Preparation technologies and advanced applications of transparent plant fiber-based composites
-
摘要: 植物纤维作为一种天然可再生和生物降解的绿色环保材料,来源广泛、储量丰富,如林业木竹和作物秸秆资源,广泛应用于制造纤维增强树脂/硅酸盐等复合材料,市场巨大、前景广阔。植物纤维基透明功能材料的研发,对于突破传统工程材料(如纤维板、木塑复合材料)光学不透明的技术瓶颈,拓宽农林木质制品应用范围具有科学意义与研究价值。文章详细梳理了纤维基透明材料的最新研究进展,系统归纳了纤维材料绿色漂白以及透明化的制备机理,以及制备技术的优缺点和关键技术难点。论证了初步脱色透明化处理的透明材料可以优化工艺,在保留植物纤维特性的同时实现多功能化。重点从植物纤维基透明材料的力学、透明度、雾度、阻燃、隔热等方面进行阐述,探讨了纤维透明材料在节能建筑、光电子器件、储能材料领域的应用前景。植物纤维透明材料的开发,未来仍需大量系统化的基础理论研究。随着制备技术及改性方法的不断完善,其性能将得到进一步提升,推动在建筑、光电、储能等领域的应用。Abstract: The plant fiber, as a natural renewable, biodegradable green and eco-friendly material, has a wide range of sources and abundant reserves, such as forestry wood, bamboo, and crop straw resources. It is widely used in the manufacturing of composite materials, such as fiber-reinforced resins/silicates, with a huge market and broad prospects. The development of transparent functional materials based on plant fibers has scientific significance and research value in breaking through the technical bottleneck of optical opacity for the traditional engineering materials (such as fiberboard and wood plastic composites) and expanding the application range of agricultural and forestry biomass products. The article provides a detailed overview of the latest research progress on fiber-based transparent materials. It systematically summarizes the mechanisms of green bleaching and transparency of plant fiber materials, as well as the characteristics and key difficulties of for the preparation techniques. It has been demonstrated that transparent materials treated with preliminary decolorization and transparency can optimize the process, and achieve the multifunctionality while retaining the characteristics of plant fibers. This article focuses on the mechanics, transparency, haze, flame retardancy, and thermal insulation of plant fiber based transparent materials, and explores the application prospects of fiber transparent materials in energy-saving buildings, optoelectronic devices, and energy storage materials. There is still a lot of systematic research to be promoted in the utilization of plant fiber transparent materials. With the continuous improvement of preparation technology and modification methods, its performance will be further improved, promoting its application in fields such as architecture, optoelectronics, and energy storage.
-
图 2 透明纤维材料的分类及制备过程:(a)透明木材照片[20];(b)透明木SEM图[20];(c)透明纤维板照片[24];(d)透明纤维板SEM图[24];(e)纯生物质透明板照片[25];(f)纯生物质透明板SEM图[25]
Figure 2. Classification and preparation process of transparent fiber materials: (a) photograph and (b) SEM image of transparent wood[20]; (c) photograph and (d) SEM image of transparent fiberboard[24]; (e) photograph and (f) SEM image of pure biomass transparent board[25]
图 3 不同界面改性的透明纤维材料:(a)多层透明木[40];(b)蒸汽爆破处理的竹纤维材料[41];(c)热处理亚麻纤维增强材料三维模型[44];(d)HA-PVA水凝胶的冷冻辅助盐析处理[43];(e)碱溶胀处理水凝胶[45];(f)透明杨木贴面乙酰化改性[48];(g)琥珀酰化处理的透明木[49];(h)基于硫醇-烯体系聚合的透明木 [50]
Figure 3. Transparent fiber materials in different interface modifications: (a) multi-layer transparent wood[40]; (b) bamboo fiber materials treated by steam explosion[41]; (c) three dimensional model of flax fiber reinforced material by heat treatment [44]; (d) freeze-assisted salting out treatment of HA-PVA hydrogel[43]; (e) alkali swelling treated hydrogel[45]; (f) acetylation modification of transparent poplar veneer[48]; (g) succinylation treatment of transparent wood[49]; (h) transparent wood by thiol ene system polymerization[50]
图 4 纤维基透明材料的不同复合方法:(a)溶液浸渍法制备透明木[55];(b)熔融浸渍法制备储能透明材料[53];(c)纤维混杂法制备秸秆纤维透明材料[24];(d)纤维混杂法制备木粉增强透明材料[54]
Figure 4. Different composite methods of fiber based transparent materials: (a) preparation of transparent wood by solution impregnation[55]; (b) preparation of energy storage transparent materials by melt immersion method[53]; (c) preparation of straw fiber transparent materials by fiber mixing method[24]; (d) preparation of wood powder reinforced transparent materials by fiber mixing method[54]
图 5 纤维透明材料的光学性能比较:(a)木基透明材料的光线传输图;(b)不同纤维透明材料的透光率[34];(c)透明木材的透射图及其散射图[20];(d)天然木与透明木的透射率[20];(e)不同厚度纤维材料的透光率 [68];(f)锑掺杂透明木和玻璃的隔热实验温度-时间曲线[70];(g)玻璃及不同纤维透明材料的导热系数[71];(h)椴木、环氧树脂及其透明木材的热释放率[72];(i)不同透明木和PVA薄膜的储能模量[74];(j)原始竹材、脱木质素竹材和透明竹材的抗拉强度比较[75];(k)纤维板及其层压板的拉伸应力-应变曲线[77];(l)层压板、透明玻璃和树脂的弯曲应力-应变曲线[77]
Figure 5. Optical properties comparison of fiber transparent materials: (a) light transmission of wood-based transparent materials; (b) transmittance of different transparent materials[34]; (c) transmission and scattering images of transparent wood[20]; (d) transmittance of natural and transparent woods[20]; (e) transmittance of fiber materials with different thicknesses[68]; (f) temperature-time curves of insulation experiments for glass and antimony doped transparent wood [70]; (g) thermal conductivities of glass and fiber transparent materials [71]; (h) heat release rate of basswood, epoxy resin, and transparent wood[72]; (i) storage modulus of transparent woods and PVA thin films[74]; (j) tensile strength comparison of treated bamboos[75]; (k) tensile stress-strain curves of fiberboard and laminates [77]; (l) bending stress-strain curves of laminated panels, transparent glass, and resin[77]
图 6 纤维透明材料的节能建筑应用:(a)木材填充通道结构中碳点、聚乙烯醇和纤维素之间的氢键相互作用[9];(b)发光透明材料对甲醛气体进行实时视觉检测[9];(c)冷态无色与热态彩色可逆变色透明竹材[78];(d)含二氧化钛纳米粒子的双功能透明木[79];(e)基于两层透明木材的玻璃系统的U因子和太阳热增益系数变化曲线[12];(f, g)插入纤维素气凝胶薄膜的中空玻璃[80]
Figure 6. Energy saving building applications of fiber transparent materials: (a) hydrogen bonding interactions between carbon dots, polyvinyl alcohol, and cellulose in wood filled channel structures[9]; (b) real time visual detection of formaldehyde gas using luminescent transparent materials[9]; (c) cold colorless and hot colored reversible color changing transparent bamboo[78]; (d) double functional transparent wood containing titanium dioxide nanoparticles[79]; (e) the U-factor and solar thermal gain coefficient variation curve of a glass system based on two-layer transparent wood[12];(f, g) hollow glass inserted with cellulose aerogel film[80]
图 7 纤维透明材料在光电子器件的应用:(a)透明纸铺覆砷化镓电池的电流密度与电压特性关系曲线[13];(b)砷化镓电池反射率与入射角和波长的函数等值线图[13];(c)入射到太阳能电池上的光分布示意图[16];柔性导电透明木材 (d)点亮LED灯泡照片,(e)电导率与温度的关系和(f)不同温度变化循环的电导率变化[10];FeCl3/聚丙烯酸透明木材(g)电导率随FeCl3浓度的变化关系和(h, i)人体动作电学响应[81];涂覆铟锡氧化物的透明木材(j)模型图,(k,l)透射/反射功率的比较[82]
Figure 7. Optoelectronic devices applications of fiber transparent materials: (a) relationship curve between current density and voltage characteristics of transparent paper coated gallium arsenide batteries[13]; (b) contour plot of reflectivity as a function of incident angle and wavelength for gallium arsenide batteries[13]; (c) schematic diagram of light distribution incident on solar cells[16]; (d) photos of LED bulbs, (e) relationship between conductivity and temperature, and (f) conductivity changes under different temperature cycles for flexible conductive transparent wood[10]; (g) relationship between conductivity and FeCl3 concentration, (h, i) electrical response of human actions for FeCl3/polyacrylic acid transparent wood[81]; (j) model diagram, (k, l)comparison of transmission/reflection power for transparent wood coated with indium tin oxide[82]
图 8 纤维透明材料的热能储存性能:(a)热能储存透明木材[49];(b, c)不同热能储存的透明木材加热与冷却的DSC谱图[49];透光储能木材(d)界面结合机制,(e)光传输和热传导和(f)DSC曲线[11];共聚柔性透明木材(g)共聚物网络,(h)不同温度下的透明度和(i)热导率和热扩散率[8]
Figure 8. Thermal energy storage performance of fiber transparent materials: (a) thermal energy storage of transparent wood[49]; (b, c) DSC spectra of transparent wood with different heat energy storage for heating and cooling[49]; (d) interface binding mechanism, (e) light transmission and thermal conductivity, and (f) DSC curve for translucent energy storage wood [11]; (g) copolymer network, (h) transparency at different temperatures, and (i) thermal conductivity and thermal diffusivity for flexible transparent wood[8]
表 1 植物纤维材料脱色方法比较
Table 1. Comparison of decolorization methods for plant fiber materials
Method Mechanism Character Document Acid delignification Sodium chlorite solution decomposed into chlorine gas and chlorine dioxide by reacting with lignin as a widely used method Good selectivity, moderate process conditions, intact fiber structure, release of harmful gases [35] Alkali delignification The ether bond broken by sodium hydroxide and sodium sulfite reacting with lignin Most lignin and hemicelluloses removed, little cellulose dissolved [36] Biological enzyme delignification The lignin degraded by enzyme to achieve decolorization Eco-friendly , slow reaction speed, no obvious effects [33] Delignification of ionic liquids Low vapor pressure, high solubility and high stability, selectively dissolved lignin Expensive, high purity requirement, toxic [37, 38] Lignin modification Instead of extracting lignin, change the structure and remove the chromophores Structural stability, simple process, low requirement [34, 39] 表 2 木材的纤维素、木质素和常见树脂的折射率
Table 2. Refractive index of cellulose, lignin and common resins of wood
Matter Refractive index Basic property Document Air 1.00 Cellulose 1.53 The main component of plant fiber [56,57] Lignin 1.61 Contains special chromophores. [56,57] Polymethyl methacrylate 1.49 Low density, high mechanical strength, unstable nature, explosive [58] Epoxy resin 1.50 Good compatible fiber, difficult to degrade [60] Polyvinylpyrrolidone 1.53 Environmentally friendly, biodegradable, hydrophilic, good
compatible fiber[51] Polylimonene acrylate 1.50 Soluble in alcohol, ether and other organic solvents ,insoluble in water [49] Mercaptan and ene monomer polymer 1.59 High yield, easy photoinduced polymerization, complex shrinkage
strain is low[50] Chitosan and cellulose nanofibers 1.52 Biodegradable, antioxidant, antibacterial, UV protection [59] polyvinyl alcohol 1.51 Low cost, biodegradable, low viscosity, excellent film formation,
toughness, and transparency[18] -
[1] RAJ T, CHANDRASEKHAR K, KUMAR A N, et al. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach[J]. Renewable Sustainable Energy Reviews, 2022, 158: 112130. doi: 10.1016/j.rser.2022.112130 [2] BELOUADAH Z, ATI A, ROKBI M, et al. Characterization of new natural cellulosic fiber from lygeum spartum L[J]. Carbohydrate Polymers, 2015, 134: 429-437. doi: 10.1016/j.carbpol.2015.08.024 [3] LU Y, XIAO J, LI Y, et al. 3D printing recycled concrete incorporating plant fibres: A comprehensive review[J]. Construction and Building Materials, 2024, 425: 135951. doi: 10.1016/j.conbuildmat.2024.135951 [4] SONG J. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. doi: 10.1038/nature25476 [5] CHEN X, GE-ZHANG S, HAN Y, et al. Ultraviolet-Assisted modified delignified wood with high transparency[J]. Applied Sciences-Basel, 2022, 12(15): 7406. doi: 10.3390/app12157406 [6] WANG Y, WU Y, YANG F, et al. A highly transparent compressed wood prepared by cell wall densification[J]. Wood Science and Technology, 2022, 56(2): 669-686. doi: 10.1007/s00226-022-01372-3 [7] WANG X, SHAN S, SHI S, et al. Optically transparent bamboo with high strength and low thermal conductivity[J]. Acs Applied Materials & Interfaces, 2021, 13(1): 1662-1669. [8] QIU Z, WANG S, WANG Y G, et al. Transparent wood with thermo-reversible optical properties based on phase-change material[J]. Composites Science and Technology, 2020, 200: 108407. doi: 10.1016/j.compscitech.2020.108407 [9] LIU Y, YANG H, MA C, et al. Luminescent transparent wood based on lignin-d derived carbon dots as a building material for dual-channel, real-time, and visual detection of formaldehyde gas[J]. Acs Applied Materials & Interfaces, 2020, 12(32): 36628-36638. [10] YANG L, WU Y, YANG F, et al. Study on the preparation process and performance of a conductive, flexible, and transparent wood[J]. Journal of Materials Research and Technology-Jmr& T, 2021, 15: 5396-5404. [11] XIA R, ZHANG W, YANG Y, et al. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation[J]. Journal Of Cleaner Production, 2021, 296: 126598. doi: 10.1016/j.jclepro.2021.126598 [12] MI R Y, LI T, DALGO D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows[J]. Advanced Functional Materials, 2020, 30(1): 1907511. doi: 10.1002/adfm.201907511 [13] HA D, FANG Z, HU L, et al. Paper-Based anti-reflection coatings for photovoltaics[J]. Advanced Energy Materials, 2014, 4(9): 1301804. doi: 10.1002/aenm.201301804 [14] ZHOU T, ZHOU J, FENG Q, et al. Mechanically strong, hydrostable, and biodegradable all-biobased transparent wood films with UV-blocking performance[J]. International Journal of Biological Macromolecules, 2024, 255: 128188. doi: 10.1016/j.ijbiomac.2023.128188 [15] YANG Y, LAI Y, ZHAO S, et al. Optically transparent and high-strength glass-fabric reinforced composite[J]. Composites Science and Technology, 2024, 245: 110338. doi: 10.1016/j.compscitech.2023.110338 [16] ZHU M, LI T, DAVIS C, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells[J]. Nano Energy, 2016, 26: 332-339. doi: 10.1016/j.nanoen.2016.05.020 [17] SIEGFRIED F. Transparent wood-A new approach in the functional study of wood structure[J]. Holzforschung, 1992, 46(5): 403-408. doi: 10.1515/hfsg.1992.46.5.403 [18] RAO A, NAGARAJAPPA G, NAIR S, et al. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol[J]. Composites Science Technology, 2019, 182(29): 107719. [19] 侯高远, 李冠辉, 胡招湘, 等. 高雾度透明纤维素薄膜制备、性能及其太阳能电池应用[J]. 复合材料学报, 2022, 39(5): 1907-1923.HOU Gaoyuan, LI Guanhui, HU Zhaoxiang, et al. Preparation, properties and application of high fog transparent cellulose film in solar cell[J]. Acta Materiae Compositae Sinica 2022, 39(5): 1907-1923 ( in Chinese). [20] ZHU M, SONG J, LI T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials, 2016, 28(26): 5181-5187. doi: 10.1002/adma.201600427 [21] LI X, ZHANG W, LI J, et al. Optically transparent bamboo: preparation, properties, and applications [J] 2022, 14(16): 3234. [22] Zhang T, Zheng M, Li H, et al. Photochromic transparent bamboo composite with excellent optical and thermal management for smart window applications[J]. Industrial Crops and Products, 2023, 205: 117532. doi: 10.1016/j.indcrop.2023.117532 [23] El-KASSAS A, MOURAD A, et al. Novel fibers preparation technique for manufacturing of rice straw based fiberboards and their characterization[J]. Materials & Design, 2013, 50: 757-765. [24] TONG J, WANG X, KUAI B, et al. Development of transparent composites using wheat straw fibers for light-transmitting building applications[J]. Industrial Crops and Products, 2021, 170: 113685. doi: 10.1016/j.indcrop.2021.113685 [25] ZHOU L, GUO W, ZHANG L, et al. A top-down strategy for the preparation of flame retardant, robust, and transparent wood-derived films[J]. Journal of Materials Research and Technology, 2022, 21: 3594-3603. doi: 10.1016/j.jmrt.2022.10.151 [26] JIA C, LI T, CHEN C, et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells[J]. Nano Energy, 2017, 36: 366-373. doi: 10.1016/j.nanoen.2017.04.059 [27] SHI R, SHENG X, JIA H, et al. Preparation of sustainable transparent wood with glucose and phenol derived resin[J]. Industrial Crops and Products, 2023, 193: 116234. doi: 10.1016/j.indcrop.2022.116234 [28] SHARMA N, TTIPATHI S , BHARDWAJ N , et al. Utilization of sarkanda for making pulp and paper using elemental chlorine free and total chlorine free bleaching processes[J]. Industrial Crops and Products, 2020, 149: 112316. [29] LU P, CHENG F, OU Y, et al. Rapid fabrication of transparent film directly from wood fibers with microwave-assisted ionic liquids technology[J]. Carbohydrate Polymers, 2017, 174: 330-336. doi: 10.1016/j.carbpol.2017.06.057 [30] OH Y, PARK S, JUNG D, et al. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood[J]. International Journal of Biological Macromolecules, 2020, 165(Pt A): 187-197. [31] JING Y, LI F, LI Y, et al. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: effect of liquid–solid ratio[J]. Bioresource Technology, 2022, 349: 126867. doi: 10.1016/j.biortech.2022.126867 [32] ZHANG K, PEI Z, WANG D, et al. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review[J]. Bioresour Technol, 2016, 199: 21-33. doi: 10.1016/j.biortech.2015.08.102 [33] RAJESWARI G, JACOB S. Deciphering the aloe vera leaf rind as potent feedstock for bioethanol through enzymatic delignification and its enhanced saccharification - ScienceDirect[J]. Industrial Crops and Products, 2020, 143: 111876. doi: 10.1016/j.indcrop.2019.111876 [34] WANG Y, GUO F, LI Y, et al. High overall performance transparent bamboo composite via a lignin-modification strategy[J]. Composites Part B-Engineering, 2022, 235: 109798. doi: 10.1016/j.compositesb.2022.109798 [35] 吴燕, 韩岩, 黄楠, 等. 脱木质素工艺对透明木材性能的影响[J]. 林业工程学报, 2019, 4(6): 98-104.WU Yan, HAN Yan, HUANG Nan, et al. Effect of delignification process on properties of transparent wood[J]. Journal of Forestry Engineering, 2019, 4(6): 98-104 ( in Chinese). [36] ZHU S, KUMAR B, QIU Z, et al. Transparent wood-based functional materials via a top-down approach[J]. Progress in Materials Science, 2023, 132: 101025. doi: 10.1016/j.pmatsci.2022.101025 [37] 汪心娉, 余璟, 朱瑞琦, 等. 低共熔溶剂选择性溶解木质纤维原料的研究进展[J]. 中国造纸学报, 2021, 36(2): 79-86.WANG Xinping, YU Jing, ZHU Ruiqi, et al. Research progress on the selective dissolution of wood fiber raw materials with low eutectic solvents[J]. Chinese Paper journal, 2021, 36(2): 79-86 ( in Chinese). [38] KHAKALO A, TANAKA A, KORPELA A, et al. Delignification and Ionic Liquid Treatment of Wood toward Multifunctional High-Performance Structural Materials[J]. Acs Applied Materials & Interfaces, 2020, 12(20): 23532-23542. [39] LI Y, FU Q, ROJAS R, et al. Lignin-Retaining transparent wood[J]. Chemsuschem, 2017, 10(17): 3445-3451. doi: 10.1002/cssc.201701089 [40] QIN J, LI X, SHAO Y, et al. Optimization of delignification process for efficient preparation of transparent wood with high strength and high transmittance[J]. Vacuum, 2018, 158: 158-165. doi: 10.1016/j.vacuum.2018.09.058 [41] ZHAO W, ZOU Y, ZHANG W, et al. Effect of fiber separation degree on the properties of bamboo fiber composites[J]. European Journal of Wood and Wood Products, 2023, 84: 1249-1259. [42] ADAM P, HORVATH M, SINKO K. Sol-gel derived porous aluminum oxide cryogel – Fiber composite systems[J]. Journal of Molecular Liquids, 2023, 380: 121755. doi: 10.1016/j.molliq.2023.121755 [43] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847): 594-599. doi: 10.1038/s41586-021-03212-z [44] PUCCI M, LIOTIER P J, SEVENO D, et al. Wetting and swelling property modifications of elementary flax fibres and their effects on the Liquid Composite Molding process[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 31-40. doi: 10.1016/j.compositesa.2017.02.028 [45] CHEN C, WANG Y, ZHOU T, et al. Toward Strong and Tough Wood-Based Hydrogels for Sensors[J]. Biomacromolecules, 2021, 22(12): 5204-5213. doi: 10.1021/acs.biomac.1c01141 [46] ZHOU J, XU W. Toward interface optimization of transparent wood with wood color and texture by silane coupling agent[J]. Journal of Materials Science, 2022, 57(10): 5825-5838. doi: 10.1007/s10853-022-06974-7 [47] MA T, LI L, LIU Z, et al. A facile strategy to construct vegetable oil-based, fire-retardant, transparent and mussel adhesive intumescent coating for wood substrates[J]. Industrial Crops and Products, 2020, 154: 112628. doi: 10.1016/j.indcrop.2020.112628 [48] HE W, WANG R, GUO F, et al. Preparation of transparent fast-growing poplar veneers with a superior optical performance, excellent mechanical properties, and thermal insulation by acetylation modification using a green catalyst[J]. Polymers, 2022, 14(2): 257. doi: 10.3390/polym14020257 [49] MONTANARI C, OGAWA Y, OLSEN P, et al. High performance, fully bio-based, and optically transparent wood biocomposites[J]. Advanced Science, 2021, 8(12): 2100559. doi: 10.1002/advs.202100559 [50] HOGLUND M, JOHANSSON M, SYCHUGOV I, et al. Transparent wood biocomposites by fast UV-curing for reduced light-scattering through wood/thiol-ene interface design[J]. Acs Applied Materials & Interfaces, 2020, 12(41): 46914-46922. [51] ZHU M, LI T, DAVIS C, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells[J]. Nano Energy, 2016, 26: 332-339. doi: 10.1016/j.nanoen.2016.05.020 [52] ZHANG K, CHU C, LI M, et al. Transparent wood developed by impregnating poplar with epoxy resin assisted by silane coupling agent[J]. Bioresources, 2023, 18(2): 3598-3607. doi: 10.15376/biores.18.2.3598-3607 [53] MONTANARI C, LI Y, CHEN H, et al. Transparent wood for thermal energy storage and reversible optical transmittance[J]. Acs Applied Materials & Interfaces, 2019, 11(22): 20465-20472. [54] GAO J, WANG X, XU Q, et al. Efficient preparation and properties of wood fiber transparent materials with powdered wood[J]. Industrial Crops And Products, 2023, 193: 116291. doi: 10.1016/j.indcrop.2023.116291 [55] WANG H, YANG H, MU H. Preparation of hydrophobic optically transparent wood via an efficient UV-assisted route[J]. Forests, 2023, 14(4): 759. doi: 10.3390/f14040759 [56] CHEN H, MONTANARI C, YAN M, et al. Refractive index of delignified wood for transparent biocomposites[J]. Rsc Advances, 2020, 10(67): 40719-40724. doi: 10.1039/D0RA07409H [57] JIA C, CHEN C, MI R, et al. Clear wood toward high-performance building materials[J]. Acs Nano, 2019, 13(9): 9993-10001. doi: 10.1021/acsnano.9b00089 [58] WU Y, ZHOU J, HUANG Q, et al. Study on the colorimetry properties of transparent wood prepared from six wood species[J]. Acs Omega, 2020, 5(4): 1782-1788. doi: 10.1021/acsomega.9b02498 [59] HAI L, MUTHOKA R, PANICKER P, et al. All-biobased transparent-wood: A new approach and its environmental-friendly packaging application[J]. Carbohydrate Polymers, 2021, 264: 118012. doi: 10.1016/j.carbpol.2021.118012 [60] HAN X, DING L, TIAN Z, et al. Potential new material for optical fiber: Preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy[J]. International Journal of Biological Macromolecules, 2023, 224: 1236-1243. doi: 10.1016/j.ijbiomac.2022.10.209 [61] WU Y, WANG Y, YANG F. Comparison of multilayer transparent wood and single layer transparent wood with the same thickness[J]. Frontiers in Materials, 2021, 8: 633345. doi: 10.3389/fmats.2021.633345 [62] LIU Z, YANG S, WANG Z, et al. Preparation of bamboo-epoxy resin materials with microwave assistance[J]. Journal of Materials Research and Technology-Jmr& T, 2022, 18: 3266-3272. [63] 甘健, 杨乐晨, 吴新宇, 等. 基于碳量子点的荧光透明木的制备与性能[J]. 林业工程学报, 2022, 7(4): 31-37.GAN Jian, YANG Lechen, WU Xinyu, et al. Preparation and properties of fluorescent transparent wood based on carbon quantum dots[J]. Journal of Forestry Engineering, 2022, 7(4): 31-37 ( in Chinese). [64] LIU X, LI H, ZHANG T, et al. Strong, tough, anisotropic, flexible, and transparent bamboo films[J]. Industrial Crops and Products, 2024, 207: 117757. doi: 10.1016/j.indcrop.2023.117757 [65] ZHANG J, KOUBAA A, TAO Y, et al. The emerging development of transparent wood: materials, characteristics, and applications[J]. Current Forestry Report, 2022, 8(4): 333-345. doi: 10.1007/s40725-022-00172-z [66] WANG S, LI L, ZHA L, et al. Wood xerogel for fabrication of high-performance transparent wood[J]. Nature Communications, 2023, 14(1): 2827. doi: 10.1038/s41467-023-38481-x [67] GAO J, WANG X, XU Q, et al. Efficient preparation and properties of wood fiber transparent materials with powdered wood[J]. Industrial Crops and Products, 2023, 193: 116291. doi: 10.1016/j.indcrop.2023.116291 [68] LI Y, FU Q, YU S, et al. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance[J]. Biomacromolecules, 2016, 17(4): 1358-1364. doi: 10.1021/acs.biomac.6b00145 [69] YUE D, FU G, JIN Z. Transparent wood prepared by polymer impregnation of rubber wood[J]. Bioresources, 2021, 16(2): 2491-2502. doi: 10.15376/biores.16.2.2491-2502 [70] QIU Z, XIAO Z, GAO L, et al. Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles[J]. Composites Science and Technology, 2019, 172: 43-48. doi: 10.1016/j.compscitech.2019.01.005 [71] GAO J, WANG X, TONG J, et al. Large size translucent wood fiber reinforced PMMA porous composites with excellent thermal, acoustic and energy absorption properties[J]. Composites Communications, 2022, 30: 101059. doi: 10.1016/j.coco.2022.101059 [72] MARTINKA J, MITTERPACH J, STEFKO T, et al. Fire hazard of epoxy-based transparent wood[J]. Journal Of Thermal Analysis and Calorimetry, 2023, 148: 9893-9907. doi: 10.1007/s10973-023-12360-5 [73] ALDALBAHI A, EL-NAGGAR M, KHATTAB T, et al. Preparation of flame-retardant, hydrophobic, ultraviolet protective, and luminescent transparent wood[J]. Luminescence, 2021, 36(8): 1922-1932. doi: 10.1002/bio.4126 [74] ZHANG L, JIANG Y, ZHOU L, et al. Mechanical, thermal stability, and flame retardancy performance of transparent wood composite improved with delaminated Ti3C2Tx (MXene) nanosheets[J]. Journal of Materials Science, 2022, 57(5): 3348-3359. doi: 10.1007/s10853-021-06776-3 [75] WU Y, WANG J, WANG Y, et al. Properties of multilayer transparent bamboo materials[J]. Acs Omega, 2021, 6(49): 33747-33756. doi: 10.1021/acsomega.1c05014 [76] WU J, LIANG Y, XIA C, et al. Laminated transparent woods with adjustable optical and enhanced mechanical properties[J]. Advanced Materials Technologies, 2023, 8(1): 2200704. doi: 10.1002/admt.202200704 [77] ISHIOKA S, ISOBE N, HIRANO T, et al. Fully wood-based transparent plates with high strength, flame self-extinction, and anisotropic thermal conduction[J]. Acs Sustainable Chemistry & Eegineering, 2023: 2440-2448. [78] JI Y, ZHANG Y, WANG X, et al. Reversible thermochromic transparent bamboo for dynamically adaptive smart windows[J]. Industrial Crops and Products, 2023, 197: 116593. doi: 10.1016/j.indcrop.2023.116593 [79] WU T, XU Y, CUI Z, et al. Efficient heat shielding and ultraviolet isolating transparent wood via in situ generation of TiO2 nanoparticles[J]. Acs Sustainable Chemistry & Eegineering, 2022, 10(47): 15380-15388. [80] ABRAHAM E, CHERPAK V, SENYUK B, et al. Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings[J]. Nature Energy, 2023, 8(4): 381-396. doi: 10.1038/s41560-023-01226-7 [81] YANG S, ZHANG Y, LI T, et al. Preparation and properties of FeCl_3 /Polyacrylic Acid transparent conductive wood[J]. Chemistry and Industry of Forest Products, 2022, 42(5): 107-112. [82] CHO S, SONG S HONG I. Analysis of the electromagnetic properties of eco-friendly transparent wood[J]. Microwave and Optical Technology Letters, 2021, 63(9): 2237-2241. doi: 10.1002/mop.32385 [83] Huang H, Shi T, He R, et al. Phase-changing microcapsules incorporated with black phosphorus for efficient solar energy storage[J]. Advanced Science, 2020, 7(23): 2000602. doi: 10.1002/advs.202000602
计量
- 文章访问数: 76
- HTML全文浏览量: 26
- 被引次数: 0