留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能

刘少辉 王娇 王菲菲 王远

刘少辉, 王娇, 王菲菲, 等. 立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能[J]. 复合材料学报, 2023, 40(8): 4642-4652
引用本文: 刘少辉, 王娇, 王菲菲, 等. 立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能[J]. 复合材料学报, 2023, 40(8): 4642-4652
LIU Shaohui, WANG Jiao, WANG Feifei, WANG Yuan. Energy storage performance of cubic SrTiO3 powder/ polyvinylidene fluoride dielectric composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4642-4652.
Citation: LIU Shaohui, WANG Jiao, WANG Feifei, WANG Yuan. Energy storage performance of cubic SrTiO3 powder/ polyvinylidene fluoride dielectric composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4642-4652.

立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能

基金项目: 国家自然科学基金项目(51902088),河南省高校科技创新人才项目(21HASTIT014),河南省优秀青年基金项目 (212300410031),河南省科技攻关计划项目(222102240004)
详细信息
    通讯作者:

    刘少辉,博士,副教授,研究方向为复合材料 E-mail: qqliushaohui@163.com

  • 中图分类号: TB332

Energy storage performance of cubic SrTiO3 powder/ polyvinylidene fluoride dielectric composite films

Funds: National Natural Science Foundation of China (51902088), Program for Science and Technology Innovation Talents in Universities of Henan Province(21 HASTIT014) and the Excellent Youth Fund of Henan Natural Science Foundation(212300410031) and the Programs for Tackling Key Problems in Science and Technology of Henan Province (222102240004).
  • 摘要: 电介质电容器因具备超高的功率密度、超快的充放电速率等优点,成为高能脉冲功率领域的核心储能器件,广泛用于新能源汽车、智能电网等诸多领域。目前电介质电容器的储能密度较低,阻碍了储能器件与系统向小型化与高容量化发展。目前单一的电介质材料已经不能满足脉冲功率型先进电容器的要求。研究学者提出利用复合思想,制备出聚合物和无机陶瓷组成的陶瓷/聚合物复合材料,综合聚合物和陶瓷各自的优点(陶瓷填料的高介电常数和聚合物的高击穿强度),可以获得高储能密度电介质材料。本文采用混合碱法制备出立方体状SrTiO3粉体作为陶瓷填料,采用聚乙烯吡咯烷酮(PVP)表面包覆改性对立方体状SrTiO3粉体进行表面处理,利用流延法制备出了均匀的聚偏氟乙烯(PVDF)电介质复合薄膜。系统研究了表面PVP包覆改性立方体状SrTiO3粉体对PVDF电介质复合薄膜介电性能和储能密度的影响。结果表明:混合碱法制备出的SrTiO3粉体的形貌为立方体状,尺寸为 200-400 nm,粒径分布比较均匀,PVP的官能团和立方体状SrTiO3粉体的表面建立起共价的相互作用,在立方体状SrTiO3粉体表面形成PVP包覆层,可以有效防止立方体状SrTiO3粉体在PVDF电介质复合薄膜中的团聚,同时PVP包覆层可以改善立方体状SrTiO3粉体在PVDF聚合物中分散和结合情况。PVDF电介质复合薄膜具有良好的介电性能和耐击穿性能,PVDF电介质复合薄膜的介电常数随着填充量的增加而增加,当立方体状SrTiO3粉体填充量为40vol.%时,电介质复合薄膜的介电常数为34.9。PVDF电介质复合薄膜的储能密度随着填充量的增加而先增加后降低,当表面PVP包覆改性处理立方体状SrTiO3粉体的填充量为5vol%时,电介质复合薄膜的储能密度达5.3 J/cm3SrTiO3粉体填充量为5vol%时,未处理表面改性SrTiO3粉体/PVDF电介质复合薄膜和PVP改性SrTiO3粉体/PVDF电介质复合薄膜的储能密度和放电效率曲线关系图

     

  • 图  1  立方体状SrTiO3粉体和聚乙烯吡咯烷酮(PVP)表面包覆改性SrTiO3粉体的XRD图谱,插图为混合碱法制备SrTiO3粉体的SEM

    Figure  1.  XRD patterns of cubic SrTiO3 powder and polyvinylpyrrolidone (PVP) surface modified SrTiO3 powder and SEM image of SrTiO3 powder prepared by mixed alkali method is shown in the inset.

    图  2  为PVP、立方体状SrTiO3粉体和PVP表面包覆改性SrTiO3粉体的FT-IR吸收光谱

    Figure  2.  FT-IR absorption spectra of PVP, cubic SrTiO3 powder and PVP surface coated modified SrTiO3 powder

    图  3  (a)立方体状SrTiO3粉体和PVP表面包覆改性SrTiO3粉体的XPS全谱扫描图谱;(b) PVP表面改性前后的SrTiO3粉体的O1 s元素的精细扫描谱线Fig. 3(a) XPS of cubic SrTiO3 powder and PVP surface coated modified SrTiO3 powder; (b) Fine scanning spectra of O1 s elements of SrTiO3 powder before and after PVP surface modification

    图  4  表面PVP包覆改性后SrTiO3粉体的TEM: (a)低倍数的TEM照片; (b)高倍数的TEM照片

    Figure  4.  TEM images of SrTiO3 powder after surface PVP modification at low magnifications (a) and at high magnifications (b)

    图  5  PVP 表面改性前后立方体状SrTiO3粉体的热失重曲线图

    Figure  5.  TG curve of cubic SrTiO3 powder and PVP surface coated modified SrTiO3 powder

    图  6  填充量为5 vol.%时,PVDF电介质复合薄膜的SEM图:(a) 未表面改性SrTiO3粉体/PVDF电介质复合薄膜的SEM; (b) 为PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜的SEM图;(c)PVDF电介质复合薄膜的SEM界面图

    Figure  6.  (a) SEM images of unmodified SrTiO3 powder/PVDF composite films; (b) the SEM images of PVP surface modified SrTiO3 powder /PVDFdielectric composite films at a concentration of 5 vol.%;(c)cross-section SEM of PVP surface modified SrTiO3 powder /PVDFdielectric composite films

    图  7  (a)不同填充量PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜与未表面改性SrTiO3粉体;/PVDF电介质复合薄膜的介电常数对比图; (b)为两种PVDF电介质复合薄膜的介电损耗对比图

    Figure  7.  Comparison of dielectric constants of surface modified SrTiO3 powder/PVDF composite films and unmodified SrTiO3 powder/ PVDF composite films with different filling amounts of fillers, and the comparison of dielectric loss of the PVDF composites films is shown in the inset

    图  8  不同填充量PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜与未表面改性SrTiO3粉体/PVDF电介质复合薄膜的耐击穿场强对比图

    Figure  8.  The breakdown strength comparison of PVP surface modified SrTiO3 powder /PVDF composite films and unmodified SrTiO3 powder / PVDF composite films with different filling amount fillers

    图  9  PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜与未表面改性SrTiO3粉体/PVDF电介质复合薄膜的电场强度分布有限元模拟图。

    Figure  9.  Finite element simulation of electric field distribution of PVP surface modified SrTiO3 powder /PVDF composite films and unmodified SrTiO3 powder/PVDF composite films

    图  10  SrTiO3粉体/PVDF电介质复合薄膜内部电荷的分布示意图

    Figure  10.  Schematic diagram of internal charge distribution of SrTiO3 powder /PVDF composite films

    图  11  电场为1000 kV/cm时,PVDF和不同填充浓度的PVDF电介质复合薄膜的P-E曲线

    Figure  11.  P-E curves of PVDF and PVDF dielectric composites films with different filling concentrations under 1000 kV/cm

    图  12  (a) 不同组分PVDF电解质薄膜最大击穿电场下的P-E曲线图(b)PVDF和不同填充浓度表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜的储能密度变化曲线

    Figure  12.  (a) . P−E curves of PVDF and PVDF dielectric composites films with filling concentrations. (b)Energy storage density of PVDF and PVDF composites films with different filling concentrations

    图  13  SrTiO3粉体填充量为5vol%时,未处理表面改性SrTiO3粉体/PVDF电介质复合薄膜和PVP改性SrTiO3粉体/PVDF电介质复合薄膜的储能密度和放电效率曲线关系图

    Figure  13.  Energy storage density and discharge efficiency of untreated SrTiO3 powder/ PVDF composite films and PVP modified SrTiO3 powder/PVDF composite films at a concentration of 5vol.%

    图  14  5vol% PVP改性SrTiO3粉体/PVDF电介质复合薄膜在不同测试频率下的P-E曲线

    Figure  14.  P-E curves of PVP modified SrTiO3 powder/PVDF composite films at a concentration of 5vol.%

    表  1  为前期文献报道钛酸锶钡陶瓷/PVDF复合材料的储能密度与本文实验结果对比

    Table  1.   Comparison of the energy storage density of PVDF-based composites and the experimental results in this paper

    MaterialsSurface modification methodEnergy storage density /(J·cm-3)Reference
    BaTiO3/P(VDF-HFP) filmsAminomethyl phosphonic acid3.2[24]
    SrTiO3/PVDF films-3.54[25]
    BaTiO3/P(VDF-HFP) composite films-4.89[26]
    SrTiO3/PVDF filmsPolyvinylpyrrolidone5.3This paper
    下载: 导出CSV
  • [1] DING Y C, WU Q, ZHAO D, et al. Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying[J]. European Polymer Journal,2013,49(9):2567-2571. doi: 10.1016/j.eurpolymj.2013.05.016
    [2] HAYASHIDA K, MATSUOKA Y. Highly enhanced dielectric constants of barium titanate-filled polymer composites using polymer-grafted carbon nanotube matrix[J]. Carbon,2013,60:506-513. doi: 10.1016/j.carbon.2013.04.072
    [3] WANG Y, ZHOU X, CHEN Q, et al. Recent development of high energy density polymers for dielectric capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(4):1036-1042. doi: 10.1109/TDEI.2010.5539672
    [4] WEI J, JIANG D, YU W, et al. The effect of Hf doping on the dielectric and energy storage performance of barium titanate based glass ceramics[J]. Ceramics International,2021,47(8):11581-11586. doi: 10.1016/j.ceramint.2020.12.290
    [5] XING J, LIU L, SHANG F, et al. Preparation, structure and temperature dependence of spectral properties of Yb3+/Er3+ doped Sr5(PO4)3F transparent glass ceramics[J]. Journal of Alloys and Compounds,2021:884.
    [6] LIU J, LI M, ZHAO Y, et al. Manipulating H-bonds in glassy dipolar polymers as a new strategy for high energy storage capacitors with high pulse discharge efficiency[J]. Journal of Materials Chemistry A,2019,7(33):19407-19414. doi: 10.1039/C9TA05855A
    [7] DUN C, KUANG W, KEMPF N, et al. 3 D Printing of Solution-Processable 2 D Nanoplates and 1 D Nanorods for Flexible Thermoelectrics with Ultrahigh Power Factor at Low-Medium Temperatures[J]. Advanced Science,2019,6(23):1901788. doi: 10.1002/advs.201901788
    [8] GUO F, SHEN X, ZHOU J, et al. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets[J]. Advanced Functional Materials,2020,30(19):1910826. doi: 10.1002/adfm.201910826
    [9] CUI S, CHEN G. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped Sr10(PO4)6O transparent glass-ceramics[J]. Journal of the American Ceramic Society,2020,103(12):6932-6940. doi: 10.1111/jace.17418
    [10] LUO S, YU J, YU S, et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers[J]. Advanced Energy Materials,2019,9(5):1803204. doi: 10.1002/aenm.201803204
    [11] TANG H X, SODANO H A. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires[J]. Nano Letters,2013,13(4):1373-1379. doi: 10.1021/nl3037273
    [12] TANG H X, LIN Y R, ANDREWS C, et al. Nanocomposites with increased energy density through high aspect ratio PZT nanowires[J]. Nanotechnology,2011,22(1):015702-015708. doi: 10.1088/0957-4484/22/1/015702
    [13] ZHOU Z, LIN Y R, TANG H X, et al. Hydrothermal growth of highly textured BaTiO3 films composed of nanowires[J]. Nanotechnology,2013,24(9):095602-095607. doi: 10.1088/0957-4484/24/9/095602
    [14] FENG Y, LI W, WANG J, et al. Core–shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance[J]. Journal of Materials Chemistry A,2015,3(40):20313-20321. doi: 10.1039/C5TA04777C
    [15] FENG Y, LI W, HOU Y, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape[J]. Journal of Materials Chemistry C,2015,3(6):1250-1260. doi: 10.1039/C4TC02183E
    [16] HOU Y, DENG Y, WANG Y, et al. Uniform distribution of low content BaTiO3 nanoparticles in poly (vinylidene fluoride) nanocomposite: toward high dielectric breakdown strength and energy storage density[J]. RSC advances,2015,5(88):72090-72098. doi: 10.1039/C5RA10438F
    [17] JIA Q, HUANG X, WANG G, et al. MoS2 nanosheet superstructures based polymer Composites for high dielectric and electrical energy storage applications[J]. The Journal of Physical Chemistry C,2016,120(19):10206-10214. doi: 10.1021/acs.jpcc.6b02968
    [18] FANG L, WU W, HUANG X, et al. Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant[J]. Composites Science And Technology,2015,107:67-74. doi: 10.1016/j.compscitech.2014.12.009
    [19] YANG K, HUANG X Y, ZHU M, et al. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability[J]. Acs Applied Materials & Interfaces,2014,6(3):1812-1822.
    [20] ZHA J W, DANG Z M, YANG T, et al. Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocomposites with sandwich multi-layer structure[J]. IEEE Transactions on Dielectrics And Electrical Insulation,2012,19(4):1312-1317. doi: 10.1109/TDEI.2012.6260006
    [21] YAO S H, YUAN J K, ZHOU T, et al. Stretch-modulated carbon nanotube alignment in ferroelectric polymer composites: characterization of the orientation state and its influence on the dielectric properties[J]. Journal of Physical Chemistry C,2011,115(40):20011-20017. doi: 10.1021/jp205444x
    [22] 钟少龙, 郑明胜, 邢照亮, 等. 无机颗粒形状对高储能密度有机复合材料介电性能的影响[J]. 复合材料学报, 2020, 37(11):2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001

    ZHONG S L, ZHENG M S, XING Z L, et al. Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density[J]. Acta Materiae Compositae Sinica,2020,37(11):2760-2768(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200728.001
    [23] 张慧, 衡婷婷, 房正刚, 等. 高储能陶瓷/聚偏氟乙烯复合电介质的研究进展[J]. 复合材料学报, 2021, 38(7):2107-2122. doi: 10.13801/j.cnki.fhclxb.20201030.002

    ZHANG H, HENG T T, FANG Z G, et al. Research progress of high-energy-density ceramic/poly(vinylidene fluoride) composite dielectrics[J]. Acta Materiae Compositae Sinica,2021,38(7):2107-2122(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201030.002
    [24] KIM P, DOSS N M, TILLOTSON J P, et al. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer[J]. Acs Nano,2009,3(9):2581-2592. doi: 10.1021/nn9006412
    [25] YU K, WANG H, ZHOU Y C, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications[J]. Journal of Applied Physics,2013,113(3):034105-034106. doi: 10.1063/1.4776740
    [26] 王璐, 孔文杰, 罗行, 等. BaTiO3纳米线的制备及其复合物介电和储能性能研究[J]. 无机材料学报, 2018, 33(10):1059-1064. doi: 10.15541/jim20180041

    WANG L, KONG W J, LUO H, et al. Dielectric and energy storage property of dielectric nanocomposites with BaTiO3 nanofibers[J]. Journal of Inorganic Materials,2018,33(10):1059-1064(in Chinese). doi: 10.15541/jim20180041
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  147
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-10-18
  • 录用日期:  2022-10-25
  • 网络出版日期:  2022-11-12
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回