Research progress of biobased antibacterial hydrogels
-
摘要:
目的 致病微生物所引起的感染一直以来都威胁着全世界人类的健康,抗菌材料在某种情况下可以被视为抗生素的替代品,其中抗菌水凝胶就是一类重要的高分子抗菌材料。本文综述了近些年来国内外生物基抗菌水凝胶的研究进展,描述了生物基抗菌水凝胶的类型及制备方法,概述了生物基抗菌水凝胶相关应用,最后对生物基抗菌水凝胶亟待解决的问题及未来发展趋势进行了总结和展望。 方法 通过对近些年来国内外生物基抗菌水凝胶文献的归纳整理,分析了生物基抗菌水凝胶的制备和抗菌机理,按照水凝胶基底材料种类的不同,将其分为壳聚糖基抗菌水凝胶、纤维素基抗菌水凝胶、淀粉基抗菌水凝胶、海藻酸钠基抗菌水凝胶和蛋白质基抗菌水凝胶,分析了不同基质和抗菌物质的生物基抗菌水凝胶的优缺点。基于生物基抗菌水凝胶的天然性能,总结了该复合材料在伤口敷料、包装膜材料和电子皮肤的相关应用。 结果 生物基抗菌水凝胶根据其基底材料的不同可以分为:①壳聚糖基抗菌水凝胶,壳聚糖分子带有正电荷可与生物细胞膜发生静电作用,使细胞膜破裂从而使细胞死亡。壳聚糖可以通过金属配位、席夫碱反应和氢键等作用机理形成水凝胶,再添加其他抗菌剂如AgNPs等可进一步提高壳聚糖基抗菌水凝胶的抗菌性能。②纤维素基抗菌水凝胶以纤维素、纳米纤维素或纤维素衍生物为主要原料,利用纤维素丰富的羟基形成的氢键提升抗菌水凝胶的力学性能。通过溶解、共混交联所制备,改性可以使纤维素的溶解度和抗菌性能改善,进一步提升纤维素的应用潜力。③淀粉基抗菌水凝胶可以通过引入抗菌物质和其他基底材料,并利用静电作用、物理交联和自由基聚合等方法制备,所制备抗菌水凝胶具有成本低、生物相容性好和生物可降解等特点,另外淀粉的热塑性和易改性等特点使其广泛应用于抗菌水凝胶的制备。④海藻酸钠基抗菌水凝胶,海藻酸钠(SA)是位于褐藻细胞壁内的盐类,临床实验证明SA医用敷料能有效为创面提供一个湿润的愈合环境,抑制有害微生物繁殖,促进细胞的迁移和繁殖,加快伤口的愈合速度。SA分子拥有丰富的羧基和羟基可与金属交联剂配位形成抗菌水凝胶。⑤蛋白质基抗菌水凝胶,蛋白质是由肽链构成,而肽链是由氨基酸经肽键连接而成。拥有抗菌性能的蛋白质称为抗菌肽,其通过破坏细胞膜结构和干扰细菌新陈代谢的方式对细菌进行杀灭或抑制作用。总结了生物基抗菌水凝胶在伤口敷料、包装膜材料和电子皮肤领域的相关应用,提供了几种应用的不同使用环境。 结论 病原微生物的耐药性问题一直是开发新型抗菌材料研究的重点,为有效减少抗生素的使用,开发具有优异抗菌性能和广谱抗菌作用的环保抗菌材料具有重要意义。生物基抗菌水凝胶以其优异的环境适应性、丰富的原料来源和广阔的应用前景而受到研究人员的广泛研究。生物基抗菌水凝胶能够为伤口提供湿润的微环境、吸收过多渗液和坏死组织,以避免致病微生物滋生带来的感染。在包装膜材料领域,抗菌特性可有效减少商品中细菌和霉菌等有害微生物生长与繁殖,提升商品货架期。模仿人体皮肤功能的电子皮肤在医疗和智能设备领域具有巨大潜力。电子皮肤不仅可以保护真实皮肤,还可以对温度、湿度和压力等外部刺激做出反应。但是生物基基底材料也有不足之处,例如,壳聚糖的溶解度受到pH的影响,且壳聚糖基抗菌水凝胶力学性能较差;纤维素不溶于水和有机溶剂,将其制备成凝胶时需要经过复杂的改性接枝;淀粉基水凝胶的稳定性较差,易受环境和温度影响;海藻酸钠吸湿性强,并且对pH敏感。 Abstract: Infections caused by pathogenic microorganisms have long been a threat to human health around the world. The development of antibacterial biomaterials can be regarded as a substitute for antibiotics in some cases, among which antibacterial hydrogels are an important class of macromolecular antibacterial agents. Bio-based antibacterial hydrogels can be divided into chitosan, cellulose, starch, sodium alginate and protein-based antibacterial hydrogels according to different matrix types. These substrates have high abundance, good biocompatibility and biodegradability in nature, and are ideal materials for preparing antibacterial hydrogels. In this paper, the development status and application fields of bio-based antibacterial hydrogels in recent years were reviewed, mainly from the types, preparation and application of bio-based antibacterial hydrogels. Finally, the challenges faced by bio-based antibacterial hydrogels and the future development trend were summarized and prospeced. -
图 1 (a) CTS-Ag+/NH3水凝胶机理示意图[17], (b)对照组与CTS-Ag+/NH3抗菌活性对比[17], (c) COP水凝胶交联机制及伤口涂覆示意图[20], (d) COP水凝胶降解示意图[20], (e)水凝胶抗菌活性及促愈合示意图[20]
Figure 1. (a) Schematic diagram of CTS-Ag+/NH3 hydrogel mechanism[17], (b) Comparison of antibacterial activity between the control group and CTS-Ag+/NH3[17], (c) Schematic diagram of COP hydrogel crosslinking mechanism and wound coating[20], (d) Schematic diagram of COP hydrogel degradation[20], (e) Schematic diagram of hydrogel antibacterial activity and promoting healing[20]
图 2 (a) CMC基水凝胶制备示意图[23], (b)纤维素和季化纤维素在碱水溶液中与ECH交联示意图[24], (c) BC和APTES化学改性反应示意图[26], (d)菌落计数法检测样品对不同细菌抑制作用[26]
Figure 2. (a) Diagram of CMC-based hydrogel preparation[23], (b) Schematic diagram of cellulose and QC crosslinking with ECH in alkaline water solution[24], (c) Schematic of the chemical modification reactions of BC and APTES[26], (d) Colony counting method was used to detect the inhibition of different bacteria[26]
图 3 (a) AgNPs含量不同的CMS/PVA/CA水凝胶对不同菌种的抑菌圈[29], (b) Alg/HTACC水凝胶制备及作用示意图[31], (c) HTACC制备示意图[31]
Figure 3. (a) Inhibition zone of CMS/PVA/CA hydrogels with different AgNPs content on different strains[29], (b) Preparation and action diagram of Alg/HTACC hydrogel[31], (c) Schematic diagram of HTACC preparation[31]
图 4 (a) SA-COS-ZnO水凝胶制备及作用示意图[32], (b) 对照组和SA-COS-ZnO水凝胶促进伤口愈合图[32], (c) 水凝胶中ZnO NPs随时间释放的百分比[32], (d) 对照组/i和SA-COS-ZnO/ii水凝胶对不同菌种抑菌圈图片[32], (e) 对照组和SA-COS-ZnO水凝胶对不同菌种的抑菌圈直径柱状图[32]
Figure 4. (a) Preparation and action diagram of SA-COS-ZnO hydrogel[32], (b) Images of control group and SA-COS-ZnO hydrogel promoting wound healing[32], (c) Percentage release of ZnO NPs in hydrogel over time[32], (d) Pictures of bacteriostatic zones of control group /i and SA-COS-ZnO/ii hydrogel for different species[32], (e) Histogram of antibacterial zone diameter of control group and SA-COS-ZnO hydrogel for different species[32]
图 5 (a)不同处理下MRSA菌和SA菌的生长曲线[37], (b)MRSA菌和SA菌与水凝胶共培养24 h后生长曲线[37], (c)水凝胶处理后MRSA和SA菌悬液图片[37], (d)小鼠皮肤伤口愈合图像[37], (e)不同水凝胶处理后伤口面积分布[37], (f)伤口愈合面积示意图[37]
Figure 5. (a) Growth curves of MRSA and SA strains under different treatments[37], (b) Growth curves of MRSA and SA bacteria after 24 h of co-culture with the hydrogel[37], (c) Pictures of MRSA and SA bacterial suspensions after hydrogel treatment[37], (d) Images of wound healing in mouse skin[37], (e) Wound area distribution after different hydrogel treatment[37], (f) Schematic representation of the wound healing area[37]
图 6 (a)前驱体溶液经紫外照射形成CS/PMETAC水凝胶示意图[40], (b)水凝胶交联示意图[40], (c,d)对照组与CS/PMETAC水凝胶不同菌种长期抗菌图片[40]
Figure 6. (a) Schematic diagram of CS/PMETAC hydrogel formed by UV irradiation of precursor solutionm[40], (b) Schematic diagram of hydrogel cross-linking[40], (c,d) Long-term antibacterial picture of different bacteria in control group and CS/PMETAC hydrogel[40]
图 7 (a) CMCS/OPC水凝胶形成及相互作用示意图[41], (b)水凝胶自愈机理示意图[41], (c)水凝胶对不同菌种杀菌率及抑菌圈照片及统计图[41], (d)空白组和水凝胶处理伤口、愈合率和定量分析肉芽组织厚度图片[42]
Figure 7. (a) CMCS/OPC hydrogel formation and interaction diagram[41], (b) Schematic diagram of the self-healing mechanism of hydrogel[41], (c) Photos and statistical charts of bactericidal rate and bacteriostatic zone of hydrogel against different strains[41], (d) Images of wounds, healing rates and quantitative granulation tissue thickness in blank and hydrogel dressing treatments[41]
图 8 (a)水凝胶膜形成机理及抗菌作用示意图[46], (b,c)贮藏10天期间使用PE膜、RC膜和试验组(N-3)包装猪肉中细菌总数和总挥发性氮(TVB-N)[46], (d)膜对两种菌落覆盖的琼脂图片[46], (e) 25℃不同膜对奶酪包装影响图片[46]
Figure 8. (a) Schematic diagram of hydrogel film formation mechanism and antibacterial action[46], (b,c) Total bacterial count and total volatile nitrogen (TVB-N) in pork packaged with PE film, RC film and experimental group (N-3) during 10 days of storage[46], (d) AGAR images of the membrane covering both colonies[46], (e) Pictures of the effects of different films on cheese packaging at 25℃[46]
图 9 (a)多功能电子皮肤制备示意图[53], (b)菌落溶液培养24 h后图片[53], (c)腕部脉搏随运动实时I-t曲线[53], (d)弯曲手指关节的实时I-t曲线[53], (e)行走时电子皮肤的实时I-t曲线[53]
Figure 9. (a)Schematic diagram of multifunctional e-skin preparation[53], (b) Pictures after 24 h of colony solution culture[53], (c) Real-time I-t curve of wrist pulse with movement[53], (d) Real-time I-t curve of bending finger joint[53], (e) Real-time I-t curve of the electronic skin during walking[53]
表 1 不同生物基抗菌水凝胶作用机理、基底材料对比分析
Table 1. Comparative analysis of action mechanism and substrate materials of different biological - based antibacterial hydrogels
Action Substrate Antimicrobial Agent Antimicrobial Ability Citation Other Properties 参考文献 Metal Coordination CS Ag+ 5 mm Inhibition Zone Wound Dressing Tensile Strength (0.17 MPa) [17] Schiff Base DCS、PEGSH — Lethal Rate For E. coli And
S. aureus Exceeds 95%Medical Adhesive Blood Absorption Performance
(1300%±50%)[19] Metal Coordination CMC、PVA AgNPs 15 mm Inhibition Zone Against UTI Pathogens Antibacterial Material — [23] Silicon-Oxygen
Covalent BondBC SPG Inhibitory Against E. coli And
S. aureusAntibacterial Film — [26] Metal Coordination CMS、PVA AgNPs 6 mm Inhibition Zone Wound Dressing Swelling Index 243% [29] Schiff Base ASA、COS ZnO NPs 3.1 cm Inhibition Zone Against
B. subtilisWound Dressing Water Vapor Permeability
682 g/m2 /24 h[32] Hydrogen Bond ASA PL Lethal Rate For E. coli And S. aureus Exceeds 91.01% And 84.97% Wound Healing Materials PL Broad-Sectrum
And Efficient[33] Mannich Reaction BSA THPS 15 mm Inhibition Zone Wound Healing Dressing Wide Alicability [37] Electrostatic
InteractionGel、CS、NF CA Lethal Rate For E. coli And S. aureus Exceeds 90% Wound Dressing Tensile Strength 0.85±0.02 MPa [38] -
[1] CAO Z, LUO Y, LI Z, et al. Antibacterial hybrid hydrogels[J]. Macromolecular Bioscience,2021,21(1):2000252. doi: 10.1002/mabi.202000252 [2] LI S, DONG S, XU W, et al. Antibacterial hydrogels[J]. Advanced science,2018,5(5):1700527. doi: 10.1002/advs.201700527 [3] AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of advanced research,2015,6(2):105-121. doi: 10.1016/j.jare.2013.07.006 [4] CARREñO G, PEREIRA A, ÁVILA-SALAS F, et al. Development of “on-demand” thermo-responsive hydrogels for anti-cancer drugs sustained release: rational design, in silico prediction and in vitro validation in colon cancer models[J]. Materials Science and Engineering:C,2021,131:112483. doi: 10.1016/j.msec.2021.112483 [5] CHENG L, CAI Z, YE T, et al. Injectable polypeptide-protein hydrogels for promoting infected wound healing[J]. Advanced Functional Materials,2020,30(25):2001196. doi: 10.1002/adfm.202001196 [6] HOQUE J, BHATTACHARJEE B, PRAKASH R G, et al. Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy[J]. Biomacromolecules,2018,19(2):267-278. doi: 10.1021/acs.biomac.7b00979 [7] YANG K, HAN Q, CHEN B, et al. Antimicrobial hydrogels: promising materials for medical application[J]. International Journal of Nanomedicine,2018,13:2217. doi: 10.2147/IJN.S154748 [8] 许雨芩, 杨建军, 吴庆云, et al. 抗菌型高分子水凝胶研究进展[J]. 化工新型材料, 2022, 50(9):218-24+28. doi: 10.19817/j.cnki.issn1006-3536.2022.09.043Xu Yuqin, Yang Jianjun, Wu Qingyun, et al. Research progress of antibacterial polymer hydrogels[J]. New Chemical Materials,2022,50(9):218-24+28(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.09.043 [9] DUQUETTE D, DUMONT M-J. Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels[J]. Polymer Bulletin,2019,76:2683-710. doi: 10.1007/s00289-018-2516-6 [10] WANG W, NARAIN R, ZENG H. Rational design of self-healing tough hydrogels: a mini review[J]. Frontiers in chemistry,2018,6:497. doi: 10.3389/fchem.2018.00497 [11] XIE M, GAO M, YUN Y, et al. Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles [J]. Angewandte Chemie International Edition, 2023: e202217345. [12] SLAVIN Y N, ASNIS J, HŃFELI U O, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity[J]. Journal of nanobiotechnology,2017,15:1-20. doi: 10.1186/s12951-016-0241-6 [13] 管瑛, 恽亮, 韦恩泽, et al. 抗菌材料的研究现状[J]. 生物化工, 2022, 8(2):164-6. doi: 10.3969/j.issn.2096-0387.2022.02.043Guan Ying, Yun Liang, Wei Enze, et al. Research status of antibacterial materials[J]. Biochemistry,2022,8(2):164-6(in Chinese). doi: 10.3969/j.issn.2096-0387.2022.02.043 [14] MURUGESAN S, SCHEIBEL T. Chitosan-based nanocomposites for medical applications[J]. Journal of Polymer Science,2021,59(15):1610-42. doi: 10.1002/pol.20210251 [15] MOEINI A, PEDRAM P, MAKVANDI P, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review[J]. Carbohydrate polymers,2020,233:115839. doi: 10.1016/j.carbpol.2020.115839 [16] REZAEI N, HAMIDABADI H G, KHOSRAVIMELAL S, et al. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates[J]. International journal of biological macromolecules,2020,164:855-862. doi: 10.1016/j.ijbiomac.2020.07.011 [17] LI P, ZHAO J, CHEN Y, et al. Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties[J]. Carbohydrate polymers,2017,157:1383-1392. doi: 10.1016/j.carbpol.2016.11.016 [18] WANG J, ZHUANG S. Chitosan-based materials: preparation, modification and application [J]. Journal of Cleaner Production, 2022: 131825. [19] SONG F, KONG Y, SHAO C, et al. Chitosan-based multifunctional flexible hemostatic bio-hydrogel[J]. Acta Biomaterialia,2021,136:170-183. doi: 10.1016/j.actbio.2021.09.056 [20] CHEN Z, YAO J, ZHAO J, et al. Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis[J]. International Journal of Biological Macromolecules,2023,225:1235-1245. doi: 10.1016/j.ijbiomac.2022.11.184 [21] ZAINAL S H, MOHD N H, SUHAILI N, et al. Preparation of cellulose-based hydrogel: a review[J]. Journal of Materials Research and Technology,2021,10:935-952. doi: 10.1016/j.jmrt.2020.12.012 [22] GOMRI C, CRETIN M, SEMSARILAR M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review [J]. Carbohydrate Polymers, 2022: 119790. [23] ALSHEHRI S M, ALDALBAHI A, AL-HAJJI A B, et al. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens[J]. Carbohydrate polymers,2016,138:229-236. doi: 10.1016/j.carbpol.2015.11.004 [24] PENG N, WANG Y, YE Q, et al. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity[J]. Carbohydrate polymers,2016,137:59-64. doi: 10.1016/j.carbpol.2015.10.057 [25] 孙振炳, 李晓宝, 姚曜, et al. 细菌纤维素抗菌复合材料的制备和应用[J]. 包装工程工程版, 2021, 42(13):21-28.Sun Zhenbing, Li Xiaobao, Yao Yao, et al. Preparation and application of bacterial cellulose antibacterial Composites[J]. Packaging Engineering,2021,42(13):21-28(in Chinese). [26] HAMEDI S, SHOJAOSADATI S A, NAJAFI V, et al. A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan[J]. Carbohydrate Polymers,2020,229:115383. doi: 10.1016/j.carbpol.2019.115383 [27] CUI C, JIA Y, SUN Q, et al. Recent advances in the preparation, characterization, and food application of starch-based hydrogels [J]. Carbohydrate Polymers, 2022: 119624. [28] EMILIA V M A, DEL ROSARIO D A M A, ANTONIO G L J N, et al. Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles [J]. 2016. [29] OUNKAEW A, KASEMSIRI P, JETSRISUPARB K, et al. Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials[J]. Carbohydrate Polymers,2020,248:116767. doi: 10.1016/j.carbpol.2020.116767 [30] YUAN L, WU Y, GU Q-S, et al. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin[J]. International journal of biological macromolecules,2017,96:569-77. doi: 10.1016/j.ijbiomac.2016.12.058 [31] ARAFA E G, SABAA M W, MOHAMED R R, et al. Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity[J]. Carbohydrate Polymers,2022,291:119555. doi: 10.1016/j.carbpol.2022.119555 [32] ZHANG M, QIAO X, HAN W, et al. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing[J]. Carbohydrate Polymers,2021,266:118100. doi: 10.1016/j.carbpol.2021.118100 [33] JIN F, LIAO S, LI W, et al. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range[J]. Carbohydrate Polymers,2023,299:120195. doi: 10.1016/j.carbpol.2022.120195 [34] BUHRMAN J S, COOK L C, RAYAHIN J E, et al. Proteolytically activated anti-bacterial hydrogel microspheres[J]. Journal of Controlled Release,2013,171(3):288-95. doi: 10.1016/j.jconrel.2013.06.023 [35] ZHOU J, ZHANG H, FAREED M S, et al. An injectable peptide hydrogel constructed of natural antimicrobial peptide j-1 and adp shows anti-infection, hemostasis, and antiadhesion efficacy[J]. ACS nano,2022,16(5):7636-7650. doi: 10.1021/acsnano.1c11206 [36] MAYOL G F, DEFELIPE L A, ARCON J P, et al. Solvent sites improve docking performance of protein–protein complexes and protein–protein interface-targeted drugs[J]. Journal of Chemical Information and Modeling,2022,62(15):3577-88. doi: 10.1021/acs.jcim.2c00264 [37] OUYANG J, BU Q, TAO N, et al. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms[J]. Bioactive Materials,2022,18:446-458. doi: 10.1016/j.bioactmat.2022.03.033 [38] WANG L, LI D, SHEN Y, et al. Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound dressing with antibacterial property[J]. International Journal of Biological Macromolecules,2021,192:350-9. doi: 10.1016/j.ijbiomac.2021.09.145 [39] JIA B, LI G, CAO E, et al. Recent progress of antibacterial hydrogels in wound dressings [J]. Materials Today Bio, 2023: 100582. [40] YU Q, YAN Y, HUANG J, et al. A multifunctional chitosan-based hydrogel with self-healing, antibacterial, and immunomodulatory effects as wound dressing [J]. International Journal of Biological Macromolecules, 2023: 123149. [41] HE Y, GUO S, CHANG R, et al. Facile preparation of antibacterial hydrogel with multi-functions based on carboxymethyl chitosan and oligomeric procyanidin[J]. RSC advances,2022,12(32):20897-905. doi: 10.1039/D2RA04049B [42] LU H, LI X, ZHANG M, et al. Antibacterial cellulose nanocrystal-Incorporated hydrogels with satisfactory vascularization for enhancing skin regeneration [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10. [43] YOU S, XIANG Y, QI X, et al. Harnessing a biopolymer hydrogel reinforced by copper/tannic acid nanosheets for treating bacteria-infected diabetic wounds[J]. Materials Today Advances,2022,15:100271. doi: 10.1016/j.mtadv.2022.100271 [44] PRIYADARSHI R, ROY S, GHOSH T, et al. Antimicrobial nanofillers reinforced biopolymer composite films for active food packaging applications-a review[J]. Sustainable Materials and Technologies,2022,32:e00353. doi: 10.1016/j.susmat.2021.e00353 [45] PURWAR R, VERMA A, BATRA R. Antimicrobial gelatin/sericin/clay films for packaging of hygiene products[J]. Journal of Polymer Engineering,2019,39(8):744-51. doi: 10.1515/polyeng-2018-0406 [46] WU Y, LI Q, ZHANG X, et al. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films[J]. International journal of biological macromolecules,2019,128:673-680. doi: 10.1016/j.ijbiomac.2019.01.172 [47] ARIKRISHNAN D, KESHAV A. Pineapple juice clarification by continuous dead-end microfiltration using a low-cost ceramic membrane[J]. Journal of Food Measurement and Characterization,2023,17(1):863-881. doi: 10.1007/s11694-022-01634-5 [48] SONG Z, MA T, ZHI X, et al. Cellulosic films reinforced by chitosan-citric complex for meat preservation: Influence of nonenzymatic browning[J]. Carbohydrate Polymers,2021,272:118476. doi: 10.1016/j.carbpol.2021.118476 [49] LEITE L S, BILATTO S, PASCHOALIN R T, et al. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging[J]. International Journal of Biological Macromolecules,2020,165:2974-2983. doi: 10.1016/j.ijbiomac.2020.10.189 [50] ZHAO H, LIU M, ZHANG Y, et al. Nanocomposite hydrogels for tissue engineering applications[J]. Nanoscale,2020,12(28):14976-14995. doi: 10.1039/D0NR03785K [51] LIN F, WANG Z, SHEN Y, et al. Natural skin-inspired versatile cellulose biomimetic hydrogels[J]. Journal of Materials Chemistry A,2019,7(46):26442-26455. doi: 10.1039/C9TA10502F [52] SHI Y, WEI X, WANG K, et al. Integrated all-fiber electronic skin toward self-powered sensing sports systems[J]. ACS Applied Materials & Interfaces,2021,13(42):50329-50337. [53] XU H, LIU D, SONG Y, et al. Ultra-sensitive and flexible electronic skin from nanocellulose/AgNWs hydrogel films with highly transparent, antibacterial and electromagnetic shielding properties[J]. Composites Science and Technology,2022,228:109679. doi: 10.1016/j.compscitech.2022.109679 -

计量
- 文章访问数: 26
- HTML全文浏览量: 11
- 被引次数: 0