留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虑及温度影响的CFRTP正交切削仿真与实验研究

魏钢 王福吉 贾振元 鞠鹏程 胡晓杭 付饶

魏钢, 王福吉, 贾振元, 等. 虑及温度影响的CFRTP正交切削仿真与实验研究[J]. 复合材料学报, 2024, 41(9): 4968-4980. doi: 10.13801/j.cnki.fhclxb.20240301.001
引用本文: 魏钢, 王福吉, 贾振元, 等. 虑及温度影响的CFRTP正交切削仿真与实验研究[J]. 复合材料学报, 2024, 41(9): 4968-4980. doi: 10.13801/j.cnki.fhclxb.20240301.001
WEI Gang, WANG Fuji, JIA Zhenyuan, et al. Simulation and experimental study of CFRTP orthogonal cutting considering the influence of temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4968-4980. doi: 10.13801/j.cnki.fhclxb.20240301.001
Citation: WEI Gang, WANG Fuji, JIA Zhenyuan, et al. Simulation and experimental study of CFRTP orthogonal cutting considering the influence of temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4968-4980. doi: 10.13801/j.cnki.fhclxb.20240301.001

虑及温度影响的CFRTP正交切削仿真与实验研究

doi: 10.13801/j.cnki.fhclxb.20240301.001
基金项目: 国家自然科学基金(52090053;52105432;52130506);国家重点研发计划(2018YFA0702803);大连市科技创新基金项目(2021RD08;2022JJ12GX027)
详细信息
    通讯作者:

    付饶,博士,教授,博士生导师,研究方向为复合材料加工 E-mail: r.fu@dlut.edu.cn

  • 中图分类号: TB332

Simulation and experimental study of CFRTP orthogonal cutting considering the influence of temperature

Funds: National Natural Science Foundation of China (52090053; 52105432; 52130506); National Key R&D Program of China (2018YFA0702803); Science and Technology Innovation Foundation of Dalian (2021RD08; 2022JJ12GX027)
  • 摘要: 碳纤维增强热塑性树脂基复合材料(Carbon fiber reinforced thermoplastic polymer,CFRTP)是高端装备减重增效的优选材料。而CFRTP是一种典型的难加工材料,加工中损伤频发。本文对切削CFRTP时的材料去除及损伤形成过程进行了仿真与实验研究。CFRTP切削时易产生塑性变形,且材料性能受温度影响较大。本文建立CFRTP三维正交切削细观仿真模型,并引入J-C模型表征树脂在不同温度下的弹塑性变形。分析了温度及纤维方向角对CFRTP切削去除过程的影响。结果表明,常温下切削,0°及45°纤维方向角时,已加工面较平整,加工质量较好;90°及135°纤维方向角时,纤维弯曲程度明显增大,已加工面有裂纹产生,加工质量较差。高温下切削,0°纤维方向角时,已加工面出现未去除材料;45°纤维方向角时,已加工面出现裂纹,部分纤维未被切断;90°及135°纤维方向角时,已加工面出现更大开裂,工件出现明显的沿厚度方向上的面外变形,发生面外变形的材料难以被有效去除。

     

  • 图  1  碳纤维增强热塑性树脂基复合材料(CFRTP)仿真模型示意图

    Figure  1.  Schematic view of carbon fiber reinforced thermoplastic polymer (CFRTP) simulation model

    EHM—Equivalent homogeneous material; PEEK—Poly-ether-ether-ketone; v—Cutting speed

    图  2  CFRTP仿真模型的约束及载荷示意图

    Figure  2.  Constraints and load diagram of CFRTP simulation model

    RP—Reference point

    图  3  CFRTP正交切削实验平台

    Figure  3.  Experimental setup of CFRTP orthogonal cutting

    图  4  CFRTP切削实验工件及刀具

    Figure  4.  Workpiece and tool of CFRTP cutting experiment

    图  5  CFRTP纤维方向角示意图

    Figure  5.  Schematic diagram of CFRTP fiber orientation angle

    图  6  CFRTP常温下成0°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  6.  CFRTP is cut into 0° fiber direction angle at room temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    S, S11—Fiber axial stress; SDV9—Material damage factor

    图  7  CFRTP高温下成0°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  7.  CFRTP is cut into 0° fiber direction angle at high temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    图  8  CFRTP常温下成45°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  8.  CFRTP is cut into 45° fiber direction angle at room temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM) ; (f) Top view (SEM)

    图  9  CFRTP高温下成45°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  9.  CFRTP is cut into 45° fiber direction angle at high temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    图  10  CFRTP常温下成90°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  10.  CFRTP is cut into 90° fiber direction angle at room temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    θ—Fiber deflection angle

    图  11  CFRTP高温下成90°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  11.  CFRTP is cut into 90° fiber direction angle at high temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    图  12  CFRTP常温下成135°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  12.  CFRTP is cut into 135° fiber direction angle at room temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation);(d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    图  13  CFRTP高温下成135°纤维方向角切削:(a)纤维轴向应力;(b)侧视图(仿真);(c)俯视图(仿真);(d)侧视图(高速相机原位拍摄);(e)侧视图(SEM);(f)俯视图(SEM)

    Figure  13.  CFRTP is cut into 135° fiber direction angle at high temperature: (a) Fiber axial stress; (b) Side view (simulation); (c) Top view (simulation); (d) Side view (high-speed camera in situ shooting); (e) Side view (SEM); (f) Top view (SEM)

    图  14  CFRTP沿厚度方向上的面外变形;(a)切削前工件厚度(l0);(b)切削后工件厚度(l)

    Figure  14.  The out-of-plane deformation of CFRTP along the thickness direction; (a) Workpiece thickness before cutting (l0); (b) Workpiece thickness after cutting (l)

    图  15  温度及纤维方向角对CFRTP面外变形的影响

    Figure  15.  The effects of temperature and fiber orientation angle on the out-of-plane deformation of CFRTP

    表  1  CFRTP仿真模型中的材料性能参数[26-29]

    Table  1.   Material performance parameters in CFRTP simulation model[26-29]

    Material Property Value
    Carbon fber Elastic constants E11= 294 GPa, E22= E33= 30 GPa, μ11=μ22=μ33= 0.2
    G12= G13= 108 GPa, G23= 8.8 GPa
    Longitudinal strength Xt= 4500 MPa, Xc= 2800 MPa
    Transverse strength Yt= 200 MPa, Yc= 1000 MPa
    PEEK Elastic constants E= 4.1 GPa, μ= 0.35
    J-C plastic parameter A, B, C, n, m 132 MPa, 10 MPa, 0.034, 1.2, 0.7
    J-C failure parameter d1-d5 0.05, 1.2, 0.254, −0.009, 1
    Interface Cohesive stiffness k = 6.4 × 105 MPa∕mm
    Normal and shear strength $ t_{\text{n}}^0=43\text{ }\mathrm{MP\text{a, }}t_{\text{s}}^0=t_{\text{t}}^0=50\text{ }\mathrm{MP\text{a}} $
    Fracture energy $ G\mathrm{\mathrm{_n^c} }=1.7\text{ }\mathrm{kJ/\text{m}^2\text{, } }G\mathrm{\mathrm{_s^c} }=2.0\text{ }\mathrm{kJ/\text{m}^2} $
    B-K exponent η= 1.09
    EHM Elastic constants E11= 127 GPa, E22= E33= 10.3 GPa, μ11=μ22=μ33= 0.3
    G12= G13= 5.7 GPa, G23= 3.2 GPa
    Notes:E11, E22 and E33—Elastic modulus of the material in three directions, respectively; μ11, μ22 and μ33—Poisson's ratio in three directions of the material, respectively; G12, G13 and G23—Shear modulus in three directions of the material, respectively; Xt—Tensile strength along the direction of carbon fiber; Xc—Compressive strength along the direction of carbon fiber; Yt—Tensile strength perpendicular to the direction of carbon fiber; Yc—Compressive strength perpendicular to the direction of carbon fiber; E and μ—Elastic modulus and Poisson's ratio of PEEK, respectively; A, B, C, n, m—Plastic parameters of J-C constitutive model; d1-d5—Parameters of J-C damage model; k—Stiffness of the interface; $ {{t}}_{\text{n}}^{\text{0}} $, $ {{t}}_{\text{s}}^{\text{0}} $ and $ t\mathrm{_{\mathrm{t}}^{\text{0}}} $—Strength of the interface in one normal direction and two tangential directions respectively; $ {{G}}_{\text{n}}^{\text{c}} $ and $ {{G}}_{\text{s}}^{\text{c}} $—Interface normal and tangential fracture energy respectively; η—Interface B-K failure parameter.
    下载: 导出CSV

    表  2  CFRTP切削实验参数

    Table  2.   CFRTP cutting experimental parameters

    Parameter Value
    Fiber orientation angle 0°, 45°, 90°, 135°
    Cutting temperature Room temperature (25℃)
    High temperature (200℃)
    Cutting speed/(mm·s−1) 8.33
    Cutting depth/μm 30
    Cutting length/mm 55
    下载: 导出CSV
  • [1] NOONAN M, OBANDE W, RAY D. Simulated end-of-life reuse of composites from marine applications using thermal reshaping of seawater-aged, glass fibre-reinforced acrylic materials[J]. Composites Part B: Engineering, 2023, 270: 111118.
    [2] OBANDE W, STANKOVIC D, BAJPAI A, et al. Thermal reshaping as a route for reuse of end-of-life glass fibre-reinforced acrylic composites[J]. Composites Part B: Engineering, 2023, 257: 110662. doi: 10.1016/j.compositesb.2023.110662
    [3] KHAN H, BER R, NEIFERT S, et al. Carbon fiber-reinforced PEEK spinal implants for primary and metastatic spine tumors: A systematic review on implant complications and radiotherapy benefits[J]. Journal of Neurosurgery: Spine, 2023, 39(4): 534-547.
    [4] ZHOU X, DONG W, ZHAO S, et al. Biomimetic construction of 3D needle-punched CF/PEEK composites based on ladybug forewing structure for directional reinforcement[J]. Polymer Composites, 2023, 44(10): 6495-6512. doi: 10.1002/pc.27574
    [5] QIU H, FENG Y, HONG Z, et al. Lightweight multi-layer graded pyramid folded structure based on tucked kirigami for green manufacturing[J]. Composites Science and Technology, 2023, 246: 110383.
    [6] SIDDIQUI S, SURANANAI S, SAINATH K, et al. Emerging trends in development and application of 3D printed nanocomposite polymers for sustainable environmental solutions[J]. European Polymer Journal, 2023, 196: 112298. doi: 10.1016/j.eurpolymj.2023.112298
    [7] GE J, ZHANG W, LUO M, et al. Multi-objective optimization of thermoplastic CF/PEKK drilling through a hybrid method: An approach towards sustainable manufacturing[J]. Composites Part A: Applied Science and Manufacturing, 2023, 167: 107418. doi: 10.1016/j.compositesa.2022.107418
    [8] DAI G, ZHAN L, MA B, et al. Effect of process parameters on interlaminar properties of thermoplastic composite: Molecular dynamics simulation and experimental verification[J]. Polymer, 2023, 280: 126062.
    [9] PANG X, YUE S, HUANG S, et al. Effects of ambient humidity and sintering temperature on the tribological and antistatic properties of PEEK and CF/PEEK[J]. Frontiers in Materials, 2023, 10: 1197604.
    [10] RAMASWAMY K, MODI V, RAO P, et al. An investigation of the influence of matrix properties and fibre-matrix interface behaviour on the mechanical performance of carbon fibre-reinforced PEKK and PEEK composites[J]. Composites Part A: Applied Science and Manufacturing, 2023, 165: 107359.
    [11] GE J, CATALANOTTI G, FALZON B, et al. Towards understanding the hole making performance and chip formation mechanism of thermoplastic carbon fibre/polyetherketoneketone composite[J]. Composites Part B: Engineering, 2022, 234: 109752. doi: 10.1016/j.compositesb.2022.109752
    [12] DU Y, YANG T, LIU C. Comparative study on machining performance of conventional and ultrasonic-assisted drilling of carbon fiber-reinforced polyetheretherketone composite[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(10): 540.
    [13] LIU S, SUN Y, DU Y, et al. Investigating the material removal mechanism and cutting performance in ultrasonic vibration-assisted milling of carbon fibre reinforced thermoplastic[J]. Materials Research Express, 2023, 10(9): 095603.
    [14] HOU G, LUO B, ZHANG K, et al. Investigation of high temperature effect on CFRP cutting mechanism based on a temperature controlled orthogonal cutting experiment[J]. Composite Structures, 2021, 268: 113967. doi: 10.1016/j.compstruct.2021.113967
    [15] HAN L, ZHANG J, LIU Y, et al. Finite element investigation on pretreatment temperature-dependent orthogonal cutting of unidirectional CFRP[J]. Composite Structures, 2021, 278: 114678.
    [16] LI S, CAO Z, CHEN R, et al. Strengthening the bonding interfaces of hybrid titanium carbon laminates by bionic micro texture and carbon nanotube pinning[J]. Composites Science and Technology, 2023, 232: 109865. doi: 10.1016/j.compscitech.2022.109865
    [17] LI S, DAI L, LI C, et al. Prediction model of chisel edge thrust force and material damage mechanism for interlaminar-direction drilling of UD-CFRP composite laminates[J]. Composite Structures, 2022, 298: 116023. doi: 10.1016/j.compstruct.2022.116023
    [18] LI S, TENG H, DAI L, et al. Comprehensive prediction model of drilling temperature of UD-CFRP laminates considering the combined action of main cutting edge and chisel edge[J]. Composite Structures, 2023, 313: 116899. doi: 10.1016/j.compstruct.2023.116899
    [19] SONG Y, CAO H, QU D, et al. Impact effect-based dynamics force prediction model of high-speed dry milling UD-CFRP considering size effect[J]. International Journal of Impact Engineering, 2023, 179: 104659. doi: 10.1016/j.ijimpeng.2023.104659
    [20] SONG Y, QU D, WU B, et al. Composite light ropes model-based dynamics force prediction model of high speed dry milling UD-CF/PEEK considering size effect[J]. Journal of Manufacturing Processes, 2022, 76: 210-222. doi: 10.1016/j.jmapro.2022.01.069
    [21] GE J, TAN W, AHMAD S, et al. Temperature-dependent cutting physics in orthogonal cutting of carbon fibre reinforced thermoplastic (CFRTP) composite[J]. Composites Part A: Applied Science and Manufacturing, 2024, 176: 107820. doi: 10.1016/j.compositesa.2023.107820
    [22] QIN X, WU X, LI H, et al. Numerical and experimental investigation of orthogonal cutting of carbon fiber-reinforced polyetheretherketone (CF/PEEK)[J]. The International Journal of Advanced Manufacturing Technology, 2022(1/2): 119.
    [23] TAN W, FALZON B, PRICE M, Predicting the crushing behaviour of composite material using high-fidelity finite element modelling[J]. International Journal of Crashworthiness, 2014, 20(1): 60-77.
    [24] ZHANG B, WANG F, WANG Q, et al. Novel fiber fracture criteria for revealing forming mechanisms of burrs and cracking at hole-exit in drilling carbon fiber reinforced plastic[J]. Journal of Materials Processing Technology, 2021, 289: 116934. doi: 10.1016/j.jmatprotec.2020.116934
    [25] WANG F, WANG X, JIN X, et al. A comparison of cutting mechanisms of the carbon fibre reinforced thermoset and thermoplastic composites by the experimental and computational modelling methods[J]. Journal of Manufacturing Processes, 2022, 79: 895-910. doi: 10.1016/j.jmapro.2022.05.033
    [26] GARCIA D, RUSINEK A, JANKOWIAK T, et al. Mechanical impact behavior of polyether-ether-ketone (PEEK)[J]. Composite Structures, 2015, 124: 88-99. doi: 10.1016/j.compstruct.2014.12.061
    [27] LIU H, LIU J, DING Y, et al. A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites[J]. Composites Part B: Engineering, 2020, 201: 108389. doi: 10.1016/j.compositesb.2020.108389
    [28] LIU H, LIU J, DING Y, et al. The behaviour of thermoplastic and thermoset carbon-fibre composites subjected to low-velocity and high-velocity impact[J]. Journal of Materials Science, 2020, 55(33): 15741-15768.
    [29] XU X, JIN X. 3-D finite element modeling of sequential oblique cutting of unidirectional carbon fiber reinforced polymer[J]. Composite Structures, 2021, 256: 113127.
    [30] GARCIA D, RODRIGUEZ M, RUSINEK A, et al. Low temperature effect on impact energy absorption capability of PEEK composites[J]. Composite Structures, 2015, 134: 440-449. doi: 10.1016/j.compstruct.2015.08.090
    [31] CHEN F, OU H, LU B, et al. A constitutive model of polyether-ether-ketone (PEEK)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53: 427-433. doi: 10.1016/j.jmbbm.2015.08.037
    [32] CHANG B, WANG X, LONG Z, et al. Constitutive modeling for the accurate characterization of the tension behavior of PEEK under small strain[J]. Polymer Testing, 2018, 69: 514-521. doi: 10.1016/j.polymertesting.2018.06.003
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  121
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-02-01
  • 录用日期:  2024-02-07
  • 网络出版日期:  2024-03-05
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回