[J]. Applied Chemical Industry, 2023, 52(5): 1576-1581(in Chinese). doi: 10.3969/j.issn.1671-3206.2023.05.053
    [2] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165-178.

    LI Zhen, XUE Jia, ZHU Zhanglei, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utiliaztion of Mineral Resources, 2021, 41(6): 165-178(in Chinese).
    [3] GAO S, GUO L. Utilization of coal gangue as coarse aggregates in structural concrete[J]. Construction and Building Materials, 2020, (12): 121212.
    [4] LI Y, LIU S, GUAN X. Multitechnique investigation of concrete with coal gangue[J]. Construction and Building Materials, 2021, 301(9): 124114.
    [5] ZHAO Zhongwei, GAO Tian, LIU Jiaxing, et al. Local bearing capacity of steel beam webs with random pit corrosion[J]. Structures, 2023, 48: 1259-1270. doi: 10.1016/j.istruc.2023.01.044
    [6] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials, 2013, 38: 274-284. doi: 10.1016/j.conbuildmat.2012.08.021
    [7] LI J , WANG J . Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946.
    [8] ZHANG Ni, JU Tengfei, QIU Rui. Experimental study on the bond-slip behavior of steel tube-coal gangue concrete[J]. International Journal of Pressure Vessels and Piping, 2024, (209): 105209.
    [9] ZHAN Ni, ZHAO Zhongwei, ZHENG Chenyang. Compression behavior of GFRP-coal gangue concrete-steel tubular columns[J]. International Journal of Pressure Vessels and Piping, 2022, 197: 104650. doi: 10.1016/j.ijpvp.2022.104650
    [10] WANG Chaoqiang, DUAN Dingyi , LI Xin, et al. Safe and environmentally friendly use of coal gangue in C30 concrete[J]. Sustainable Chemistry and Pharmacy, 2024, 38101502.
    [11] MOUSSADIK A, FADILI E H, SAADI M , et al. Lightweight aerated concrete based on activated powders of coal gangue and fly ash[J]. Construction and Building Materials, 2024, 417135333.
    [12] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T20152-2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of concrete structures: GB/T20152-2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [13] 吴丽丽, 王慧, 杨畅涵, 等. GFRP 筋与自密实混凝土黏结性能的试验研究[J]. 复合材料学报, 2021, 38(10): 3484-3494.

    WU Lili, WANG Hui, YANG Changhan, et al. Experimental study on bond properties between GFRP bars and self compacting concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3484-3494(in Chinese).
    [14] FAYSAL R M, BHUIYAN M M H, Al M K, et al. A review on the advances of the study on FRP-Concrete bond under hygrothermal exposure[J]. Construction and Building Materials, 2023, 363: 129818. doi: 10.1016/j.conbuildmat.2022.129818
    [15] MALVAR L J. Bond stress-slip characteristics of FRP rebars[J]. Naval Facilities Engineering Service Center, 1995, 12(1): 34-47.
    [16] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of composites for construction, 2007, 1(2): 40-51.
    [17] COSENZA E, MANFREDI G, REALFONZO R. Analytical modelling of bond between frp reinforcing bars and concrete[J]. Non-metallic (FRP) reinforcement for concrete structures, 2005, 29: 164.
    [18] 郝庆多, 王言磊, 侯吉林, 等. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 158-165.

    HAO Qinguo, WANG Yanlei, HOU Jinlin, et al. Experimental study on bond behavior of GFRP ribbed rebars[J]. Engineering Mechanics, 2008, 25(10): 158-165(in Chinese).
    [19] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 7: 41-43+82.

    GAO Danying, ZHU Haitang, XIE Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 7: 41-43+82 (in Chinese).
    [20] 张海霞, 朱浮声. 考虑粘结滑移本构关系的FRP筋锚固长度[J]. 四川建筑科学研究, 2007, (4): 43-46.

    ZHANG Haixia, ZHU Fusheng. Study on the anchorage length of FRP bars with bond-slip constitutibe relationship[J]. Sichuan Building Science, 2007, (4): 43-46 (in Chinese).
    [21] WON J P, PARK C G, KIM H H, et al. Effect of fibers on the bonds between FRP reinforcing bars and high strength concrete[J]. Composites Part B: Engineering, 2008, 39(5): 747-755. doi: 10.1016/j.compositesb.2007.11.005
    [22] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite structures, 2020, 242: 112185. doi: 10.1016/j.compstruct.2020.112185
    [23] 胡成超, 高奎, 涂建维, 等. GFRP筋与箍筋约束混凝土之间粘结性能的试验研究[J]. 复合材料科学与工程, 2020, (10): 13-20. doi: 10.3969/j.issn.1003-0999.2020.10.002

    HU Chengchao, GAO Kui, TU Jianwei, et al. Experimental research on bond behavior between GFRP bars and stirrups-confined concret[J]. Composites Science and Engineering, 2020, (10): 13-20 (in Chinese). doi: 10.3969/j.issn.1003-0999.2020.10.002
    [24] SOLYOM S, BALAZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials, 2020, 264: 119839. doi: 10.1016/j.conbuildmat.2020.119839
    [25] 王言磊, 王密锋, 张学, 等. BFRP侧向约束对GFRP带肋筋与混凝土粘结性能的影响[J]. 复合材料科学与工程, 2020, (4): 5-12. doi: 10.3969/j.issn.1003-0999.2020.04.001

    WANG Yanlei, WANG Mifeng, ZHANG Xue, et al. Effects of BFRP lateral confinement on bond behavior between GFRP ribbed bars and concrete[J]. Composites Science and Engineering, 2020, (4): 5-12 (in Chinese). doi: 10.3969/j.issn.1003-0999.2020.04.001
    [26] 薛伟辰, 郑乔文, 杨雨. 黏砂变形GFRP筋黏结性能研究[J]. 土木工程学报, 2007, 12: 59-68.

    XUE Weichen, ZHENG Qiaowen, YANG Yu. A study on the bond behavior of sand-coated and deformed GFRP rebars[J]. China Civil Engineering Journal, 2007, 12: 59-68 (in Chinese).
    [27] 代前前. GFRP筋与混凝土粘结性能试验研究[D]. 大连: 大连理工大学, 2017.

    DAI Qianqian. The experimental research on bond-slip performance of GFRP bar embedded in concrete [D]. Dalian: Dalian University of Technology, 2017 (in Chinese).
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-08-18
  • 录用日期:  2024-09-03
  • 网络出版日期:  2024-09-12

目录

    /

    返回文章
    返回