留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双动态网络的导热自修复石墨烯/聚脲复合材料

耿双 伍斌 曹明 陈鹏 张宇 宇平 夏茹

耿双, 伍斌, 曹明, 等. 基于双动态网络的导热自修复石墨烯/聚脲复合材料[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 耿双, 伍斌, 曹明, 等. 基于双动态网络的导热自修复石墨烯/聚脲复合材料[J]. 复合材料学报, 2024, 42(0): 1-10.
GENG Shuang, WU Bin, CAO Ming, et al. A graphene/polyurea composite with both thermal conduction and self-healing functions based on dual dynamic networks[J]. Acta Materiae Compositae Sinica.
Citation: GENG Shuang, WU Bin, CAO Ming, et al. A graphene/polyurea composite with both thermal conduction and self-healing functions based on dual dynamic networks[J]. Acta Materiae Compositae Sinica.

基于双动态网络的导热自修复石墨烯/聚脲复合材料

基金项目: 安徽省自然科学基金面上项目(2018085ME153);安徽省绿色高分子材料重点实验开放课题(KF202305)
详细信息
    通讯作者:

    宇平,博士,讲师,硕士生导师,研究方向为动态高分子材料与聚酰亚胺材料 E-mail: yup@jou.edu.cn

    夏茹,博士,教授,硕士生导师,研究方向为聚合物基复合材料 E-mail: xiarucn@ahu.edu.cn

  • 中图分类号: TB332

A graphene/polyurea composite with both thermal conduction and self-healing functions based on dual dynamic networks

Funds: The Natural Science Foundation of Anhui Province (2018085ME153); Anhui Province Key Laboratory of Experiment-Friendly Polymer Materials (KF202305)
  • 摘要: 开发能够快速修复的导热材料引起了越来越多的关注。然而,材料的导热性能与自修复性能一直难以平衡,制备具有自愈性的导热聚脲复合材料具有挑战性。为了解决这一难题,本论文提出利用氢键和动态亚胺键的双动态网络构筑自修复聚脲(D-PUA)柔性膜。氢键和亚胺键的动态断裂和重构不断耗散能量,使D-PUA具有良好的弹性和自修复性。实验结果表明,在短时间内(60 ℃、8 min) D-PUA膜上的划痕可完全修复,切断愈合72 h后拉伸强度的修复效率为84.62%。在动态聚脲基体中填充石墨烯(GNP)制备得到兼具自修复、导热性和可回收性的GNP/D-PUA复合膜。基于GNP本身的高导热性,负载量为10 wt%时,复合膜的面内导热系数为2.57 W·m−1·K−1,相对于本征膜提升了571%。GNP10/D-PUA在90 ℃,60 min能够使划痕愈合,切断愈合72 h后拉伸强度的修复效率为83.94%。此外,由于动态键的存在复合膜经过五次热压重塑后,没有明显的机械损失,且面内热导率的回复率均在80.93%以上。

     

  • 图  1  (a) 自修复聚脲(D-PUA)的合成路线图; (b) D-PUA薄膜的制备过程示意图; (c) D-PUA双动态网络结构示意图,包含氢键和动态亚胺键

    Figure  1.  (a) The synthetic route of self-healing polyurea (D-PUA); (b) Schematic demon-stration of the preparation process of the D-PUA films; (c) D-PUA dual dynamic network structure diagram, including hy-drogen bonds and dynamic imine bonds

    图  2  D-PUA的 (a) 核磁共振氢谱图 (b) 衰减全反射红外光谱图 (c) 变温红外光谱图

    Figure  2.  (a) The 1 H NMR (b) ATR-FTIR and (c) variable-temperature FTIR spectra of D-PUA

    图  3  (a) D-400/D-2000不同配比下的应力-应变曲线; (b) 不同静息时间下D-PUA的拉伸-回缩循环曲线; (c) D-PUA加载-卸载的数码照片

    Figure  3.  (a) Stress-strain curves of D-400/D-2000 at different proportions; (b) D-PUA stretch-shrink cycle curves at different resting times; (c) D-PUA load - unload digital photos

    图  4  (a) PUA和D-PUA划痕自修复的光学显微镜图像; (b) 染色和未染色D-PUA样品在60℃下修复72 h的数码照片; (c) D-PUA切断后在60℃下不同愈合时间的应力-应变曲线; (d) D-PUA切断后在60℃下不同愈合时间的韧性及修复效率; (e) D-PUA自修复机制图

    Figure  4.  (a) Optical microscope images of PUA and D-PUA scratch self-healing; (b) Digital photos of dyed and undyed D-PUA samples repaired at 60 ° C for 72 h; (c) Stress-strain curves of D-PUA after cutting at different healing times at 60℃; (d) Toughness and repair efficiency of D-PUA after cutting at different healing time at 60℃; (e) Self-healing mechanism diagram of D-PUA

    图  5  (a) 具有不同质量分数石墨烯(GNP)复合材料的应力-应变曲线;(b) GNP10/D-PUA划痕自修复的光学显微镜图像;(c) GNP10/D-PUA切断后在90℃下不同愈合时间的应力-应变曲线;(d) GNP10/D-PUA切断后在90℃下不同愈合时间的韧性及修复效率

    Figure  5.  (a) Stress-strain curves of composites with different mass fractions graphene (GNP); (b) Optical microscope images of GNP10/D-PUA scratch self-healing; (c) Stress-strain curves of GNP10/D-PUA after cutting at different healing times at 90℃; (d) Toughness and repair efficiency of GNP10/D-PUA after cutting at different healing time at 90℃

    图  6  具有不同填料负载量的GNP/D-PUA在90℃下划痕自修复的光学显微镜图像

    Figure  6.  Optical microscope images of GNP/D-PUA with different filler loadings scratch self-healing at 90℃

    图  7  (a) D-PUA和 (b) GNP10/D-PUA热压回收前后的数码照片和 (c) D-PUA和 (d) GNP10/D-PUA热压回收前后的应力-应变曲线

    Figure  7.  Digital photos of (a) D-PUA and (b) GNP10/D-PUA before and after hot pressing recovery; stress-strain curves of (c) D-PUA and (d) GNP10/D-PUA before and after hot pressing recover

    图  8  (a, b) D-PUA 和 (c, d) GNP10/D-PUA 复合材料的断面扫描电子显微镜图片

    Figure  8.  The fracture surface SEM images of (a, b) D-PUA and (c, d) GNP10/D-PUA

    图  9  (a) 不同填料含量的GNP/D-PUA平面内导热系数; (b) GNP/D-PUA 的传热机制图; (c) 放置在加热板边缘的GNP/D-PUA复合材料的热红外图像; (d) GNP/D-PUA在散热器的LED间通电前后的红外热像图和 (e)不同时间点对应的表面温度

    Figure  9.  (a) The in-plane thermal conductivity of GNP/D-PUA with different stuffing contents; (b) Heat transfer mechanism diagram of GNP/D-PUA composite; (c) Thermal infrared images of GNP/D-PUA composites placed on the edge of a heating plate; (d) Infrared thermal images of GNP/D-PUA before and after power is applied between the LED of the radiator and (e) corresponding surface temperature at different time points

    图  10  GNP10/D-PUA经过多次热压重塑后的面内热导率

    Figure  10.  The in-plane thermal conductivity of GNP10/D-PUA after multiple hot pressing recoveries

  • [1] ZHAO L W, SHI X R, YIN Y, et al. A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities[J]. Composites Science and Technology, 2020, 186: 107919. doi: 10.1016/j.compscitech.2019.107919
    [2] HUYNH T P, SONAR P, HAICK H. Advanced materials for use in soft self-healing devices[J]. Advanced Materials, 2017, 29(19): 1604973. doi: 10.1002/adma.201604973
    [3] 叶娟, 祖兆基, 林子谦, 等. 本征型自修复聚硅氧烷材料: 从单重动态交联网络到多重动态交联网络[J]. 高分子学报, 2023, 54(7): 1028-1054.

    YE Juan, ZU Zhaoji, LIN Ziqian, et al. Intrinsic self-healing polysiloxane materials: from single dynamic crosslinked network to multiple dynamic crosslinked networks[J]. Acta Polymerica Sinica, 2023, 54(7): 1028-1054(in Chinese).
    [4] ZHAO J, ZHANG Z M, WANG C Y, et al. Synergistic dual dynamic bonds in covalent adaptable networks[J]. CCS Chemistry, 2024, 6: 41-56. doi: 10.31635/ccschem.023.202303045
    [5] XIE J, YANG M, LIANG J, et al. Self-healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network[J]. Journal of Materials Chemistry A, 2021, 9(29): 15975-15984. doi: 10.1039/D1TA03512F
    [6] LI H L, XU F C, WANG J L, et al. Self-healing fluorinated poly (urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators[J]. Nano Energy, 2023, 108: 108243. doi: 10.1016/j.nanoen.2023.108243
    [7] WANG D, XU J H, CHEN J Y, et al. Transparent, mechanically strong, extremely tough, self-recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications[J]. Advanced Functional Materials, 2020, 30(3): 1907109. doi: 10.1002/adfm.201907109
    [8] COOPER C B, ROOST S E, MICHALEK L, et al. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers[J]. Science, 2023, 380(6648): 935-941. doi: 10.1126/science.adh0619
    [9] MING X Q, DU J Y, ZHANG C G, et al. All-solid-state self-healing ionic conductors enabled by ion-dipole interactions within fluorinated poly (ionic liquid) copolymers[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 41140-41148.
    [10] LIU Y, ZHANG Y, CHEN T, et al. A stable and self-healing thermochromic polymer coating for all weather thermal regulation[J]. Advanced Functional Materials, 2023, 33(49): 2307240. doi: 10.1002/adfm.202307240
    [11] XIONG H, WU H T, ZHANG J Q, et al. Healable and recyclable polyurethane with natural-rubber-like resilience via π-type tweezer structure stabilizing dynamical hard domains[J]. Macromolecules, 2023, 56(21): 8581-8591. doi: 10.1021/acs.macromol.3c01770
    [12] ZHAO D, ZHOU X Z, Li Q R, et al. Unprecedented toughness in transparent, luminescent, self-healing polymers enabled via hierarchical rigid domain design[J]. Materials Horizons, 2022, 9(10): 2626-2632. doi: 10.1039/D2MH00820C
    [13] CHEN L, XU J H, ZHU M M, et al. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications[J]. Materials Horizons, 2023, 10(10): 4000-4032. doi: 10.1039/D3MH00236E
    [14] ZHANG R, HUANG W B, LYU P, et al. Polyurea for blast and impact protection: a review[J]. Polymers, 2022, 14(13): 2670. doi: 10.3390/polym14132670
    [15] LIU W, HE Y, LENG J. Humidity-responsive shape memory polyurea with a high energy output based on reversible cross-linked networks[J]. ACS Applied Materials & Interfaces, 2022, 15: 2163-2171.
    [16] WAN B Q, XIAO M Y, DONG X D, et al. Dynamic covalent adaptable polyimide hybrid dielectric films with superior recyclability[J]. Advanced Materials, 2023, 2304175.
    [17] YU P, WANG H, LI T, et al. Mechanically robust, recyclable, and self-healing polyimine networks[J]. Advanced Science, 2023, 10(19): 2300958. doi: 10.1002/advs.202300958
    [18] WAN B, YANG X, DONG X, et al. Dynamic sustainable polyimide film combining hardness with softness via a "mimosa-like" bionic strategy[J]. Advanced Materials, 2023, 35(2): 2207451. doi: 10.1002/adma.202207451
    [19] DING S J, ZHU G C, ZHAO S, et al. Simultaneously optimized healing efficiency and mechanical strength in polymer composites reinforced by ultrahigh loading fillers based on interfacial energy and dynamic disulfide bonds[J]. Polymer, 2022, 251: 124711. doi: 10.1016/j.polymer.2022.124711
    [20] WANG D, LIU D, XU J, et al. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy[J]. Materials Horizons, 2022, 9(2): 640-652. doi: 10.1039/D1MH01746B
    [21] ZAREPOUR A, AHMADI S, RABIEE N, et al. Self-healing mxene and graphene-based composites: properties and applications[J]. Nano-Micro Letters, 2023, 15(1): 100. doi: 10.1007/s40820-023-01074-w
    [22] YU H, CHEN C, SUN J, et al. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity[J]. Nano-Micro Letters, 2022, 14(1): 135. doi: 10.1007/s40820-022-00882-w
    [23] NIU W, LI Z, LIANG F, et al. Ultrastable, superrobust, and recyclable supramolecular polymer networks[J]. Angewandte Chemie-International Edition, 2024: 18434.
    [24] WU P X, CHENG H Y, WANG Y, et al. New kind of thermoplastic polyurea elastomers synthesized from CO2 and with self-healing properties[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12677-12685.
    [25] ZHANG Z, QIAN L, CHENG J, et al. Room-temperature self-healing polyurea with high puncture and impact resistances[J]. Chemistry of Materials, 2023, 35(4): 1806-1817. doi: 10.1021/acs.chemmater.2c03782
    [26] CHAO A, NEGULESCU I, ZHANG D. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent[J]. Macromolecules, 2016, 49(17): 6277-6284. doi: 10.1021/acs.macromol.6b01443
    [27] ZHANG S, QIN B, XU J F, et al. Multi-recyclable shape memory supramolecular polyurea with long cycle life and superior stability[J]. ACS Materials Letters, 2021, 3(4): 331-336. doi: 10.1021/acsmaterialslett.1c00053
    [28] 邹佳利, 于云鹏, 闫雨晴等. 木质素增强可自修复聚脲弹性体的制备与性能[J]. 复合材料学报, 2023, 40(10): 5666-5677.

    ZOU Jiali, YU Yunpeng, YAN Yuqing, et al. Fabrication and properties of lignin-reinforced self-healing polyurea elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5666-5677(in Chinese).
    [29] YU J, WANG K, FAN C C, et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion[J]. Advanced Materials, 2021, 33(16): 2008395. doi: 10.1002/adma.202008395
    [30] TU J, XU H, TIAN J Q, et al. A novel, high strength, ultra-fast room temperature self-healing elastomers via structural functional region optimization strategy[J]. Chemical Engineering Journal, 2023, 465: 142887. doi: 10.1016/j.cej.2023.142887
    [31] LUO J C, ZHAO X, JU H, et al. Highly recyclable and tough elastic vitrimers from a defined polydimethylsiloxane network[J]. Angewandte Chemie-International Edition, 2023, 62(47).
    [32] RAO S P, FAN J F, ZHOU Y, et al. High damping, soft and reprocessable thermal interface materials inspired by the microstructure of skin tissue[J]. Composites Science and Technology, 2024, 247: 110428. doi: 10.1016/j.compscitech.2023.110428
    [33] CHEN M, YOU W, WANG J, et al. Enhancing the toughness and strength of polymers using mechanically interlocked hydrogen bonds[J]. Journal of the American Chemical Society, 2023, 146(1): 1109-1121.
    [34] WANG S Y, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8): 562-583. doi: 10.1038/s41578-020-0202-4
    [35] XU J H, LI Y K, LIU T, et al. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure[J]. Advanced Materials, 2023, 35(26): 2300937. doi: 10.1002/adma.202300937
    [36] WANG C Y, GENG X, CHEN J, et al. Multiple H-bonding cross-linked supramolecular solid-solid phase change materials for thermal energy storage and management[J]. Advanced Materials, 2023, 2309723.
    [37] WANG Y Y, HUANG X, ZHANG X X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure[J]. Nature Communications, 2021, 12(1): 1291 doi: 10.1038/s41467-021-21577-7
    [38] GUO H, HAN Y, ZHAO W, et al. Universally autonomous self-healing elastomer with high stretchability[J]. Nature Communications, 2020, 11(1): 2037. doi: 10.1038/s41467-020-15949-8
    [39] WU Y C M, CHYR G, PARK H, et al. Stretchable, recyclable thermosets via photopolymerization and 3D printing of hemiacetal ester-based resins[J]. Chemical Science, 2023, 14(44): 12535-12540. doi: 10.1039/D3SC03623E
    [40] 陈灿, 俞慧涛, 冯奕钰, 等. 兼具导热和自修复功能的聚合物复合材料[J]. 高分子学报, 2021, 52(3): 272-280.

    CHEN Can, YU Huitao, FENG Yiyu, et al. Polymer composite material with both thermal conduction and self-healing functions[J]. Acta Polymerica Sinica, 2021, 52(3): 272-280(in Chinese).
    [41] LI X, WU B, LV Y, et al. Effect of regulating the interfacial structure of multiple non-covalent bonding on improving thermal management capability[J]. Journal of Materials Chemistry A, 2024, 12(2): 864-875. doi: 10.1039/D3TA05936G
    [42] YUE D W, WANG H Q, TAO H Q, et al. A fast and room-temperature self-healing thermal conductive polymer composite[J]. Chinese Journal of Polymer Science, 2021, 39(10): 1328-1336. doi: 10.1007/s10118-021-2620-1
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-05-06
  • 录用日期:  2024-05-17
  • 网络出版日期:  2024-06-17

目录

    /

    返回文章
    返回