Wrinkled structure conductive hydrogels of chitosan-Fe3+-Polyacrylic acid for sensors
-
摘要: 壳聚糖基导电水凝胶兼具抗菌和导电等多功能,在电子皮肤、生物电子器件等领域具有广阔的应用前景。在实际应用中,要求导电水凝胶具有优异的力学性能和传感灵敏度。本工作将三氯化铁水溶液滴加到壳聚糖丙烯酸水溶液中,接着将丙烯酸原位聚合成聚丙烯酸,利用壳聚糖铁离子微凝胶和聚丙烯酸的溶胀行为的差异性,构建了褶皱结构的壳聚糖-铁离子-聚丙烯酸导电水凝胶(CS-Fe3+-PAA)。得益于壳聚糖铁离子微凝胶的能量耗散作用及其带来的褶皱结构,CS-Fe3+-PAA具有优异的力学性能和高灵敏度。在800%~
1000 %的大应变范围内,CS-Fe3+-PAA的灵敏因子(GF)值高达25.32,其韧性为2.54 MJ·m−3,断裂应变为1100 %,断裂应力为0.6 MPa。CS-Fe3+-PAA应变传感器被成功用于检测人体多种活动,如手指、手肘和膝盖等关节弯曲活动,以及说话和吞咽等细微活动。独特的褶皱结构为高韧性和高灵敏度的壳聚糖基导电水凝胶提供设计思路和方法。Abstract: Chitosan-based conductive hydrogels have been applied in the fields of electronic skin and biomedical devices due to their antibacterial and conductivity properties. It is demanded that conductive hydrogels process excellent mechanical properties and sensing sensitivity in practical applications. In this work, ferric chloride aqueous solution was dripped into a solution of chitosan and acrylic acid, after which the acrylic acid was in situ polymerized to synthesis the chitosan-Fe3+-polyacrylic acid hydrogels (CS-Fe3+-PAA). The differential swelling behavior between chitosan ferric ion microgels and polyacrylic acid was used to construct a wrinkled structure of CS-Fe3+-PAA. The energy dissipation effect of chitosan ferric ion microgels and the resulting wrinkled structure enabled CS-Fe3+-PAA to exhibited excellent mechanical properties and high sensitivity. In the large strain range of 800%~1000 %, the sensitivity factor (GF) of CS-Fe3+-PAA reached a value of 25.32. The toughness of hydrogels was 2.54 MJ·m−3, with elongation at break of1100 % and tensile strength of 0.6 MPa. The CS-Fe3+-PAA strain sensor has been successfully used to detect various human activities, including bending movements of joints such as fingers, elbows, and knees, as well as subtle actions such as speaking and swallowing. The unique wrinkled structure provides design ideas and methods for chitosan-based conductive hydrogels with high toughness and sensitivity.-
Key words:
- Chitosan /
- Fe3+ /
- Conductive hydrogels /
- Wrinkled structure /
- Sensing performance
-
图 4 不同CS含量的CS-Fe3+-PAA的(a)拉伸应力-应变曲线和(b)相应的弹性模量和韧性;不同FeCl3浓度的CS-Fe3+-PAA的(c)拉伸应力-应变曲线和(d)相应的弹性模量和韧性;(e) CS-Fe3+-PAA悬挂砝码、扭转、打结和拉伸的照片
Figure 4. (a) Tensile stress-strain curves and (b) corresponding elastic modulus and toughness of CS-Fe3+-PAA with different content of CS; (c) Tensile stress-strain curves and (d) corresponding elastic modulus and toughness of CS-Fe3+-PAA with different concentrations of FeCl3; (e) Photographs of CS-Fe3+-PAA hanging weights, twisting, knotting and stretching
图 6 CS-Fe3+-PAA在50%~300%应变下(a)连续加载-卸载曲线和(b)相应的耗散能与应力曲线;CS-Fe3+-PAA在100%应变下(c)连续10次加载-卸载曲线和(d)相应的耗散能与应力曲线
Figure 6. (a) Successive loading–unloading curves and (b) corresponding dissipated energy and stress curve of CS-Fe3+-PAA at strain of 50%~300%; (c) Ten successive loading–unloading curves and (d) corresponding dissipated energy and stress curves of CS-Fe3+-PAA at strain of 100%
图 7 CS-Fe3+-PAA循环拉伸的相对电阻变化曲线:(a)小应变、(b)大应变和(c)拉伸速率;(d)水凝胶循环拉伸600次的相对电阻变化曲线;(e)0%~
1000 %拉伸应变下水凝胶的相对电阻变化与GF值;(f)本工作水凝胶的GF值和断裂应变与已报道的水凝胶的比较[34,35,42-48]Figure 7. The relative resistance variation curves under cyclic tensile of CS-Fe3+-PAA: (a) small strain, (b) large strain and (c) tensile rate; (d) The relative resistance variation curves of the hydrogel at 600 cycles; (e) The relative resistance variation and GF value of the hydrogel under 0%~
1000 % tensile strains; (f) Comparison of GF value and elongation strain of the hydrogel in this work with reported hydrogels[34,35,42-48]表 1 不同CS含量的样品名称
Table 1. Sample names for different CS content
Sample CS/g FeCl3/(mol·L−1) Fe3+-PAA 0 0.1 CS0.05-Fe3+-PAA 0.05 0.1 CS0.1-Fe3+-PAA 0.1 0.1 CS0.2-Fe3+-PAA 0.2 0.1 CS0.3-Fe3+-PAA 0.3 0.1 CS0.4-Fe3+-PAA 0.4 0.1 Notes: CS-Fe3+-PAA—Chitosan-Fe3+-polyacrylic acid hydrogels. 表 2 不同FeCl3浓度的样品名称
Table 2. Samples name for different FeCl3 concentrations
Sample CS/g FeCl3/(mol·L−1) CS-Fe3+0.05-PAA 0.2 0.05 CS-Fe3+0.1-PAA 0.2 0.1 CS-Fe3+0.2-PAA 0.2 0.2 CS-Fe3+0.3-PAA 0.2 0.3 CS-Fe3+0.4-PAA 0.2 0.4 -
[1] HE Q H, CHENG Y, DENG Y J, et al. Conductive hydrogel for flexible bioelectronic device: Current progress and future perspective[J]. Advanced Functional Materials, 2024, 34(1): 2308974. doi: 10.1002/adfm.202308974 [2] KHAN M, RAHMAN T U, SHER M, et al. Flexible ionic conductive hydrogels with wrinkled texture for flexible strain transducer with language identifying diversity[J]. Chemistry of Materials, 2024, 36(9): 4703-4713. doi: 10.1021/acs.chemmater.4c00456 [3] CHEN J Y, LIU F F, ABDIRYIM T, et al. An overview of conductive composite hydrogels for flexible electronic devices[J]. Advanced Composites and Hybrid Materials, 2024, 7: 35. doi: 10.1007/s42114-024-00841-6 [4] LIU C W, ZHANG R, WANG Y, et al. Highly adhesive chitosan/poly(vinyl alcohol) hydrogels via the synergy of phytic acid and boric acid and their application as highly sensitive and widely linear strain sensors[J]. Materials Horizons, 2023, 10(9): 3488-3498. doi: 10.1039/D3MH00739A [5] LI G, LI C L, LI G D, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518. doi: 10.1002/smll.202101518 [6] WAN B L, LIU N N, ZHANG Z, et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels[J]. Carbohydrate polymers, 2023, 314: 120929. doi: 10.1016/j.carbpol.2023.120929 [7] ZHENG H Y, CHEN M, SUN Y S, et al. Self-Healing, Wet-Adhesion silk fibroin conductive hydrogel as a wearable strain sensor for underwater applications[J]. Chemical Engineering Journal, 2022, 446: 136931. doi: 10.1016/j.cej.2022.136931 [8] LI L Q, WU P W, YU F, et al. Double network hydrogels for energy/environmental applications: Challenges and opportunities[J]. Journal of Materials Chemistry A, 2022, 10(17): 9215-9247. doi: 10.1039/D2TA00540A [9] ZHOU L J, WANG Z W, WU C S, et al. Highly sensitive pressure and strain sensors based on stretchable and recoverable ion-conductive physically cross-linked double-network hydrogels[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51969-51977. [10] YANG Y Y, WANG X, YANG F, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Advanced Materials, 2016, 28(33): 7178-7184. doi: 10.1002/adma.201601742 [11] ZHANG J, SHEN S, LIN R R, et al. Highly stretchable and biocompatible wrinkled nanoclay-composite hydrogel with enhanced sensing capability for precise detection of myocardial infarction[J]. Advanced Materials, 2023, 35(9): 2209497. doi: 10.1002/adma.202209497 [12] LIU C, MORIMOTO N, JIANG L, et al. Tough hydrogels with rapid self-reinforcement[J]. Science, 2021, 372(6546): 1078-1081. doi: 10.1126/science.aaz6694 [13] YANG J, LI K, TANG C, et al. Recent progress in double network elastomers: One plus one is greater than two[J]. Advanced Functional Materials, 2022, 32(19): 2110244. doi: 10.1002/adfm.202110244 [14] CHEN K, WU Z H, LIU Y T, et al. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment[J]. Advanced Functional Materials, 2022, 32(12): 2109687. doi: 10.1002/adfm.202109687 [15] HUANG H Y, ZHANG X J, DONG Z C, et al. Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing[J]. Journal of Colloid and Interface Science, 2022, 625: 817-830. doi: 10.1016/j.jcis.2022.06.058 [16] CUI C, FU Q J, MENG L, et al. Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: Materials, structures, and performance[J]. ACS Applied Bio Materials, 2021, 4(1): 85-121. doi: 10.1021/acsabm.0c00807 [17] 马跃, 胡艳磊, 刘亮, 等. 蚕丝蛋白基高强度水凝胶的制备及其生物应用[J]. 复合材料学报, 2023, 40(9): 4893-4916.MA Yue, HU Yanlei, LIU Liang, et al. Preparation and biological application of high strength hydrogels based on silk fibroin[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4893-4916(in Chinese). [18] SUGINTA W, KHUNKAEWLA P, SCHULTE A. Electrochemical biosensor applications of polysaccharides chitin and chitosan[J]. Chemical Reviews, 2013, 113(7): 5458-5479. doi: 10.1021/cr300325r [19] 李泽宇, 邓夏玲, 韩威, 等. 高韧性和自修复的壳聚糖-聚丙烯酸-MXene导电水凝胶及其压力传感性能[J]. 复合材料学报, 2024, 41(4): 2075-2083.LI Zeyu, DENG Xialing, HAN Wei, et al. High toughness and self-healing conductive hydrogels of chitosan-poly acrylic acid-MXene and capability for strain sensors[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2075-2083(in Chinese). [20] 鲁程程, 于振坤, 杨园园, 等. 聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(12): 5901-5911.LU Chengcheng, YU Zhenkun, YANG Yuanyuan, et al. Preparation and performances of polyacrylic acid-Al3+/chitosan composite double network hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5901-5911(in Chinese). [21] LIU J Y, GAO Y, GAO G H, et al. A self-adhesive strain sensor based on the synergy of metal complexation and chemical cross-linking[J]. Polymer, 2022, 249: 124830. doi: 10.1016/j.polymer.2022.124830 [22] ZHAO L L, LI X, LI Y, et al. Polypyrrole-doped conductive self-healing composite hydrogels with high toughness and stretchability[J]. Biomacromolecules, 2021, 22(3): 1273-1281. doi: 10.1021/acs.biomac.0c01777 [23] YANG Y Y, WU D C. Energy-dissipative and soften resistant hydrogels based on chitosan physical network: From construction to application[J]. Chinese Journal of Chemistry, 2022, 40(17): 2118-2134. doi: 10.1002/cjoc.202200085 [24] CHEN Y J, ZHANG Q, ZHONG Y, et al. Super-strong and super-stiff chitosan filaments with highly ordered hierarchical structure[J]. Advanced Functional Materials, 2021, 31(38): 2104368. doi: 10.1002/adfm.202104368 [25] CAO J F, LI J H, CHEN Y M, et al. Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness[J]. Advanced Functional Materials, 2018, 28(23): 1800739. doi: 10.1002/adfm.201800739 [26] HU J, KUROKAWA T, NAKAJIMA T, et al. High fracture efficiency and stress concentration phenomenon for microgel-reinforced hydrogels based on double-network principle[J]. Macromolecules, 2012, 45(23): 9445-9451. doi: 10.1021/ma301933x [27] HU J, HIWATASHI K, KUROKAWA T, et al. Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure[J]. Macromolecules, 2011, 44(19): 7775-7781. doi: 10.1021/ma2016248 [28] DUAN J J, LIANG X C, GUO J H, et al. Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks[J]. Advanced Materials, 2016, 28(36): 8037-8044. doi: 10.1002/adma.201602126 [29] LIU J X, WU R R, GU R X, et al. Simple formation of chitosan tablet with self-supporting blocks: Fe3+-mediated supramolecular coordination[J]. Chemical Engineering Journal, 2018, 341: 648-657. doi: 10.1016/j.cej.2018.02.008 [30] ABDOUSS H, POURMADADI M, ZAHEDI P, et al. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells[J]. International Journal of Biological Macromolecules, 2023, 242: 125134. doi: 10.1016/j.ijbiomac.2023.125134 [31] ZENG L Y, WANG X C, WEN Y, et al. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors[J]. Carbohydrate Polymers, 2023, 300: 120229. doi: 10.1016/j.carbpol.2022.120229 [32] XU J J, JIN R N, DUAN L J, et al. Tough, adhesive and conductive polysaccharide hydrogels mediated by ferric solution[J]. Carbohydrate Polymers, 2019, 211: 1-10. doi: 10.1016/j.carbpol.2019.01.091 [33] LEI X J, YE D D, CHEN J, et al. Customizable multidimensional self-wrinkling structure constructed via modulus gradient in chitosan hydrogels[J]. Chemistry of Materials, 2019, 31(24): 10032-10039. doi: 10.1021/acs.chemmater.9b02812 [34] YIN J Y, PAN S X, WU L L, et al. A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel[J]. Journal of Materials Chemistry C, 2020, 8(48): 17349-17364. doi: 10.1039/D0TC04144K [35] WANG T, REN X Y, BAI Y, et al. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor[J]. Carbohydrate Polymers, 2021, 254: 117298. doi: 10.1016/j.carbpol.2020.117298 [36] CHEN D J, ZHAO X L, GAO H, et al. High-strength, conductive, antifouling, and antibacterial hydrogels for wearable strain sensors[J]. ACS Biomaterials Science & Engineering, 2022, 8(6): 2624-2635. [37] ZHENG S Y, DING H Y, QIAN J, et al. Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability[J]. Macromolecules, 2016, 49(24): 9637-9646. doi: 10.1021/acs.macromol.6b02150 [38] WU S S, GUO J, WANG Y L, et al. Cryopolymerized polyampholyte gel with antidehydration, self-healing, and shape-memory properties for sustainable and tunable sensing electronics[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42317-42327. [39] NIU S C, CHANG X T, ZHU Z H, et al. Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55307-55318. [40] NIU S C, HE S Y, CHEN Y, et al. 3D printing assisted-fabrication of low-temperature strain sensors with large working range and outstanding stability[J]. Advanced Materials Technologies, 2023, 8(21): 2300867. doi: 10.1002/admt.202300867 [41] WU Z X, YANG X, WU J. Conductive hydrogel-and organohydrogel-based stretchable sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2128-2144. [42] LI X M, LIU Z W, LIANG Y R, et al. Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity[J]. Journal of Materials Chemistry B, 2022, 10(18): 3434-3443. doi: 10.1039/D2TB00329E [43] ZENG L Y, WANG X C, WEN Y, et al. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors[J]. Carbohydrate Polymers, 2023, 300: 120229. doi: 10.1016/j.carbpol.2022.120229 [44] LING Q J, LIU W T, LIU J C, et al. Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24741-24754. [45] LIANG Y Z, SHEN Y X, SUN X Y, et al. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection[J]. International Journal of Biological Macromolecules, 2021, 193: 629-637. doi: 10.1016/j.ijbiomac.2021.10.060 [46] SONG H, SUN Y L, ZHU J X, et al. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection[J]. Composites Part B: Engineering, 2021, 217: 108901. doi: 10.1016/j.compositesb.2021.108901 [47] LU F X, WANG Y Y, WANG C, et al. Two-dimensional nanocellulose-enhanced high-strength, self-adhesive, and strain-sensitive poly(acrylic acid) hydrogels fabricated by a radical-induced strategy for a skin sensor[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3427-3436. [48] LIU H Y, WANG X, CAO Y X, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25334-25344. [49] ZHANG Q, LIU X, ZHANG J W, et al. A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance[J]. Journal of Materials Chemistry A, 2021, 9(39): 22615-22625. doi: 10.1039/D1TA06408H
计量
- 文章访问数: 56
- HTML全文浏览量: 25
- 被引次数: 0