留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强树脂基蜂窝夹层材料的导热性能分析

丁思婕 贾旭宏 田威 张晓宇 代尚沛

丁思婕, 贾旭宏, 田威, 等. 纤维增强树脂基蜂窝夹层材料的导热性能分析[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 丁思婕, 贾旭宏, 田威, 等. 纤维增强树脂基蜂窝夹层材料的导热性能分析[J]. 复合材料学报, 2024, 42(0): 1-12.
DING Sijie, JIA Xuhong, TIAN Wei, et al. Thermal conductivity analysis of fiber-reinforced resin-based honeycomb sandwich materials[J]. Acta Materiae Compositae Sinica.
Citation: DING Sijie, JIA Xuhong, TIAN Wei, et al. Thermal conductivity analysis of fiber-reinforced resin-based honeycomb sandwich materials[J]. Acta Materiae Compositae Sinica.

纤维增强树脂基蜂窝夹层材料的导热性能分析

基金项目: 民航局安全能力基金(MHAQ2023030);四川省重点实验室揭榜挂帅项目(XYKY2023011);大学生创新创业训练计划项目(S202310624109)
详细信息
    通讯作者:

    贾旭宏,博士,教授,研究方向为民用飞机非金属材料燃烧特性研究 E-mail:jiaxuhong02@163.com

  • 中图分类号: TP332; TB332

Thermal conductivity analysis of fiber-reinforced resin-based honeycomb sandwich materials

Funds: CAAC security capability fund (MHAQ2023030); Key Laboratory of Sichuan Province announced the project (XYKY2023011); Innovative Entrepreneurship Training Program for college students (S202310624109)
  • 摘要: 玻璃纤维/环氧树脂蜂窝夹层复合材料由于重量轻、阻燃性能优异等优点,已成为民用飞机内饰壁板的主要材料。该类材料在高温下具有火灾危险性,因此研究其导热性对于飞机防火具有重要意义。以玻璃纤维/环氧树脂预浸料和芳纶纸蜂窝芯为原料制备九种不同厚度的蜂窝夹层材料开展导热性能研究,基于Fourier定律和Swan-Pittman半经验公式建立适用于树脂基复合材料蜂窝夹层结构板的传热理论模型,基于有限元软件模拟所得相关数据,计算蜂窝夹层材料导热系数的理论值。采用导热系数测试仪开展蜂窝夹层材料导热系数实验,并比较试验值和理论值。研究结果表明:室温情况下不同厚度蜂窝夹层材料导热系数的理论值与试验平均值吻合度较高,该理论模型适用于树脂基复合材料蜂窝夹层结构板;相比于面板厚度,蜂窝芯才是影响蜂窝夹层材料导热系数的主要因素。蜂窝夹层材料的孔隙率与导热系数成反比关系,比表面积与导热系数呈正比关系;随着蜂窝芯高度增加,热辐射取代热传导逐渐成为蜂窝芯内部热量传递的主要方式。

     

  • 图  1  蜂窝夹层材料传热原理示意图

    Figure  1.  Schematic diagram of heat transfer principle of honeycomb sandwich material

    图  2  蜂窝夹层材料特征

    Figure  2.  Characteristics of honeycomb sandwich material

    图  3  三层平壁稳态导热结构

    Figure  3.  Three layer flat wall steady-state thermal conductivity structure

    图  4  制备过程

    Figure  4.  Preparation process

    图  5  各厚度面板导热系数误差范围

    Figure  5.  Error range of thermal conductivity of each thickness panel

    图  6  有限元网格

    Figure  6.  Finite element mesh

    图  7  各厚度蜂窝芯体温度分布图

    Figure  7.  Temperature distribution diagram of honeycomb core

    图  8  蜂窝夹层材料表面温度的瞬时红外成像图

    Figure  8.  Transient infrared image of surface temperature of honeycomb sandwich materia

    图  9  夹层结构导热系数与面板厚度的关系

    Figure  9.  Relationship between thermal conductivity of sandwich structure and panel thickness

    图  10  纸蜂窝结构示意图

    Figure  10.  Schematic diagram of paper honeycomb structure

    图  11  夹层结构导热系数与孔隙率的关系

    Figure  11.  Relationship between thermal conductivity and porosity of sandwich structure

    图  12  夹层结构导热系数与比表面积的关系

    Figure  12.  Relationship between thermal conductivity and specific surface area of sandwich structure

    图  13  不同高度蜂窝芯对蜂窝夹层材料导热系数的贡献

    Figure  13.  Contribution of honeycomb cores of different heights to thermal conductivity of honeycomb sandwich materials

    表  1  实验样品参数

    Table  1.   Experimental Sample Parameters

    Samplenumber $ {h}_{1} /\mathrm{m}\mathrm{m} $ $ {h}_{c} /\mathrm{m}\mathrm{m} $ $ {h}_{3}/\mathrm{m}\mathrm{m} $ $ h/\mathrm{m}\mathrm{m} $ $ l /\mathrm{m}\mathrm{m} $
    1-1 0.70 3.00 0.30 4.00 2.29
    1-2 0.90 3.00 0.30 4.20 2.29
    1-3 1.10 3.00 0.30 4.40 2.29
    2-1 0.70 5.00 0.30 6.00 2.75
    2-2 0.90 5.00 0.30 6.20 2.75
    2-3 1.10 5.00 0.30 6.40 2.75
    3-1 0.70 10.00 0.30 11.00 4.50
    3-2 0.90 10.00 0.30 11.20 4.50
    3-3 1.10 10.00 0.30 11.40 4.50
    Note:$ {h}_{1} $ is the thickness of the upper panel;$ {h}_{\mathrm{c}} $ is the height of the honeycomb core;$ {h}_{3} $ is the thickness of the lower panel;$ h $ is the thickness of the sandwich structure;$ l $ is the side length of the honeycomb.
    下载: 导出CSV

    表  2  不同面板导热系数测定值

    Table  2.   Measurement values of thermal conductivity of different panels

    Panel thickness/mm0.30.70.91.1
    Thermal conductivity
    $ \mathrm{W}/\left(\mathrm{m}\cdot \mathrm{K}\right) $
    0.5890.460.3640.338
    下载: 导出CSV

    表  3  试样属性参数

    Table  3.   Sample attribute parameters

    Name of materialDensity
    kg/m3
    Thermal conductivity
    $ \text{W/}\left(\mathrm{m}\cdot \mathrm{K}\right) $
    0.3 mm panel$ 2.58\times {10}^{3} $0.589
    0.7 mm panel$ 2.4\times {10}^{3} $0.46
    0.9 mm panel$ 2.04\times {10}^{3} $0.264
    1.1 mm panel$ 1.87\times {10}^{3} $0.338
    3 mm honeycomb core400.993
    5 mm honeycomb core451.162
    10 mm honeycomb core801.289
    下载: 导出CSV

    表  4  各厚度蜂窝芯体平均温度

    Table  4.   Average temperature of honeycomb cores with different thickness

    Samplenumber $ {h}_{c}/\mathrm{m}\mathrm{m} $ $ h/\mathrm{m}\mathrm{m} $ Temperature/℃
    1-1 3.00 4.00 49.5
    1-2 3.00 4.20 48.6
    1-3 3.00 4.40 48.3
    2-1 5.00 6.00 46.8
    2-1 5.00 6.20 50.8
    2-3 5.00 6.40 48.8
    3-1 10.00 11.00 46.8
    3-2 10.00 11.20 45.1
    3-3 10.00 11.40 42.5
    Note:$ {h}_{\mathrm{c}} $ is the height of the honeycomb core;$ h $ is the thickness of the sandwich structure;
    下载: 导出CSV

    表  5  蜂窝夹层材料的导热系数

    Table  5.   Thermal conductivity of honeycomb sandwich materials

    Sample number 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
    Geometric dimensions/mm Bee grid edge length $ l/\mathrm{m}\mathrm{m} $ 2.290 2.290 2.290 2.750 2.750 2.750 4.500 4.500 4.500
    Honeycomb core height $ {h}_{2}/\mathrm{m}\mathrm{m} $ 3.000 3.000 3.000 5.000 5.000 5.000 10.000 10.000 10.000
    Panel thickness $ h/\mathrm{m}\mathrm{m} $ 1.000 1.200 1.400 1.000 1.200 1.400 1.000 1.200 1.400
    Thermal conductivity of sandwich
    structure $ k/(\mathrm{W}/\left(\mathrm{m}\cdot \mathrm{K}\right)) $
    Experimental average 0.218 0.222 0.219 0.214 0.213 0.212 0.204 0.199 0.202
    Theoretical value 0.180 0.166 0.167 0.164 0.182 0.165 0.171 0.161 0.150
    Error/% 17.4 25.2 23.8 23.3 14.6 22.1 16.1 19.0 25.7
    下载: 导出CSV

    表  6  蜂窝夹层材料的隔热性能

    Table  6.   Thermal insulation properties of honeycomb sandwich materials

    Height of
    honeycomb
    core/mm
    Porosity/
    %
    specific surface
    area/m2/m3
    Thermal
    conductivity/
    $ \mathrm{W}/\left(\mathrm{m}\cdot \mathrm{K}\right) $
    Flame
    temperature/℃
    Burn time/s
    60 120 180
    Average
    temperature/℃
    Average
    temperature/℃
    Average
    temperature/℃
    3 82 2259.035 0.222 950±20 150.79 214.47 250.62
    5 85 1085.938 0.213 135.30 190.48 221.69
    10 91 508.823 0.199 125.69 150.95 194.48
    下载: 导出CSV

    表  7  不同高度蜂窝芯体孔隙率与比表面积

    Table  7.   Porosity and specific surface area of honeycomb cores with different heights

    $ {h}_{c}/ $mm $ l/ $mm $ {l}_{m}/ $mm $ \Delta / $mm $ P/ $% $ {S}_{v}/ $m2/m3
    3.000 2.290 2.078 0.183 82 2259.035
    5.000 2.750 2.538 0.183 85 1085.938
    10.000 4.500 4.288 0.183 91 508.823
    Note: $ {h}_{\mathrm{c}} $ is the height of the honeycomb core;$ l $ is the side length of the honeycomb;$ {l}_{m} $ is the medial length of the edge of the honeycomb;$ \Delta $ is the thickness of the cell wall;$ P $ is the porosity of the honeycomb core; $ {S}_{v} $ is the specific surface area of the honeycomb core.
    下载: 导出CSV
  • [1] SODERQUIST J R . Design/Certification Considerations in Civil Composite Aircraft Structure[C]//Aerospace Technology Conference and Exposition. 1987. DOI: 10.4271/871846
    [2] 吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1): 4-9. doi: 10.3969/j.issn.1006-3536.2012.01.002

    WU L Y. The application extend of advanced composite materials: Technology marketsof ACM application in aeronautics, astronautics and civil aviation[J]. New Chemical Materials, 2012, 40(1): 4-9(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.01.002
    [3] LIU L, JIA C Y, HE J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced poly- mer composites[J]. Composites Science and Technology, 2015, 121: 56-72. doi: 10.1016/j.compscitech.2015.08.002
    [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11): 2700-2706.

    XING L Y, FENG Z H, BAO J W, et al. Facing opportunity and challenge of carbon fiber and polymermatrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2700-2706(in Chinese).
    [5] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11): 61-64.

    SUN Z Q, WU A R. Application of Advanced Composite in Aircraft Structures[J]. Materials Reports, 2015, 29(11): 61-64(in Chinese).
    [6] 王燕, 程文礼, 王绍凯. 复合材料蜂窝夹层结构在民用飞机上的应用综述[J]. 纤维复合材料, 2021, 38(2): 73-77. doi: 10.3969/j.issn.1003-6423.2021.02.013

    WANG Y, CHENG W L, WANG S K. Review of the Application of Composite HoneycombSandwich Structure on Civil Aircraft[J]. Fiber Composites, 2021, 38(2): 73-77(in Chinese). doi: 10.3969/j.issn.1003-6423.2021.02.013
    [7] LATTIMER B Y, OUELLETTE J, TRELLES J. Thermal Response of Composite Materials to Elevated Temperatures[J]. Fire Technology, 2011, 47(4): 823-850. doi: 10.1007/s10694-009-0121-9
    [8] 刘绍然, 许忠旭, 张春元, 等. 航天用蜂窝夹层板传热特性的研究进展[J]. 真空与低温, 2012, 018(01): 1-8,20. doi: 10.3969/j.issn.1006-7086.2012.01.001

    LIU S R, XU Z X, ZHANG C Y, et al. Research Progress of Heat Transfer of Honeycomb Sandwich Panels Used in Spacecraft[J]. Vacuum and Ryogenics, 2012, 018(01): 1-8,20(in Chinese). doi: 10.3969/j.issn.1006-7086.2012.01.001
    [9] SWANN R T, PITTMAN C M. Analysis of effective thermal conductivities of honeycomb-core and corrugated-core sandwich panels[M]. National Aeronautics and Space Administration, 1961.
    [10] DARYABEIGI K. Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of thermophysics and heat transfer, 2002, 16(2): 217-221. doi: 10.2514/2.6687
    [11] 解维华, 张博明, 杜善义. 金属蜂窝结构有效热导率的预报与实验研究[J]. 哈尔滨工业大学学报, 2007, (5): 787-789. doi: 10.3321/j.issn:0367-6234.2007.05.027

    XIE W H, ZHANG B M, DU S Y. Numerical prediction and measurement of effective thermal conductivity of honeycomb sandwich Panel[J]. Journal of Harbin institute of Technology, 2007, (5): 787-789(in Chinese). doi: 10.3321/j.issn:0367-6234.2007.05.027
    [12] 吴大方, 郑力铭, 潘兵等. 非线性热环境下高温合金蜂窝板隔热性能研究[J]. 力学学报, 2012, 44(2): 297-307. doi: 10.6052/0459-1879-2012-2-20120213

    WU D F, ZENG L M, PAN B, et al. Research on Heat-shielding Properties of Superalloy honeycomb Panel for Non-linear High Temperature environment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 297-307(in Chinese). doi: 10.6052/0459-1879-2012-2-20120213
    [13] 李玮, 谢宗蕻, 赵剑. 蜂窝芯体面外方向导热系数等效研究[J]. 真空与低温, 2010, 16(03):

    LI W, XIE Z H, ZHAO J. The Research on The out-of-Plane Eouivalent Thermal Conductivity of Honeycomb Cores[J]. Vacuum & Ryogenics, 2010, 16(03): (in Chinese)
    [14] 王丹玥, 徐艳英, 王志, 等. 高温环境下碳纤维环氧树脂层压板热响应行为[J]. 消防科学与技术, 2023, 42(4): 489-494. doi: 10.3969/j.issn.1009-0029.2023.04.011

    WANG D Y, XU Y Y, WAN Z, et al. Thermal response behavior of carbon fiber epoxy laminates at high temperature[J]. Fire Science and technology, 2023, 42(4): 489-494(in Chinese). doi: 10.3969/j.issn.1009-0029.2023.04.011
    [15] 潘园艺, 徐艳英, 陈松华, 等. 单向碳纤维/环氧树脂预浸料的热响应行为[J]. 消防科学与技术, 2021, 40(6): 918-922.

    PAN Y Y, XU Y Y, CHEN S H, et al. Thermal response behavior of unidirectional carbon fiber/epoxy resin prepreg[J]. Fire Science and technology, 2021, 40(6): 918-922(in Chinese).
    [16] YUAN R , ZHANG Y , QIN Y, et al, Study on Thermal Response of Adhesively Bonded Honeycomb Sandwich Structure in High Temperature[J]. Fire Technology, 2020, (prepublish): 1-13.
    [17] DARYABEIGI K. Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of thermophysics and heat transfer, 2002, 16(2): 217-221. doi: 10.2514/2.6687
    [18] Federal Aviation Administration USA. 14 CFR part 25, §25.841—Pressurizedcabins [S/OL]. (2014-11-04)[2023-03-03].
    [19] 张建可. 树脂基碳纤维复合材料的热物理性能之一——导热系数[J]. 中国空间科学技术, 1987, (3): 55-60.

    ZHANG J K. The one of Thermal Physical Properties of Carbon Fibre/epoxy-Resincomposites-Thermal Conductivity[J]. Chinese Space Science and Technology, 1987, (3): 55-60(in Chinese).
    [20] YUAN R, LU S. Experimental and numerical study for effective thermal conductivity of metallic honeycomb sandwich structures:[J]. Journal of Sandwich Structures and Materials, 2021, 23(8): 3540-3557. doi: 10.1177/1099636220933534
    [21] MAGODA C M, GRYZAGORIDIS J, KANYARUSOKE K. Effective heat conductivity of Honeycomb (porous) composite panel[J]. Journal of Engineering, Design and Technology, 2021, 19(4): 876-887. doi: 10.1108/JEDT-08-2020-0324
    [22] 赵剑, 谢宗蕻, 李玮, 等. 耐热合金蜂窝等效热导率的实验研究[J]. 固体火箭技术, 2011, 34(4): 529-532. doi: 10.3969/j.issn.1006-2793.2011.04.029

    ZHAO J, XIE Z H, LI W, et al. Experimental investigation on effective thermal conductivities of refractory alloy honeycomb cores[J]. Journal of Solid Rocket Technology, 2011, 34(4): 529-532(in Chinese). doi: 10.3969/j.issn.1006-2793.2011.04.029
    [23] CHEN J X, GUO Z S, DU S C, et al. Heat transfer characteristics of straw-core paper honeycomb plates (beetle elytron plates) I: Experimental study on horizontal placement with hot-above and cold-below conditions[J]. Applied Thermal Engineering, 2021, 194: 117095. doi: 10.1016/j.applthermaleng.2021.117095
    [24] 谭月敏, 徐健明, 庞文键等. 浅谈应用材料导热系数的测定方法[J]. 中国胶粘剂, 2023, 32(07): 62-68.

    TAN Y M, XU J M, PANG W J, et al. Discussion on measurement method of thermal conductivity of applied materials[J]. China Adhesives(in Chinese)
    [25] 默会霞, 梅婷. 一维热传导方程推导及定解条件小结[J]. 物理通报, 2024, 43(2): 79-82.

    MO H X, MEI T. Derivation on One-Dimensional Heat Conduction Equationand the Summary of Its Definite Solution Conditions[J]. Physics Bulletin 2024, 43(2): 79-82. (in Chinese)
    [26] YARONG W , PEIRONG W. Application of Fourier’s Law in One-Dimensional Steady Heat Conduction Calculation of Cylinder Wall[J]. Journal of Physics: Conference Series, 2022, 2381(1): 012002
    [27] 王栋. 基于傅里叶定律对热传导的分析[J]. 科学技术创新, 2019, (13): 45-46.

    WANG D. Analysis of heat conduction based on Fourier's law[J]. Scientific and Technological Innovation, 2019, (13): 45-46(in Chinese).
    [28] 郑吉良, 孙勇. 单层与多层蜂窝芯玻璃钢蜂窝板的热性能模拟[J]. 复合材料学报, 2014, 31(2): 505-511.

    ZENG J L, SUN Y. Simulation of thermal performance for single layer and multilayer of the FRPhoneycomb panel[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 505-511(in Chinese).
    [29] 张晓宇, 贾旭宏, 代尚沛等. 低压环境下玻璃纤维/酚醛树脂燃烧特性[J]. 清华大学学报(自然科学版), 2023, 63(10): 1520-1528.

    ZHANG X Y, JIA X H, DAI S P, et al. Combustion properties of glass fiber/phenolic resin at low ambient pressures[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(10): 1520-1528(in Chinese).
    [30] 徐召来. 回收泡沫—纸蜂窝复合结构传热机理研究[D]. 江南大学, 2023.

    XU Z L. Study on heat transfer mechanism of paper honeycomb filled with recycled foam[D]. JiangNan University, 2023. (in Chinese)
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-07-12
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回