留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碘化铯/天然皮革复合可穿戴X射线屏蔽材料的制备及性能

李昊 王亚平 闫林萍 钟睿 廖学品 石碧

李昊, 王亚平, 闫林萍, 等. 碘化铯/天然皮革复合可穿戴X射线屏蔽材料的制备及性能[J]. 复合材料学报, 2023, 40(7): 3852-3861. doi: 10.13801/j.cnki.fhclxb.20220922.005
引用本文: 李昊, 王亚平, 闫林萍, 等. 碘化铯/天然皮革复合可穿戴X射线屏蔽材料的制备及性能[J]. 复合材料学报, 2023, 40(7): 3852-3861. doi: 10.13801/j.cnki.fhclxb.20220922.005
LI Hao, WANG Yaping, YAN Linping, et al. Preparation and performance of cesium iodide/natural leather wearable X-ray shielding composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3852-3861. doi: 10.13801/j.cnki.fhclxb.20220922.005
Citation: LI Hao, WANG Yaping, YAN Linping, et al. Preparation and performance of cesium iodide/natural leather wearable X-ray shielding composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3852-3861. doi: 10.13801/j.cnki.fhclxb.20220922.005

碘化铯/天然皮革复合可穿戴X射线屏蔽材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20220922.005
基金项目: 国家自然科学基金(21878191)
详细信息
    通讯作者:

    廖学品,博士,教授,博士生导师,研究方向为生物质功能材料 E-mail: xpliao@scu.edu.cn

  • 中图分类号: O644.2;TB333

Preparation and performance of cesium iodide/natural leather wearable X-ray shielding composites

Funds: National Natural Science Foundation of China (21878191)
  • 摘要: 随着核科学与技术的快速发展,X射线在医学、工业等领域的应用日益广泛,对屏蔽材料的性能也提出了更高的要求,开发新型的防护材料以有效降低辐射危害已成为辐射防护领域的重要课题。本文以天然皮革(NL)为基材,以CsI为高Z元素源(Z元素是指高原子序数的元素),采用“溶液浸渍-溶剂脱除”策略构建了一种新型的对中低能量X射线具有优异屏蔽性能的可穿戴X射线防护复合材料。结果表明:CsI能够均匀且稳定地分散在天然皮革的多层级结构中,4.5 mm厚的CsI2.0/NL复合材料对低能量段(16~48 keV) X射线的屏蔽效率可达到95%以上,对中能量射线(65 keV)的屏蔽效率可达到85%以上,接近或优于0.25 mm铅板,其密度仅为铅板的8.6%。此外,复合材料的力学性能和透水汽性不仅满足国家标准中对可穿戴防护服的性能要求而且优于商用铅衣。该复合材料质轻、便捷、屏蔽效率高,是一种理想的可穿戴X射线防护材料。

     

  • 图  1  (a) 天然皮革(NL)的多层级结构;(b) 浸渍CsI溶液后的天然皮革;(c) CsI/NL复合材料;(d) CsI/NL复合材料的纤维结构

    Figure  1.  (a) Hierarchical structure of natural leather (NL); (b) NL after impregnation with CsI solution; (c) CsI/NL composites; (d) Fibrous structure of CsI/NL composites

    图  2  (a) NL和CsI2.0/NL的XRD图谱;(b) CsI2.0/NL的XPS全谱图;(c) CsI2.0/NL及CsI中的Cs3d精细图谱;(d) CsI2.0/NL及CsI中的I3d精细图谱

    Figure  2.  (a) Typical XRD patterns of NL and CsI2.0/NL; (b) XPS survey of CsI2.0/NL; (c) Cs3d high resolution XPS spectra of CsI and CsI2.0/NL; (d) I3d high resolution XPS spectra of CsI and CsI2.0/NL

    图  3  (a) 天冬氨酸(Asp)与Cs+的相互作用;(b) 谷氨酸(Glu)与Cs+的相互作用;(c) 精氨酸(Arg)与I的相互作用;(d) 赖氨酸(Lys)与I的相互作用

    Figure  3.  (a) Interactions between aspartic acid (Asp) and Cs+; (b) Interactions between glutamic acid (Glu) and Cs+; (c) Interactions between arginine (Arg+) and I; (d) Interactions between lysine (Lys+) and I

    d—Bond length (nm); ΔG—Gibbs free energy change (kJ/mol)

    图  4  (a) CsI2.0/NL纵截面SEM及Mapping图;(b) CsI2.0/NL纤维束SEM及Mapping图;(c) CsI2.0/NL纤维SEM及Mapping图

    Figure  4.  (a) Longitudinal section SEM and Mapping images of CsI2.0/NL; (b) SEM and Mapping images of CsI2.0/NL fiber bundles; (c) SEM and Mapping images of CsI2.0/NL collagen fibrils

    图  5  (a) 不同CsI负载量的CsIx/NL复合材料的屏蔽效率;(b) 不同厚度的CsI2.0/NL复合材料的屏蔽效率;(c) CsI2.0/NL的质量衰减系数;(d) NIST数据库中Cs、I和Pb的质量衰减系数

    Figure  5.  (a) Attenuation efficiency of CsIx/NL contained different CsI concentrations; (b) Attenuation efficiency of CsI2.0/NL with different thickness; (c) Mass attenuation coefficient of CsI2.0/NL; (d) Mass attenuation coefficient of Cs, I and Pb from NIST database

    图  6  (a) CsI2.0/NL复合材料的数码照片;(b) NL、CsI2.0/NL、铅衣及铅板的密度;(c) NL、CsI2.0/NL、铅衣及铅衣的复合材料的力学强度;(d) NL、CsI2.0/NL及铅衣的透水汽性

    Figure  6.  (a) Digital photograph of the CsI2.0/NL compound; (b) Bulk density of NL, CsI2.0/NL, Pb apron and Pb plate; (c) Mechanical strength of NL, CsI2.0/NL, Pb apron and GB/2016; (d) Water vapor permeability of NL, CsI2.0/NL, Pb apron and GB/2016

    表  1  CsIx/NL复合X射线屏蔽材料

    Table  1.   List of prepared CsIx/NL X-ray shielding composites

    Sample label CsI concentration/(mmol·cm−3)
    CsI0.5/NL 0.5
    CsI1.0/NL 1.0
    CsI2.0/NL 2.0
    下载: 导出CSV
  • [1] LU L, SUN M, LU Q, et al. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy[J]. Nano Energy,2021,79:105437. doi: 10.1016/j.nanoen.2020.105437
    [2] LI J, ZHAO G, TAO Y, et al. Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19[J]. Pattern Recognition,2021,114:107848. doi: 10.1016/j.patcog.2021.107848
    [3] 张钦, 汪明主, 秦思, 等. 基于X射线的异形烟烟包缺支检测系统[J]. 包装与食品机械, 2021, 39(5):84-88. doi: 10.3969/j.issn.1005-1295.2021.05.015

    ZHANG Qin, WANG Mingzhu, QIN Si, et al. Detection system of the shortage of cigarettes of special-shaped packets based on X-ray[J]. Packaging and Food Machinery,2021,39(5):84-88(in Chinese). doi: 10.3969/j.issn.1005-1295.2021.05.015
    [4] WEI H, HUANG J. Halide lead perovskites for ionizing radiation detection[J]. Nature Communications,2019,10(1):1066. doi: 10.1038/s41467-019-08981-w
    [5] DANKAR I, HADDARAH A, OMAR F E, et al. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction[J]. Food Chemistry,2018,260:7-12. doi: 10.1016/j.foodchem.2018.03.138
    [6] AKHILA P P, SUNOOJ K V, AALIYA B, et al. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review[J]. Trends in Food Science & Technology,2021,114:399-409.
    [7] 盛立志, 郑伟, 苏桐, 等. “天枢II号”X射线脉冲星导航动态模拟系统及实验验证[J]. 航空学报, 2022, 43(X):526656. doi: 10.7527/S1000-6893.2022.26656

    SHENG Lizhi, ZHENG Wei, SU Tong, et al. Ground test bench for X-ray pulsar navigation dynamic simulation[J]. Acta Aeronautica et Astronautica Sinica,2022,43(X):526656(in Chinese). doi: 10.7527/S1000-6893.2022.26656
    [8] 印俊秋, 刘云鹏, 汤晓斌. 基于仿脉冲星X射线信标的航天器定位方法研究[J]. 航空学报, 2023, 44(3):526596. doi: 10.7527/S1000-6893.2022.26596

    YIN Junqiu, LIU Yunpeng, TANG Xiaobin. Spacecraft positioning method based on pulsar-like X-ray beacon[J]. Acta Aeronautica et Astronautica Sinica,2023,44(3):526596(in Chinese). doi: 10.7527/S1000-6893.2022.26596
    [9] LEE N, CHOI S H, HYEON T. Nano-sized CT contrast agents[J]. Advanced Materials,2013,25(19):2641-2660. doi: 10.1002/adma.201300081
    [10] SINGH V K, SEED T M. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: Part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures[J]. International Journal of Radiation Biology,2017,93(9):851-869. doi: 10.1080/09553002.2017.1332438
    [11] International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans[M]. Lyon: WHO Press, 2012: 100D.
    [12] 刘波, 李运波. 聚合物基X射线屏蔽复合材料研究进展[J]. 化工新型材料, 2011, 39(7):21-23. doi: 10.3969/j.issn.1006-3536.2011.07.007

    LIU Bo, LI Yunbo. Research advance of X-ray radiation shielding polymer composite[J]. New Chemical Materials,2011,39(7):21-23(in Chinese). doi: 10.3969/j.issn.1006-3536.2011.07.007
    [13] KALKORNSURAPRANEE E, KOTHAN S, INTOM S, et al. Wearable and flexible radiation shielding natural rubber composites: Effect of different radiation shielding fillers[J]. Radiation Physics and Chemistry,2021,179:109261. doi: 10.1016/j.radphyschem.2020.109261
    [14] YU L, YAP P L, SANYOS A, et al. Lightweight bismuth titanate (Bi4Ti3O12) nanoparticle-epoxy composite for advanced lead-free X-ray radiation shielding[J]. ACS Applied Nano Materials,2021,4(7):7471-7478. doi: 10.1021/acsanm.1c01475
    [15] 黄云刚, 黄维龙, 洪浩群, 等. 界面改性对聚丙烯-玻璃纤维复合材料力学性能影响[J]. 复合材料学报, 2022, 39(7):3157-3166. doi: 10.13801/j.cnki.fhclxb.20210916.006

    HUANG Yungang, HUANG Weilong, HONG Haoqun, et al. Effect of interface modification on mechanical properties of polypropylene-glass fiber composites[J]. Acta Materiae Compositae Sinica,2022,39(7):3157-3166(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210916.006
    [16] 肖何, 陈藩, 刘寒松, 等. 国产ZT7 H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8):2554-2567.

    XIAO He, CHEN Fan, LIU Hansong, et al. Surface state of domestic ZT7 H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2554-2567(in Chinese).
    [17] WANG Y P, DING P P, XU H, et al. Advanced X-ray shielding materials enabled by the coordination of well-dispersed high atomic number elements in natural leather[J]. ACS Applied Materials & Interfaces,2020,12(17):19916-19926.
    [18] 何建洪, 孙勇, 段永华, 等. 射线与中子辐射屏蔽材料的研究进展[J]. 材料导报, 2011, 25(18):347-351.

    HE Jianhong, SUN Yong, DUAN Yonghua, et al. Research progress of ray and neutron radiation shielding materials[J]. Materials Reports,2011,25(18):347-351(in Chinese).
    [19] LIAO X P, SHI B. Adsorption of fluoride on Zi impregnated collagen fiber[J]. Environmental Science & Technology,2005,39:4628-4632.
    [20] 李倩, 丁平平, 廖学品, 等. 稀土-天然皮革可穿戴X射线防护材料的合成及性能[J]. 物理化学学报, 2021, 37(10):2001046.

    LI Qian, DING Pingping, LIAO Xuepin, et al. Preparation of a rare earth natural leather X-ray protection material and its properties[J]. Acta Physico-Chemica Sinica,2021,37(10):2001046(in Chinese).
    [21] CARSOTE C, SENDREA C, MICU M C, et al. Micro-DSC, FTIR-ATR and NMR MOUSE study of the dose-dependent effects of gamma irradiation on vegetable-tanned leather: The influence of leather thermal stability[J]. Radiation Physics and Chemistry,2021,189:109712. doi: 10.1016/j.radphyschem.2021.109712
    [22] TANG Y, ZHOU J, GUO J, et al. Irradiation-stable hydrous titanium oxide-immobilized collagen fibers for uranium removal from radioactive wastewater[J]. Journal of Environmental Management,2021,283:112001. doi: 10.1016/j.jenvman.2021.112001
    [23] 韩威妺, 王力, 张文华, 等. Visual Minteq软件模拟研究硫酸铝鞣液中铝形态[J]. 皮革科学与工程, 2015, 25(2):5-8.

    HAN Weimo, WANG Li, ZHANG Wenhua, et al. Visual minteq modeling research on alumimium sulfate tanning liquors[J]. Leather Science and Engineering,2015,25(2):5-8(in Chinese).
    [24] PU S Z, WANG Y N, HE Q, et al. Molecular level understanding of the role of aldehyde in vegetable-aldehyde-collagen cross-linking reaction[J]. International Journal of Quantum Chemistry,2012,112(16):2832-2839. doi: 10.1002/qua.23300
    [25] ZHANG X, ZHANG P, WENG Y G, et al. Intracation and interanion-cation charge-transfer properties of tetrathiafulvalene-bismuth-halide hybrids[J]. Inorganic Chemistry,2018,57(17):11113-11122. doi: 10.1021/acs.inorgchem.8b01692
    [26] 中国轻工业联合会. 皮革 物理和机械试验 抗张强度和伸长率的测定: QB/T 2710—2018[S]. 北京: 中国轻工业出版社, 2018.

    China National Light Industry Council. Leather—Physical and mechanical tests—Determination of tensile strength and percentage extension: QB/T 2710—2018[S]. Beijing: China Light Industry Press, 2018(in Chinese).
    [27] 中国国家标准化管理委员会. 防护服装 X射线防护服: GB/T 16757—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. Ptotective clothing X-ray protective clothing: GB/T 16757—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [28] WU H, ZHUO L, HE Q, et al. Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers[J]. Applied Catalysis A: General,2009,366(1):44-56. doi: 10.1016/j.apcata.2009.06.024
    [29] LIU C, HUANG X, ZHOU J, et al. Lightweight and high-performance electromagnetic radiation shielding composites based on a surface coating of Cu@Ag nanoflakes on a leather matrix[J]. Journal of Materials Chemistry C,2016,4(5):914-920. doi: 10.1039/C5TC02591E
    [30] LUSIC H, GRINSTAFF M W. X-ray computed tomography contrast agents[J]. Chemical Reviews,2012,113(3):1641-1666.
    [31] KIM Y, PARK S, SEO Y. Enhanced X-ray shielding ability of polymer-nonleaded metal composites by multilayer structuring[J]. Industrial & Engineering Chemistry Research,2015,54(22):5968-5973.
    [32] SHEN Y, LIAO X P, SHI B, et al. Research on the high performance of Gamma-ray shielding materials based on natural leather[J]. Journal of Leather Science and Engineering,2022,4(1):15. doi: 10.1186/s42825-022-00090-7
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  529
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2022-09-05
  • 录用日期:  2022-09-10
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回