Thermal conductivity analysis of fiber-reinforced resin-based honeycomb sandwich materials
-
摘要: 玻璃纤维/环氧树脂蜂窝夹层复合材料由于重量轻、阻燃性能优异等优点,已成为民用飞机内饰壁板的主要材料。该类材料在高温下具有火灾危险性,因此研究其导热性对于飞机防火具有重要意义。以玻璃纤维/环氧树脂预浸料和芳纶纸蜂窝芯为原料制备九种不同厚度的蜂窝夹层材料开展导热性能研究,基于Fourier定律和Swan-Pittman半经验公式建立适用于树脂基复合材料蜂窝夹层结构板的传热理论模型,基于有限元软件模拟所得相关数据,计算蜂窝夹层材料导热系数的理论值。采用导热系数测试仪开展蜂窝夹层材料导热系数实验,并比较试验值和理论值。研究结果表明:室温情况下不同厚度蜂窝夹层材料导热系数的理论值与试验平均值吻合度较高,该理论模型适用于树脂基复合材料蜂窝夹层结构板;相比于面板厚度,蜂窝芯才是影响蜂窝夹层材料导热系数的主要因素。蜂窝夹层材料的孔隙率与导热系数成反比关系,比表面积与导热系数呈正比关系;随着蜂窝芯高度增加,热辐射取代热传导逐渐成为蜂窝芯内部热量传递的主要方式。Abstract: Fiberglass/epoxy honeycomb sandwich composites have become the main materials for interior wall panels of civil aircraft due to their light weight and excellent flame retardant properties. These materials are fire hazardous at high temperatures, so the study of their thermal conductivity is of great significance for aircraft fire protection. Nine kinds of honeycomb sandwich materials with different thicknesses were prepared from glass fiber/epoxy resin prepreg and aramid paper honeycomb core to carry out the thermal conductivity study. Based on Fourier's law and the semi-empirical formula of Swan-Pittman, a theoretical model of heat transfer of fiber-reinforced resin matrix composites was established, and the theoretical value of thermal conductivity of honeycomb sandwich materials was calculated based on the data obtained from the simulation of Finite Element Software. Based on the data obtained from the finite element software simulation, the theoretical value of thermal conductivity of the honeycomb sandwich is calculated. The thermal conductivity tester is used to carry out experiments on the thermal conductivity of honeycomb sandwich materials and compare the experimental and theoretical values. The results show that the theoretical values of the thermal conductivity of honeycomb sandwich materials with different thicknesses at room temperature are in good agreement with the average values of the experiments, and the theoretical model is applicable to the fiber-reinforced resin matrix composites with honeycomb sandwich structure; compared with the thickness of the panels, the honeycomb core is the main factor affecting the thermal conductivity of honeycomb sandwich materials. The porosity of the honeycomb sandwich material is inversely related to the thermal conductivity, and the specific surface area is positively related to the thermal conductivity; with the increase of the height of the honeycomb core, the thermal radiation replaces the thermal conduction to become the main way of heat transfer inside the honeycomb core gradually.
-
表 1 实验样品参数
Table 1. Experimental Sample Parameters
Samplenumber $ {h}_{1} /\mathrm{m}\mathrm{m} $ $ {h}_{c} /\mathrm{m}\mathrm{m} $ $ {h}_{3}/\mathrm{m}\mathrm{m} $ $ h/\mathrm{m}\mathrm{m} $ $ l /\mathrm{m}\mathrm{m} $ 1-1 0.70 3.00 0.30 4.00 2.29 1-2 0.90 3.00 0.30 4.20 2.29 1-3 1.10 3.00 0.30 4.40 2.29 2-1 0.70 5.00 0.30 6.00 2.75 2-2 0.90 5.00 0.30 6.20 2.75 2-3 1.10 5.00 0.30 6.40 2.75 3-1 0.70 10.00 0.30 11.00 4.50 3-2 0.90 10.00 0.30 11.20 4.50 3-3 1.10 10.00 0.30 11.40 4.50 Note:$ {h}_{1} $ is the thickness of the upper panel;$ {h}_{\mathrm{c}} $ is the height of the honeycomb core;$ {h}_{3} $ is the thickness of the lower panel;$ h $ is the thickness of the sandwich structure;$ l $ is the side length of the honeycomb. 表 2 不同面板导热系数测定值
Table 2. Measurement values of thermal conductivity of different panels
Panel thickness/mm 0.3 0.7 0.9 1.1 Thermal conductivity
$ \mathrm{W}/\left(\mathrm{m}\cdot \mathrm{K}\right) $0.589 0.46 0.364 0.338 表 3 试样属性参数
Table 3. Sample attribute parameters
Name of material Density
kg/m3Thermal conductivity
$ \text{W/}\left(\mathrm{m}\cdot \mathrm{K}\right) $0.3 mm panel $ 2.58\times {10}^{3} $ 0.589 0.7 mm panel $ 2.4\times {10}^{3} $ 0.46 0.9 mm panel $ 2.04\times {10}^{3} $ 0.264 1.1 mm panel $ 1.87\times {10}^{3} $ 0.338 3 mm honeycomb core 40 0.993 5 mm honeycomb core 45 1.162 10 mm honeycomb core 80 1.289 表 4 各厚度蜂窝芯体平均温度
Table 4. Average temperature of honeycomb cores with different thickness
Samplenumber $ {h}_{c}/\mathrm{m}\mathrm{m} $ $ h/\mathrm{m}\mathrm{m} $ Temperature/℃ 1-1 3.00 4.00 49.5 1-2 3.00 4.20 48.6 1-3 3.00 4.40 48.3 2-1 5.00 6.00 46.8 2-1 5.00 6.20 50.8 2-3 5.00 6.40 48.8 3-1 10.00 11.00 46.8 3-2 10.00 11.20 45.1 3-3 10.00 11.40 42.5 Note:$ {h}_{\mathrm{c}} $ is the height of the honeycomb core;$ h $ is the thickness of the sandwich structure; 表 5 蜂窝夹层材料的导热系数
Table 5. Thermal conductivity of honeycomb sandwich materials
Sample number 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 Geometric dimensions/mm Bee grid edge length $ l/\mathrm{m}\mathrm{m} $ 2.290 2.290 2.290 2.750 2.750 2.750 4.500 4.500 4.500 Honeycomb core height $ {h}_{2}/\mathrm{m}\mathrm{m} $ 3.000 3.000 3.000 5.000 5.000 5.000 10.000 10.000 10.000 Panel thickness $ h/\mathrm{m}\mathrm{m} $ 1.000 1.200 1.400 1.000 1.200 1.400 1.000 1.200 1.400 Thermal conductivity of sandwich
structure $ k/(\mathrm{W}/\left(\mathrm{m}\cdot \mathrm{K}\right)) $Experimental average 0.218 0.222 0.219 0.214 0.213 0.212 0.204 0.199 0.202 Theoretical value 0.180 0.166 0.167 0.164 0.182 0.165 0.171 0.161 0.150 Error/% 17.4 25.2 23.8 23.3 14.6 22.1 16.1 19.0 25.7 表 6 蜂窝夹层材料的隔热性能
Table 6. Thermal insulation properties of honeycomb sandwich materials
Height of
honeycomb
core/mmPorosity/
%specific surface
area/m2/m3Thermal
conductivity/
$ \mathrm{W}/\left(\mathrm{m}\cdot \mathrm{K}\right) $Flame
temperature/℃Burn time/s 60 120 180 Average
temperature/℃Average
temperature/℃Average
temperature/℃3 82 2259.035 0.222 950±20 150.79 214.47 250.62 5 85 1085.938 0.213 135.30 190.48 221.69 10 91 508.823 0.199 125.69 150.95 194.48 表 7 不同高度蜂窝芯体孔隙率与比表面积
Table 7. Porosity and specific surface area of honeycomb cores with different heights
$ {h}_{c}/ $mm $ l/ $mm $ {l}_{m}/ $mm $ \Delta / $mm $ P/ $% $ {S}_{v}/ $m2/m3 3.000 2.290 2.078 0.183 82 2259.035 5.000 2.750 2.538 0.183 85 1085.938 10.000 4.500 4.288 0.183 91 508.823 Note: $ {h}_{\mathrm{c}} $ is the height of the honeycomb core;$ l $ is the side length of the honeycomb;$ {l}_{m} $ is the medial length of the edge of the honeycomb;$ \Delta $ is the thickness of the cell wall;$ P $ is the porosity of the honeycomb core; $ {S}_{v} $ is the specific surface area of the honeycomb core. -
[1] SODERQUIST J R . Design/Certification Considerations in Civil Composite Aircraft Structure[C]//Aerospace Technology Conference and Exposition. 1987. DOI: 10.4271/871846 [2] 吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1): 4-9. doi: 10.3969/j.issn.1006-3536.2012.01.002WU L Y. The application extend of advanced composite materials: Technology marketsof ACM application in aeronautics, astronautics and civil aviation[J]. New Chemical Materials, 2012, 40(1): 4-9(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.01.002 [3] LIU L, JIA C Y, HE J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced poly- mer composites[J]. Composites Science and Technology, 2015, 121: 56-72. doi: 10.1016/j.compscitech.2015.08.002 [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11): 2700-2706.XING L Y, FENG Z H, BAO J W, et al. Facing opportunity and challenge of carbon fiber and polymermatrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2700-2706(in Chinese). [5] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11): 61-64.SUN Z Q, WU A R. Application of Advanced Composite in Aircraft Structures[J]. Materials Reports, 2015, 29(11): 61-64(in Chinese). [6] 王燕, 程文礼, 王绍凯. 复合材料蜂窝夹层结构在民用飞机上的应用综述[J]. 纤维复合材料, 2021, 38(2): 73-77. doi: 10.3969/j.issn.1003-6423.2021.02.013WANG Y, CHENG W L, WANG S K. Review of the Application of Composite HoneycombSandwich Structure on Civil Aircraft[J]. Fiber Composites, 2021, 38(2): 73-77(in Chinese). doi: 10.3969/j.issn.1003-6423.2021.02.013 [7] LATTIMER B Y, OUELLETTE J, TRELLES J. Thermal Response of Composite Materials to Elevated Temperatures[J]. Fire Technology, 2011, 47(4): 823-850. doi: 10.1007/s10694-009-0121-9 [8] 刘绍然, 许忠旭, 张春元, 等. 航天用蜂窝夹层板传热特性的研究进展[J]. 真空与低温, 2012, 018(01): 1-8,20. doi: 10.3969/j.issn.1006-7086.2012.01.001LIU S R, XU Z X, ZHANG C Y, et al. Research Progress of Heat Transfer of Honeycomb Sandwich Panels Used in Spacecraft[J]. Vacuum and Ryogenics, 2012, 018(01): 1-8,20(in Chinese). doi: 10.3969/j.issn.1006-7086.2012.01.001 [9] SWANN R T, PITTMAN C M. Analysis of effective thermal conductivities of honeycomb-core and corrugated-core sandwich panels[M]. National Aeronautics and Space Administration, 1961. [10] DARYABEIGI K. Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of thermophysics and heat transfer, 2002, 16(2): 217-221. doi: 10.2514/2.6687 [11] 解维华, 张博明, 杜善义. 金属蜂窝结构有效热导率的预报与实验研究[J]. 哈尔滨工业大学学报, 2007, (5): 787-789. doi: 10.3321/j.issn:0367-6234.2007.05.027XIE W H, ZHANG B M, DU S Y. Numerical prediction and measurement of effective thermal conductivity of honeycomb sandwich Panel[J]. Journal of Harbin institute of Technology, 2007, (5): 787-789(in Chinese). doi: 10.3321/j.issn:0367-6234.2007.05.027 [12] 吴大方, 郑力铭, 潘兵等. 非线性热环境下高温合金蜂窝板隔热性能研究[J]. 力学学报, 2012, 44(2): 297-307. doi: 10.6052/0459-1879-2012-2-20120213WU D F, ZENG L M, PAN B, et al. Research on Heat-shielding Properties of Superalloy honeycomb Panel for Non-linear High Temperature environment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 297-307(in Chinese). doi: 10.6052/0459-1879-2012-2-20120213 [13] 李玮, 谢宗蕻, 赵剑. 蜂窝芯体面外方向导热系数等效研究[J]. 真空与低温, 2010, 16(03):LI W, XIE Z H, ZHAO J. The Research on The out-of-Plane Eouivalent Thermal Conductivity of Honeycomb Cores[J]. Vacuum & Ryogenics, 2010, 16(03): (in Chinese) [14] 王丹玥, 徐艳英, 王志, 等. 高温环境下碳纤维环氧树脂层压板热响应行为[J]. 消防科学与技术, 2023, 42(4): 489-494. doi: 10.3969/j.issn.1009-0029.2023.04.011WANG D Y, XU Y Y, WAN Z, et al. Thermal response behavior of carbon fiber epoxy laminates at high temperature[J]. Fire Science and technology, 2023, 42(4): 489-494(in Chinese). doi: 10.3969/j.issn.1009-0029.2023.04.011 [15] 潘园艺, 徐艳英, 陈松华, 等. 单向碳纤维/环氧树脂预浸料的热响应行为[J]. 消防科学与技术, 2021, 40(6): 918-922.PAN Y Y, XU Y Y, CHEN S H, et al. Thermal response behavior of unidirectional carbon fiber/epoxy resin prepreg[J]. Fire Science and technology, 2021, 40(6): 918-922(in Chinese). [16] YUAN R , ZHANG Y , QIN Y, et al, Study on Thermal Response of Adhesively Bonded Honeycomb Sandwich Structure in High Temperature[J]. Fire Technology, 2020, (prepublish): 1-13. [17] DARYABEIGI K. Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of thermophysics and heat transfer, 2002, 16(2): 217-221. doi: 10.2514/2.6687 [18] Federal Aviation Administration USA. 14 CFR part 25, §25.841—Pressurizedcabins [S/OL]. (2014-11-04)[2023-03-03]. [19] 张建可. 树脂基碳纤维复合材料的热物理性能之一——导热系数[J]. 中国空间科学技术, 1987, (3): 55-60.ZHANG J K. The one of Thermal Physical Properties of Carbon Fibre/epoxy-Resincomposites-Thermal Conductivity[J]. Chinese Space Science and Technology, 1987, (3): 55-60(in Chinese). [20] YUAN R, LU S. Experimental and numerical study for effective thermal conductivity of metallic honeycomb sandwich structures:[J]. Journal of Sandwich Structures and Materials, 2021, 23(8): 3540-3557. doi: 10.1177/1099636220933534 [21] MAGODA C M, GRYZAGORIDIS J, KANYARUSOKE K. Effective heat conductivity of Honeycomb (porous) composite panel[J]. Journal of Engineering, Design and Technology, 2021, 19(4): 876-887. doi: 10.1108/JEDT-08-2020-0324 [22] 赵剑, 谢宗蕻, 李玮, 等. 耐热合金蜂窝等效热导率的实验研究[J]. 固体火箭技术, 2011, 34(4): 529-532. doi: 10.3969/j.issn.1006-2793.2011.04.029ZHAO J, XIE Z H, LI W, et al. Experimental investigation on effective thermal conductivities of refractory alloy honeycomb cores[J]. Journal of Solid Rocket Technology, 2011, 34(4): 529-532(in Chinese). doi: 10.3969/j.issn.1006-2793.2011.04.029 [23] CHEN J X, GUO Z S, DU S C, et al. Heat transfer characteristics of straw-core paper honeycomb plates (beetle elytron plates) I: Experimental study on horizontal placement with hot-above and cold-below conditions[J]. Applied Thermal Engineering, 2021, 194: 117095. doi: 10.1016/j.applthermaleng.2021.117095 [24] 谭月敏, 徐健明, 庞文键等. 浅谈应用材料导热系数的测定方法[J]. 中国胶粘剂, 2023, 32(07): 62-68.TAN Y M, XU J M, PANG W J, et al. Discussion on measurement method of thermal conductivity of applied materials[J]. China Adhesives(in Chinese) [25] 默会霞, 梅婷. 一维热传导方程推导及定解条件小结[J]. 物理通报, 2024, 43(2): 79-82.MO H X, MEI T. Derivation on One-Dimensional Heat Conduction Equationand the Summary of Its Definite Solution Conditions[J]. Physics Bulletin 2024, 43(2): 79-82. (in Chinese) [26] YARONG W , PEIRONG W. Application of Fourier’s Law in One-Dimensional Steady Heat Conduction Calculation of Cylinder Wall[J]. Journal of Physics: Conference Series, 2022, 2381(1): 012002 [27] 王栋. 基于傅里叶定律对热传导的分析[J]. 科学技术创新, 2019, (13): 45-46.WANG D. Analysis of heat conduction based on Fourier's law[J]. Scientific and Technological Innovation, 2019, (13): 45-46(in Chinese). [28] 郑吉良, 孙勇. 单层与多层蜂窝芯玻璃钢蜂窝板的热性能模拟[J]. 复合材料学报, 2014, 31(2): 505-511.ZENG J L, SUN Y. Simulation of thermal performance for single layer and multilayer of the FRPhoneycomb panel[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 505-511(in Chinese). [29] 张晓宇, 贾旭宏, 代尚沛等. 低压环境下玻璃纤维/酚醛树脂燃烧特性[J]. 清华大学学报(自然科学版), 2023, 63(10): 1520-1528.ZHANG X Y, JIA X H, DAI S P, et al. Combustion properties of glass fiber/phenolic resin at low ambient pressures[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(10): 1520-1528(in Chinese). [30] 徐召来. 回收泡沫—纸蜂窝复合结构传热机理研究[D]. 江南大学, 2023.XU Z L. Study on heat transfer mechanism of paper honeycomb filled with recycled foam[D]. JiangNan University, 2023. (in Chinese)
计量
- 文章访问数: 69
- HTML全文浏览量: 44
- 被引次数: 0