Preparation of myristic acid modified SiO2/hyperbranched-PDMS self-healing coating and its superhydrophobic performance
-
摘要:
目的 超疏水材料因其优异的拒水性,可广泛应用于自清洁、防腐蚀、防覆冰等领域。但实际应用中,受恶劣环境(如腐蚀、磨损等)或者长期存储的影响,超疏水涂层的损坏与失效是不可避免的。无论考虑到成本或材料的可持续利用,提高其使用寿命都是至关重要的。为了提高超疏水涂层的耐久性,在超疏水涂层的基础上引入自修复功能,当涂层受到损伤后经过简单处理即可恢复到原始的超疏水状态。通过“基底-粘性自修复聚合物-疏水粒子”自下而上的涂层体系有利于构筑具有良好附着力的超疏水涂层。纳米二氧化硅作为常用于构造表面粗糙结构的无机粒子,由于其亲水特性,使其难以在粘性自修复聚合物中均匀分散。为了提升纳米二氧化硅与自修复聚合物间的相容性,有必要对纳米二氧化硅进行疏水改性。 方法 针对上述问题,本文采用“基底-粘性自修复聚合物-疏水粒子”自下而上的涂层体系,制备了具有自修复功能的超疏水表面:以含有丰富氢键的超支化聚合物(HB-PDMS)作为粘性自修复聚合物,通过十四酸(MA)对纳米二氧化硅(SiO2)进行疏水改性作为疏水粒子以构筑表面粗糙结构。探究了改性条件对二氧化硅疏水度的影响。通过核磁共振波谱仪、凝胶渗透色谱和红外光谱鉴定MA- SiO2/超支化聚二甲基硅氧烷的化学结构,表征涂层表面的化学成分;通过扫描电镜观察涂层表面形貌并测试元素组成;采用接触角测量仪表征样品的表面润湿性;使用刀片在涂层表面制造划痕,划穿涂层但不划破基底,再进行热处理,使用光学显微镜观察涂层表面划痕修复过程;采用电化学工作站对样品进行动电位极化曲线和交流阻抗测试,评价涂层的防腐性能;通过温差循环试验和耐紫外线试验评价涂层的耐候性;通过砂纸磨损实验和胶带剥离测试评价超疏水涂层的力学性能。 结果 通过十四酸对SiO2疏水改性,当十四酸与二氧化硅质量比为1:1,改性时间为3 h时,所制备的超疏水涂层接触角为152.61°,滚动角为1.9°,涂层具有优异的防污性能。EDS结果和红外光谱测试结果表明十四酸成功接枝在纳米二氧化硅上,且涂层表面改性纳米二氧化硅和超支化PDMS均匀分布,MA-SiO2/HB- PDMS复合涂层的成功制备。经过损伤表面的自修复过程观察和Tafel测试,涂层于80 ℃下热处理2 h即可修复划痕,具有优异的自修复性能。修复温度越高,所需的修复时间越短。Tafel及Nyquist测试结果表明,相较于纯铝,涂层在3.5.wt %盐溶液中腐蚀电位正移了0.862 V,腐蚀电流密度减小了近一个数量级,缓蚀效率可达87.53 %,Rct值增大了约6000倍,该涂层可显著提高基底的防腐性能。经历5次胶带剥离、磨损长度为30 cm的线性耐磨测试、50 min的超声震荡测试、10次温差循环和24 h紫外照射后,接触角依旧保持在150°以上,说明该涂层具有良好的耐候性和机械稳定性。 结论 综上所述,本论文所制备的MA-SiO2/超支化PDMS自修复涂层具有优异的疏水性、耐腐蚀、防污性、耐候性和机械稳定性能。该研究为自修复超疏水涂层的制备提供了新策略,有望应用于建筑防污领域。 Abstract: In order to improve the durability of superhydrophobic coatings, in this work, we designed a bottom-up coating system of “substrate-viscous self-healing polymer-hydrophobic particle”, thereby the superhydrophobic surface with self-healing function was successfully fabricated: Hyperbranched polymers (HB-PDMS) with abundant hydrogen bonds as viscous self-healing polymer ; nano-Silica (SiO2) was hydrophobic modified by myristic acid (MA) as hydrophobic particles to construct rough surface structure. When the mass ratio of MA to SiO2 is 1∶1 and the modification time is 3 h, the superhydrophobic coating prepared has a contact angle of 152.61° and a sliding angle of 1.9°, which has excellent antifouling performance. The coating can be healed by simple heat treatment after being scratched by the blade, and has excellent self-healing performance. Compared with pure aluminum, the composite coating has better anti-corrosion performance and the corrosion inhibition efficiency can reach 87.53%. In addition, After 5 tape peel tests, linear wear tests with a wear length of 30 cm, ultrasonic shock tests of 50 min, 10 temperature differential cycles and 24 h ultraviolet irradiation, the contact angle remained above 150°, indicating that the coating has good mechanical stability and weather resistance. This study provides a new effective strategy for the preparation of self-healing superhydrophobic coatings, which is expected to be applied in the field of building antifouling.-
Key words:
- self-healing /
- superhydrophobic /
- SiO2 /
- modification /
- myristic acid /
- building antifouling
-
图 6 MA-SiO2/HB-PDMS复合涂层的(a-c)损伤-修复过程显微照片;(d)修复机制图;(e)MA-SiO2/HB-PDMS涂层修复前后Tafel测试结果;(f)从极化曲线获得的MA-SiO2/HB-PDMS涂层自修复测试前后的腐蚀参数;(g)MA-SiO2/HB-PDMS涂层防Cl-渗透机制示意图
Figure 6. Micrographs of (a-c) damage - repair process; (d) repair mechanism of MA-SiO2/HB-PDMS composite coating; (e) Tafel results before and after self-healing of MA-SiO2/HB-PDMS coatings; (f) Corrosion parameters obtained from potentiodynamic polarization curves with the self-healing tests of MA-SiO2/HB-PDMS coatings; (g) schematic diagram of anti-Cl- penetration mechanism of MA-SiO2/HB-PDMS coatings
图 7 裸铝涂覆MA-SiO2/HB-PDMS铝的(a)极化曲线;(b)Nyquist图;(c)Bode图和(d-e)等效电路图
Figure 7. (a) Polarisation curves for bare and coated MA-SiO2/HB-PDMS aluminum; (b) Nyquist plot; (c) Bode plot and (d-e) equivalent circuit diagram
Z'-Impedance real part; Z"-Impedance imaginary part; Rs-Solution resistance between the reference electrode and specimens; Rct-The charge transfer resistance; Rcoat-Resistance of the superhydrophobic coating; Cdl, Ccoat-Double layer capacitance on metal surface and capacitance on coating itself, respectively; W-Warburg resistance
表 1 极化曲线中获得的裸铝和MA-SiO2/HB-PDMS涂层铝表面的腐蚀参数
Table 1. Corrosion parameters of bare aluminum and MA-SiO2/HB-PDMS coated aluminum surface obtained from polarization curves
Samples Ecorr /(mV vs. Ag/AgCl) icorr /(μA·cm−2) Bare −696 4.81 MA-SiO2/HB-PDMS 166 0.60 Notes: Ecorr-Corrosion potential; Icorr-Corrosion current density. -
[1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096 [2] FENG L, ZHANG Y, XI J, et al. Petal Effect: A Superhydrophobic State with High Adhesive Force[J]. Langmuir,2008,24(8):4114-4119. doi: 10.1021/la703821h [3] 江雷, 冯琳. 仿生智能纳米界面材料 [M]. 北京: 化学工业出版社, 2007: 58.JIANG Lei, FENG Lin. Bioinspired Intelligent Nanostructured Interfacial Materials. [M]. Beijing: Chemical industry press, 2007: 58(in Chinese). [4] GAO X, JIANG L. Water-repellent legs of water striders[J]. Nature,2004,432(703):36-36. [5] ZHENG J, QU G, YANG B, et al. Facile preparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function[J]. Applied Surface Science,2022,576:151875. doi: 10.1016/j.apsusc.2021.151875 [6] NAKAJIMA A, HASHIMOTO K, WATANABE T. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties[J]. Langmuir,2000,16:7044-7047. doi: 10.1021/la000155k [7] SIMOVICH T, ROSENHAHN A, LAMB R N. Thermoregeneration of Plastrons on Superhydrophobic Coatings for Sustained Antifouling Properties[J]. Advanced Engineering Materials,2020,22(3):1900806. doi: 10.1002/adem.201900806 [8] CHANG X, LI M, TANG S, et al. Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution, anti-icing, and anti-fouling performance[J]. Surface and Coatings Technology,2022,434:128214. doi: 10.1016/j.surfcoat.2022.128214 [9] LIU Y, CAO X, SHI J, et al. A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion[J]. Chemical Engineering Journal,2022,434:134605. doi: 10.1016/j.cej.2022.134605 [10] CAO L, JONES A K, SIKKA V K, et al. Anti-icing superhydrophobic coatings[J]. Langmuir,2009,25(21):12444-12448. doi: 10.1021/la902882b [11] WANG N, XIONG D, DENG Y, et al. Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties[J]. Acs Applied Materials & Interfaces,2015,7(11):6260-6272. [12] XIANG G-X, LI S-Y, MA B-H. Optimal condition for preparing TiO2 superhydrophobic surfaces on titanium substrate in NH4F/H3PO4 electrolyte by anodization and its self-cleaning effect and anti-icing ability[J]. Surface and Coatings Technology,2021,423:127574. doi: 10.1016/j.surfcoat.2021.127574 [13] CHEN X, WANG P, ZHANG D, et al. Rational fabrication of superhydrophobic surfaces with coalescence-induced droplet jumping behavior for atmospheric corrosion protection[J]. Chemical Engineering Journal,2022,428:132029. doi: 10.1016/j.cej.2021.132029 [14] LIU Y-C, HUANG W-J, WU S-H, et al. Excellent superhydrophobic surface and anti-corrosion performance by nanostructure of discotic columnar liquid crystals[J]. Corrosion Science,2018,138:1-7. doi: 10.1016/j.corsci.2018.03.044 [15] QIAN Z, WANG S, YE X, et al. Corrosion resistance and wetting properties of silica-based superhydrophobic coatings on AZ31 B Mg alloy surfaces[J]. Applied Surface Science,2018,453:1-10. doi: 10.1016/j.apsusc.2018.05.086 [16] ZHANG Y, ZHANG Y, CAO Q, et al. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton[J]. Science of the Total Environment,2019,706:135807. [17] YIN X, YU S, ZHAO Y, et al. A self-healing Ni3S2 superhydrophobic coating with anti-condensation property[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,99:268-275. doi: 10.1016/j.jtice.2019.03.014 [18] WANG M, TAN X, TU Y, et al. Self-healing PDMS/SiO2-CaCO3 composite coating for highly efficient protection of building materials[J]. Materials Letters,2020,265:127290. doi: 10.1016/j.matlet.2019.127290 [19] WANG Z, SCHERES L, XIA H, et al. Developments and Challenges in Self-Healing Antifouling Materials [J]. Advanced Functional Materials, 2020: 1908098. [20] WANG X, LIU X, ZHOU F, et al. Self-healing superamphiphobicity[J]. Chem Commun (Camb),2011,47(8):2324-2326. doi: 10.1039/C0CC04066E [21] QIN L, CHU Y, ZHOU X, et al. Fast Healable Superhydrophobic Material[J]. Acs Applied Materials & Interfaces,2019,11(32):29388-29395. [22] ZHUO Y, HAKONSEN V, HE Z, et al. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function[J]. Acs Applied Materials & Interfaces,2018,10(14):11972-11978. [23] FU Y, XU F, WENG D, et al. Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers[J]. Acs Applied Materials & Interfaces,2019,11(40):37285-37294. [24] QIN L, CHEN N, ZHOU X, et al. A superhydrophobic aerogel with robust self-healability[J]. Journal of Materials Chemistry A,2018,6(10):4424-4431. doi: 10.1039/C8TA00323H [25] CAO C, YI B, ZHANG J, et al. Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature[J]. Chemical Engineering Journal,2020,392:124834. doi: 10.1016/j.cej.2020.124834 [26] 孙阳超. 超疏水纳米TiO2/聚硅氧烷树脂复合涂层的制备及性能研究 [D]. 青岛: 中国石油大学(华东), 2017.SUN Yangchao. Preparation of superhydrophobic nano-TiO2/polysiloxane resin composite coating and research of its performance [D]. Qingdao: China University of Petroleum(East China), 2017(in Chinese). [27] 刘霞, 姜春燕, 郑艳菊. A2+B3型超支化芳香-脂肪型聚酰胺的合成及其表征[J]. 高分子通报, 2010, 3:35-39.LIU Xia, JIANG Chunyan, ZHENG Yanju. Synthesis and characterization of hyperbranched aromatic-aliphatic polyamide[J]. Polymer Bulletin,2010,3:35-39(in Chinese). [28] 刘静, 雷西萍, 于婷, 等. 纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控 [J]. 复合材料学报, 2023, 40.LIU Jing, LEI Xiping, YU Ting, et al. Construction and property regulation of nano-SiO2@hyperbranched PDMS composite superhydrophobic coating [J]. Acta Materiae Compositae Sinica, 2023, 40(in Chinese). [29] SHARMA K, HOODA A, GOYAT M S, et al. A review on challenges, recent progress and applications of silica nanoparticles based superhydrophobic coatings[J]. Ceramics International,2022,48:5922-5938. doi: 10.1016/j.ceramint.2021.11.239 [30] HUAJAIKAEW E, PIROONPAN T, BOONCHAROEN K, et al. Comb-like poly(dodecyl methacrylate) modified SiO2 nanoparticles as nanohybrid coatings: Electron beam grafting and tuning superhydrophobic/water-repellent surface studies[J]. Progress in Organic Coatings,2022,163:106658. doi: 10.1016/j.porgcoat.2021.106658 [31] 王百年, 何晓婷, 刘磊. 二氧化钛的疏水改性及其表征[J]. 化学工业与工程技术, 2013, 34(4):36-40.WANG Bainian, HE Xiaoting, LIU Lei. Hydrophobic modification and characterization of titanium dioxide[J]. Energy Chemical Industry,2013,34(4):36-40(in Chinese). [32] 宋月英, 雷西萍, 刘静, 等. 二氧化钛协同凹凸棒土构筑超疏水表面及其性能[J]. 硅酸盐学报, 2021, 49(10):1-9. doi: 10.14062/j.issn.0454-5648.20210174SONG Yueying, LEI Xiping, LIU Jing, et al. Construction and properties of super-hydrophobic surface with titanium dioxide and attapulgite[J]. Journal of the Chinese Ceramic Society,2021,49(10):1-9(in Chinese). doi: 10.14062/j.issn.0454-5648.20210174 [33] WANG Y, JIANG D, ZHANG L, et al. Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers[J]. Nanotechnology,2020,31(2):025704. doi: 10.1088/1361-6528/ab4743 [34] 黄雪, 崔英德, 尹国强, 等. 十酸-十四酸-十八酸/有机蒙脱土复合相变材料的制备与性能研究[J]. 化工新型材料, 2017, 45(6):236-238+241.HUANG Xue, CUI Yingde, YIN Guoqiang, et al. Structure and properties of capric-myristic-palmitic acid/organic montmorillonite composite phase change materials[J]. New Chemical Materials,2017,45(6):236-238+241(in Chinese). [35] YI B, LIU P, HOU C, et al. Dual-Cross-Linked Supramolecular Polysiloxanes for Mechanically Tunable, Damage-Healable and Oil-Repellent Polymeric Coatings[J]. Acs Applied Materials & Interfaces,2019,11(50):47382-47389. [36] YING Y, LIU Z, FAN J, et al. Micelles-based self-healing coating for improved protection of metal[J]. Arabian Journal of Chemistry,2020,13(1):3137-3148. doi: 10.1016/j.arabjc.2018.09.005 [37] YANG Z, WANG L, SUN W, et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning[J]. Applied Surface Science,2017,401:146-155. doi: 10.1016/j.apsusc.2017.01.009 [38] GAO X, ZHAO C, LU H, et al. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions[J]. Electrochimica Acta,2014,150:188-196. doi: 10.1016/j.electacta.2014.09.160 [39] SONG S, YAN H, CAI M, et al. Superhydrophobic composite coating for reliable corrosion protection of Mg alloy[J]. Materials & Design,2022,215:110433. [40] ZHONG X, ZHOU M, WANG S, et al. Preparation of water-borne non-fluorinated anti-smudge surfaces and their applications[J]. Progress in Organic Coatings,2020,142:105581. doi: 10.1016/j.porgcoat.2020.105581 [41] ZHI D, LU Y, SATHASIVAM S, PARKIN I P, et al. Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance[J]. Journal of Materials Chemistry A,2017,5(21):10622-10631. doi: 10.1039/C7TA02488F -

计量
- 文章访问数: 35
- HTML全文浏览量: 25
- 被引次数: 0