留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP筋增强ECC梁弯曲性能试验研究

周甲佳 温金鑫 景川 赵军

周甲佳, 温金鑫, 景川, 等. CFRP筋增强ECC梁弯曲性能试验研究[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 周甲佳, 温金鑫, 景川, 等. CFRP筋增强ECC梁弯曲性能试验研究[J]. 复合材料学报, 2022, 40(0): 1-12
Jiajia ZHOU, Jinxin WEN, Chuan JING, Jun ZHAO. Experimental study on flexural performance of ECC beams reinforced with CFRP bars[J]. Acta Materiae Compositae Sinica.
Citation: Jiajia ZHOU, Jinxin WEN, Chuan JING, Jun ZHAO. Experimental study on flexural performance of ECC beams reinforced with CFRP bars[J]. Acta Materiae Compositae Sinica.

CFRP筋增强ECC梁弯曲性能试验研究

基金项目: 国家自然基金(51708510);中原千人计划-中原科技创新领军人才项目(ZYQR201912029);教育部长江学者和创新团队发展计划项目(IRT_16R67);河南省高校科技创新团队支持计划(20IRTSTHN009)
详细信息
    通讯作者:

    赵军,博士,教授 ,博士生导师,研究方向为工程材料和结构的力学行为及应用  E-mail:zhaoj@zzu.edu.cn

  • 中图分类号: TU528

Experimental study on flexural performance of ECC beams reinforced with CFRP bars

  • 摘要: 为研究碳纤维增强树脂复合材料(Carbon Fiber Reinforced Polymer,CFRP)筋/超高韧性纤维增强水泥基复合材料(Engineered Cementitious Composite,ECC)梁的抗弯性能,对3根CFRP筋/ECC梁、1根玻璃纤维增强树脂复合材料(Glass Fiber Reinforced Polymer,GFRP)筋/梁和1根CFRP筋混凝土梁进行了四点弯曲试验,分析了配筋率、纤维增强树脂复合材料(Fiber Reinforced Polymer,FRP)筋类型和基体类型对梁抗弯性能的影响。试验结果表明:CFRP筋/ECC梁与GFRP筋/ECC梁和CFRP筋混凝土梁类似,均经历了弹性阶段、带裂缝工作阶段和破坏阶段;配筋率对CFRP筋/ECC梁的受弯性能影响较大。随着配筋率的增加,CFRP筋/ECC梁的承载能力不断提高,延性性能逐渐减弱;ECC材料优异的应变硬化能力和受压延性,使得CFRP筋/ECC梁的极限承载能力和变形能力均优于CFRP筋混凝土梁;由于ECC材料多裂缝开裂能力,CFRP筋/ECC梁开裂后,纵筋表面应变分布比CFRP筋混凝土梁更为均匀; 由于聚乙烯醇(Polyvinyl Alcohol,PVA)纤维的桥联作用,CFRP筋/ECC梁破坏时,其表面出现了大量的细密裂缝,且能保持较好的完整性和自复位能力;正常使用阶段,CFRP筋/ECC梁的最大弯曲裂缝宽度均小于CFRP筋混凝土梁。最后,根据试验结果,建立了基于等效应力图的CFRP筋/ECC梁弯曲承载力简化计算模型,确定模型中的相关系数。由简化模型计算的极限承载力与试验结果具有较好的相关性。

     

  • 图  1  梁试件几何尺寸和构造

    Figure  1.  Geometry and structural details of specimen

    图  2  ECC材料单轴拉伸应力-应变曲线

    Figure  2.  Tensile stress-strain curves of ECC samples

    图  3  试验装置

    Figure  3.  Test setup

    图  4  FRP筋增强ECC梁及FRP筋/混凝土梁弯矩-挠度曲线

    Figure  4.  Moment-deflection curves of ECC beams reinforced with FRP bars and concrete beam reinforced with FRP bars

    Note: l0 means the span of the tested beam

    图  5  不同荷载下FRP筋增强ECC梁和FRP筋/混凝土梁表面应变分布

    Figure  5.  Surface strain distributions of ECC beam reinforced with FRP bars and concrete beam reinforced with FRP bars under different loads

    图  6  FRP筋增强ECC梁和FRP筋/混凝土梁弯矩-纵筋应变曲线

    Figure  6.  Moment-strain curves of ECC beam reinforced with FRP bars and concrete beam reinforced with FRP bars

    图  7  FRP筋增强ECC梁和FRP筋/混凝土梁破坏模式

    Figure  7.  Typical failure modes of ECC beams reinforced with FRP bars and concrete beam reinforced with FRP bars

    图  8  FRP筋增强ECC梁和FRP筋/混凝土梁荷载-裂缝宽度曲线

    Figure  8.  Load-crack widths curves of ECC beams reinforced with FRP bars and concrete beam reinforced with FRP bars

    图  9  ECC材料单轴应力-应变曲线

    Figure  9.  Uniaxial stress-strain curves of ECC

    图  10  破坏阶段梁截面上应力和应变分布

    Figure  10.  Stress and strain distribution of the tested beams at failure stage

    c represents the height of the actual compression zone; σ0 means the elastic ultimate strength of ECC under uniaxial compression; fcp represents the uniaxial compressive strength of ECC; σcs represents the residual compressive strength of ECC when reaches the ultimate compressive strain; h0 is the effective height of beam section; af represents the distance from the resultant force point of FRP bars to the tensile edge of the beam; k1, k2, k3, k4, k5 are related material coefficients

    图  11  梁正截面抗弯承载力计算简图

    Figure  11.  Calculation diagram of flexural bearing capacity of beams

    y1 is the compression zone height of ECC; y2 is the tension zone height of ECC; α1 and α2 arecoefficients of equivalent rectangular stress block for ECC

    表  1  梁试件主要参数

    Table  1.   Detailed parameters of tested beams

    No.Dimension of the
    beam(mm×mm×mm)
    FRP rebarMatrix typeLongitu-
    dinal bar
    Reinforc-
    ement ratio/%
    StirrupSupplementary
    reinforcement
    3CFRP(6)/ECC120×160×2000CFRPECC3Φ60.54Φ8@802Φ8
    2CFRP(10)/ECC120×160×2000CFRPECC2Φ101.01Φ8@802Φ8
    3CFRP(13)/ECC120×160×2000CFRPECC3Φ132.55Φ8@802Φ8
    3GFRP(10)/ECC120×160×2000GFRPECC3Φ101.51Φ8@802Φ8
    3CFRP(10)/PC120×160×2000CFRPConcrete3Φ101.51Φ8@802Φ8
    Notes:3CFRP(6) means 3 CFRP rebars with the diameter of 6 mm, “PC” means plain concrete.
    下载: 导出CSV

    表  2  筋材基本力学参数

    Table  2.   Mechanical parameters of FRP rebars

    FRPD
    /mm
    ffu
    /MPa
    Ef
    /GPa
    εfu
    /%
    CFRP62700163.61.65
    102436143.31.7
    132001.1132.52.0
    GFRP101080.050.02.0
    Notes: D is the diameter of FRP rebar; ffu is the tensile strength of FRP rebar; Ef is the elastic modulus of FRP rebar; εfu is the ultimate tensile strain of FRP rebar.
    下载: 导出CSV

    表  3  ECC配合比

    Table  3.   Mix proportion of ECC

    Cement
    +Fly ash
    Silica sandWaterFiberSuper-
    plasticizer
    10.20.280.0090.006
    下载: 导出CSV

    表  4  PVA纤维的材料性能

    Table  4.   Material properties of PVA fiber

    L
    /mm
    df
    /µm
    ffiber
    /MPa
    δf
    /%
    Efiber
    /GPa
    ρ
    /(g·cm−3)
    12391620742.81.6
    Notes: df is the diameter of PVA fiber; L is length of PVA fiber; ρ is the density; ffiber is the tensile strength of fiber; Efiber is the elastic modulus of fiber; δf is the elongation of PVA fiber.
    下载: 导出CSV

    表  5  FRP筋增强ECC梁和FRP筋/混凝土梁试验结果

    Table  5.   Test results of ECC beam reinforced with FRP bars and concrete beam reinforced with FRP bars

    No.Mcr
    /(kN·m)
    Mu
    /(kN·m)
    Δcr
    /mm
    Δu
    /mm
    Failure mode
    3CFRP(6)/ECC1.0919.670.2938.4ECC crushed
    2CFRP(10)/ECC1.1322.830.3633.28ECC crushed
    3CFRP(13)/ECC1.1431.410.3728.73ECC crushed
    3GFRP(10)/ECC1.1120.760.4445.31ECC crushed
    3CFRP(10)/PC1.4221.920.2324.98Concrete crushed
    Notes: Mcr is the crack moment; Mu is the ultimate moment; Δcr is the crack deflection at mid-span; Δu is the ultimate deflection at mid span.
    下载: 导出CSV

    表  6  挠度为l0/200时各梁跨中位置CFRP筋应变

    Table  6.   Strain of CFRP rebar at midspan of the tested beam with deflection l0/200

    No.Strain of CFRP rebar at midspan/10-6
    3CFRP(6)/ECC3065
    2CFRP(10)/ECC3066
    3CFRP(13)/ECC2349
    3GFRP(10)/ECC2660
    3CFRP(10)/PC3200
    Note: l0 means the span of the tested beams.
    下载: 导出CSV

    表  7  FRP筋/ECC梁受压区高度计算结果

    Table  7.   Calculation results of the actual compression zone height of ECC beams reinforced with FRP bars

    No.Reinforc-
    ement ratio/%
    c
    /
    mm
    cb
    /
    mm
    Failure
    mode
    3CFRP(6)/ECC0.5445.8537.36ECC crushed
    2CFRP(10)/ECC1.0153.736.57ECC crushed
    3CFRP(13)/ECC2.5570.0532.45ECC crushed
    3GFRP(10)/ECC1.5144.5032.45ECC crushed
    Note: cb represents the actual compression zone height at boundary failure.
    下载: 导出CSV

    表  8  FRP筋/ECC梁等效矩形应力图系数

    Table  8.   Equivalent rectangular stress coefficients of FRP rebar reinforced ECC beams

    No.Reinforcement ratio/%α1β1α2β2
    3GFRP(10)/ECC0.540.7680.8530.8280.925
    3CFRP(6)/ECC1.010.7680.8530.8200.927
    2CFRP(10)/ECC2.550.7680.8530.7840.938
    3CFRP(13)/ECC1.510.7680.8530.7350.954
    下载: 导出CSV

    表  9  FRP筋/ECC梁极限承载力试验值与计算值对比

    Table  9.   Comparison of experimental and calculated ultimate bearing capacity of FRP bars reinforced ECC beams

    No.Mu,exp/(kN·m)Mu,cal/(kN·m)Mu,cal/Mu,exp
    3CFRP(6)/ECC19.6719.881.011
    2CFRP(10)/ECC22.8321.470.940
    3CFRP(13)/ECC31.4128.300.919
    3GFRP(10)/ECC20.7620.060.966
    Notes: Mu,exp represents the test value of ultimate bending moment; Mu,cal represents the calculated value of ultimate bending moment.
    下载: 导出CSV
  • [1] YUAN F, WU Y F. Analytical method for derivation of stress block parameters for flexural design of FRP reinforced concrete members[J]. Composite Structures,2019,229:111459. doi: 10.1016/j.compstruct.2019.111459
    [2] 刘晋宏, 罗小勇, 肖烨. 钢筋非均匀锈蚀及剩余截面积分布模型[J]. 华中科技大学学报(自然科学版), 2021, 49(11):83-88.

    LIU Jinhong, LUO Xiaoyong, XIAO Ye. Non-uniform corrosion and distribution models of residual cross-sectional areas of rebars[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition),2021,49(11):83-88(in Chinese).
    [3] 王洋, 董恒磊, 王震宇. GFRP筋混凝土梁受弯性能试验[J]. 哈尔滨工业大学学报, 2018, 50(12):23-30. doi: 10.11918/j.issn.0367-6234.201804109

    WANG Yang, DONG Henglei, WANG Zhenyu. Flexural experiment of concrete beams reinforced with GFRP bars[J]. Journal of Harbin Institute of Technology,2018,50(12):23-30(in Chinese). doi: 10.11918/j.issn.0367-6234.201804109
    [4] DONG Z Q, Wu G, Zhao X L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials,2018,192(2018):671-682.
    [5] 朱海堂, 程晟钊, 高丹盈, 等. BFRP筋钢纤维高强混凝土梁受弯承载力试验与理论[J]. 复合材料学报, 2018, 35(12):3313-3323.

    ZHU Haitang, CHENG Shengzhao, GAO Danying, et al. Experimental and theoretical study on the flexural capacity of high-strength concrete beams reinforced with BFRP bars and steel fiber[J]. Acta Materiae Compositae Sinica,2018,35(12):3313-3323(in Chinese).
    [6] EL-NEMR A, AHMED E A, EL-SAFTY A, et al. Evaluation of the flexural strength and serviceability of concrete beams reinforced with different types of GFRP bars[J]. Engineering Structures,2018,173:606-619. doi: 10.1016/j.engstruct.2018.06.089
    [7] JU M, PARK Y, PARK C. Cracking control comparison in the specifications of serviceability in cracking for FRP reinforced concrete beams[J]. Composite Structures,2017,182:674-684. doi: 10.1016/j.compstruct.2017.09.016
    [8] XIAO S H, LIN J X, LI L J, et al. Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars[J]. Journal of Building Engineering,2021,43:103087. doi: 10.1016/j.jobe.2021.103087
    [9] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of engineering mechanics,1992,118(11):2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [10] XU L Y, HUANG B T, LI V C, et al. High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates[J]. Cement and Concrete Composites,2022,125:104296. doi: 10.1016/j.cemconcomp.2021.104296
    [11] XU S L, XU H L, HUANG B T, et al. Development of ultrahigh-strength ultrahigh-toughness cementitious composites (UHS-UHTCC) using polyethylene and steel fibers[J]. Composites Communications,2021:100992.
    [12] WU C, LEUNG C K Y, LI V C. Derivation of crack bridging stresses in engineered cementitious composites under combined opening and shear displacements[J]. Cement and Concrete Research,2018,107:253-263. doi: 10.1016/j.cemconres.2018.02.027
    [13] LI V C, Wang S. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams[J]. Materials Journal,2002,99(1):11-21.
    [14] YUAN F, PAN J L, LEUNG C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer[J]. Journal of Composites for Construction,2013,17(5):591-602. doi: 10.1061/(ASCE)CC.1943-5614.0000381
    [15] 周甲佳, 姚少科, 景 川, 等. FRP筋-ECC梁受弯性能[J]. 建筑科学与工程学报, 2020, 37(6):46-54.

    ZHOU Jiajia, YAO Shaoke, JING Chuan, et al. Flexural Behavior of FRP-reinforced ECC Beam[J]. Journal of Architecture and Civil Engineering,2020,37(6):46-54(in Chinese).
    [16] 蒋祖发. FRP筋ECC梁受弯性能研究 [D]. 郑州: 郑州大学, 2020.

    JIANG Zufa. Study on Flexural Behavior of FRP Rebar Reinforced ECC Beams [D]. Zhengzhou: Zhengzhou University, 2020. (in Chinese).
    [17] GE W J, ASHOUR A F, CAO D F, et al. Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars[J]. Composite Structures,2019,208:454-465. doi: 10.1016/j.compstruct.2018.10.026
    [18] GE W J, ASHOUR A F, Yu J M, et al. Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars[J]. Journal of Composites for Construction,2019,23(1):04018069. doi: 10.1061/(ASCE)CC.1943-5614.0000910
    [19] YUAN F, HU R. Flexural behaviour of ECC and ECC–concrete composite beams reinforced with hybrid FRP and steel bars[J]. Advances in Structural Engineering,2021,13694332211020389.
    [20] CAI J M, PAN J L, ZHOU X M. Flexural behavior of basalt FRP reinforced ECC and concrete beams[J]. Construction and Building Materials,2017,142:423-430. doi: 10.1016/j.conbuildmat.2017.03.087
    [21] HOU W, Li Z Q, Gao W Y, et al. Flexural behavior of RC beams strengthened with BFRP bars-reinforced ECC matrix[J]. Composite Structures,2020,241:112092. doi: 10.1016/j.compstruct.2020.112092
    [22] ZHANG L, Zheng Y, Yu Y, et al. Structural performance evaluation of ECC link slabs reinforced with FRP bars for jointless bridge decks[J]. Construction and Building Materials,2021,304:124462. doi: 10.1016/j.conbuildmat.2021.124462
    [23] 何佶轩. FRP增强ECC梁及ECC/混凝土组合梁抗剪性能研究[D]. 南京: 东南大学, 2016.

    HE Jixuan. Study on shear behaviors of FRP reinforced ECC beams and ECC/concrete composite beam[D]. Nan Jing: Southeast University, 2016 (in Chinese).
    [24] 廖桥, 苏元瑞, 余江滔, 等. 海水海砂ECC梁的抗剪性能试验及有限元模拟[J/OL]. 复合材料学报: 1-13[2022-01-14]. DOI: 10.13801/j. cnki. fhclxb. 20210911.002.

    LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams [J/OL]. Acta Materiae Compositae Sinica, 1-13[2022-01-14]. DOI:10.13801/j.cnki.fhclxb.20210911.002 (in Chinese).
    [25] ZHOU J, Shen W, Wang S. Experimental study on torsional behavior of FRC and ECC beams reinforced with GFRP bars[J]. Construction and Building Materials,2017,152:74-81. doi: 10.1016/j.conbuildmat.2017.06.131
    [26] FISHCHER G, LI V C. Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal,2003,100(1):25-35.
    [27] YUAN F, PAN J L, DONG L T, et al. Mechanical behaviors of steel reinforced ECC or ECC/concrete composite beams under reversed cyclic loading[J]. Journal of Materials in Civil Engineering,2014,26(8):04014047. doi: 10.1061/(ASCE)MT.1943-5533.0000935
    [28] American Society for Testing Materials. ASTM D7205/D7205M-06 Standard test method for tensile properties of fiber reinforced polymer matrix composite bars[S]. American: American Society for Testing Materials, 2006.
    [29] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608-2020 [S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction. Beijing: China Planning Press, 2020. (in Chinese)
    [30] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of materials in civil engineering,2015,27(1):04014111. doi: 10.1061/(ASCE)MT.1943-5533.0001034
    [31] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010 [S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design code for concrete structures: GB 50010-2010 [S]. Beijing: China Building Industry Press, 2015. (in Chinese)
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-03-02
  • 修回日期:  2022-02-19
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回