Preparation of Bi2O3/BiOI composite photocatalytic material by solvothermal method and its application to the degradation of tetracycline
-
摘要: 四环素作为一种广泛使用的抗生素,长期存在于水环境中难以自然降解,对生态环境和人类健康有很大危害。采用简单的室温搅拌法和溶剂热法制备了BiOI和Bi2O3/BiOI光催化剂,通过XRD、SEM、FTIR、UV-Vis DRS、PL和EIS等手段对材料的形貌和结构进行了表征,并考察了不同制备条件对Bi2O3/BiOI复合光催化材料在模拟太阳光下对四环素降解效果的影响。结果表明,当Bi2O3与BiOI的摩尔比为0.8∶1时,在pH=5、180℃下反应20 h得到的Bi2O3/BiOI复合光催化材料对四环素的降解效果最佳,在3 h内对四环素的降解率可达75%,其动力学速率常数分别是单一BiOI、Bi2O3的1.75倍和1.56倍。还提出了一种二元异质结光催化剂的催化机制用于解释提高的光催化活性。
-
关键词:
- 溶剂热法 /
- Bi2O3/BiOI /
- 光催化 /
- 四环素 /
- 催化机制
Abstract: As a widely used antibiotic, tetracycline exists in water environment for a long time and is difficult to be degraded naturally, which does great harm to ecological environment and human health. BiOI and Bi2O3/BiOI photocatalysts were prepared by simple room temperature stirring method and solvothermal method. The morphology and structure of the materials were characterized by XRD, SEM, FTIR, UV-Vis, PL and EIS. The effects of different preparation conditions on the degradation of tetracycline by Bi2O3/BiOI composite photocatalytic material under simulated sunlight were investigated. The results show that when the molar ratio of Bi2O3 to BiOI is 0.8∶1, the reaction pH is 5, the reaction temperature is 180℃, the reaction time is 20 h, the composite photocatalytic material has the best degradation effect on tetracycline, which can reach 75% in 3 h. And the kinetic rate constants are 1.75 times and 1.56 times of that of single BiOI and Bi2O3, respectively. A catalytic mechanism of binary heterojunction photocatalyst is proposed to explain the improved photocatalytic activity.-
Keywords:
- solvothermal method /
- Bi2O3/BiOI /
- photocatalysis /
- tetracycline /
- catalytic mechanism
-
近年来随着工业的快速发展,水污染问题受到越来越多的关注。其中的一部分污染是由抗生素引起的,如阿莫西林、青霉素、四环素等[1-5]。四环素(Tetracycline,TC)作为一种普遍使用的抗生素,因其独特的抗菌作用而被广泛应用于人类疾病的治疗。然而TC长期存在于水环境中难以自然降解,对生态环境和人类健康有很大危害[6-10]。因此,开发一种有效的解决方案来去除水环境中难降解的抗生素是极其重要的。半导体光催化技术因其具有环境友好、无污染、低能耗等优点引起了广泛的研究,成为当今处理有机污染物最有前景的方法之一[11-13]。
在各种光催化剂中,BiOX(X=Cl, Br, I)因其特殊的层状结构、适宜的禁带宽度和较高的稳定性,被广泛用于光降解有机污染物和光催化分解水[14-15]。其中BiOI具有较窄的禁带宽度(1.77~1.92 eV)和较宽的可见光响应范围,但由于光生电子空穴对的高复合率,其光催化性能并不理想。将BiOI与其他半导体材料相结合被认为是增强光催化性能最有前途的策略,2个或2个以上半导体相结合可以形成半导体/半导体异质结,通过提高光生电子空穴对的分离速率从而提高光催化活性。
Bi2O3的带隙介于2.1~2.8 eV之间,由于其具有较强的可见光区响应、无毒、电化学稳定性高、热稳定性好和低成本等特性[16-18],是一种很有前途的可见光光催化候选材料,可与其他半导体材料形成异质结结构。如CdS/BiOCl/Bi2O3[19]、GO/AgI/Bi2O3[20]、α-Bi2O3/g-C3N4[21]、Bi2O3/ZnS[22]等。
Wei等[23]采用一锅沉淀法在多孔Bi2O3纳米棒上成功沉积了BiOI纳米片。结果表明:与原始Bi2O3和BiOI相比,50% Bi2O3/BiOI复合材料具有更高的光生电子空穴对分离效率和更大的比表面积,在可见光照射下,其光催化还原Cr(VI)的活性显著增强。此外,50% Bi2O3/BiOI复合材料还具有优异的光化学稳定性和可回收性。Li等[24]采用化学刻蚀法制备了BiOI/Bi2O3异质结,在降解苯酚和4-氯苯酚(4-CP)方面表现出良好的光催化活性。其光催化性能的提高是由于BiOI/Bi2O3异质结的形成促进了电子空穴对的有效分离,并提出了光生电荷转移的过程。
目前所制备的同类光催化剂大多数用于去除水环境中的重金属离子和有机染料等,对降解抗生素类药物的研究较少。本文采用简单的溶剂热法制备了Bi2O3/BiOI复合光催化材料,在模拟太阳光照射下通过降解四环素研究了其光催化性能,探究了BiOI与Bi2O3不同摩尔比、反应温度、反应时间、pH等条件对光催化性能的影响。并通过活性物种捕捉实验提出了Bi2O3/BiOI复合光催化材料降解四环素可能的机制。
1. 实验材料和方法
1.1 原材料
五水硝酸铋(上海麦克林生化有限公司,AR)、碘化钾(天津市大茂化学试剂厂,AR)、乙二醇(天津市北辰方正试剂厂,AR)、四环素(上海麦克林生化有限公司,AR)。
1.2 实验仪器
EL104型电子天平(梅特勒-托利多有限公司)、HC-3018型高速离心机(安徽中科中佳科学仪器有限公司)、TGL-5A台式离心机(常州润华电器有限公司)、KSW-4D-I2型马弗炉(北京中兴伟业仪器有限公司)、HJ-1型磁力加热搅拌器(红杉实验设备厂)、101-1A型电热鼓风干燥箱(北京中兴伟业仪器有限公司)、721型可见分光光度计(上海仪电分析仪器有限公司)、KQ5200E型超声波清洗器(昆山市超声仪器有限公司)、250 W金卤灯(上海亚明)。
1.3 实验内容
1.3.1 BiOI光催化材料的制备
称取1 mmol五水硝酸铋置于15 mL乙二醇中,超声处理15 min以获得均匀悬浮液。在不断搅拌下向其中逐滴加入10 mL含1 mmol碘化钾的水溶液,继续搅拌2 h。将产物离心,用水和无水乙醇洗涤数次,在80℃下干燥12 h得到红色的BiOI。
1.3.2 Bi2O3光催化材料的制备
称取一定量的五水硝酸铋,在600℃的马弗炉里煅烧4 h,冷却至室温后,将产物研磨成粉末状,得到淡黄色的Bi2O3。
1.3.3 Bi2O3/BiOI复合光催化材料的制备
将1 mmol五水硝酸铋置于15 mL乙二醇中,超声处理15 min以获得均匀悬浮液。在不断搅拌下向其中逐滴加入10 mL含1 mmol碘化钾的水溶液,继续搅拌2 h。在此期间,用1 mol/L的H2SO4溶液将混合液的pH调至5。然后向上述溶液中加入0.8 mmol已制备好的Bi2O3,继续搅拌1 h。将得到的混合溶液转移至50 mL聚四氟乙烯内衬的不锈钢高压反应釜中,在180℃下反应20 h。自然冷却至室温后,将产物离心,用水和无水乙醇洗涤数次,在80℃下干燥12 h,得到Bi2O3/BiOI复合光催化材料。
1.3.4 光催化性能测试
使用250 W金卤灯模拟太阳光照射,通过降解四环素来评价所制备样品的光催化性能。取50 mg制得的光催化材料放入装有100 mL 25 mg/L TC溶液的烧杯中,黑暗搅拌30 min达到吸附-脱附平衡。然后将混合液置于光反应器中,光照开始计时,每隔20 min取3 mL样,将样品放入离心机中离心取其上层清液并测定吸光度。计算四环素的残余率:
η=C/C0×100%=A/A0×100% 式中:C和C0分别表示t时刻和初始四环素的质量浓度(mg·L−1);A和A0分别表示t时刻和初始四环素的吸光度。
2. 结果与讨论
2.1 Bi2O3/BiOI复合光催化材料的晶相结构
BiOI、Bi2O3和Bi2O3/BiOI的XRD图谱如图1所示。BiOI曲线在9.658°、29.645°、31.657°、37.392°、45.666°、51.345°、55.15°、66.344°和74.09°处出现的衍射峰分别对应BiOI(JCPDS 10-0445)的(001)、(102)、(110)、(112)、(104)、(114)、(212)、(214)和(302)晶面。Bi2O3在21.722°、25.757°、27.377°、33.241°、35.406°、37.595°、42.353°、46.305°、52.373°和58.563°处出现的衍射峰分别对应Bi2O3(JCPDS 41-1449)的(020)、(002)、(120)、(200)、(031)、(112)、(122)、(041)、(−321)和(−331)晶面。Bi2O3/BiOI同时出现了Bi2O3和BiOI的主要衍射峰,说明本实验成功制备了Bi2O3/BiOI复合光催化材料。
2.2 Bi2O3/BiOI复合光催化材料的微观形貌
通过SEM分析了所制备光催化材料的微观形貌,结果如图2所示。可以看出,所制备的BiOI是由纳米片自组装形成的花状微球;单一Bi2O3呈现出不同尺寸、不规则的块状结构。从图2(c)可以看出,当BiOI与Bi2O3复合后,块状Bi2O3均匀分散在花状微球的BiOI表面。
2.3 Bi2O3/BiOI复合光催化材料的结构
样品的FTIR图谱如图3所示。499 cm−1和760 cm−1处是BiOI的特征吸收峰,1617 cm−1处的吸收峰对应Bi2O3中Bi—O键的弯曲振动,再次表明BiOI和Bi2O3成功复合在一起。
2.4 Bi2O3/BiOI复合光催化材料的光学性能
利用UV-Vis DRS分析了所制备样品的光学吸收性能,如图4所示。可以看出,纯BiOI的吸收边缘位于681 nm处,纯Bi2O3的吸收边缘位于477 nm,Bi2O3/BiOI复合光催化材料的光吸收边缘位于617 nm。与纯BiOI相比,Bi2O3/BiOI复合光催化材料的光吸收边缘有轻微的蓝移,这是由于与Bi2O3耦合造成的,但其光吸收范围仍然很宽。
不同光催化材料的紫外漫反射(αhv)1/2-hv转换图如图5所示。根据Kubelka-Munk公式,纯BiOI、Bi2O3和Bi2O3/BiOI对应的禁带宽度Eg值分别为1.82 eV、2.60 eV和2.01 eV。
2.5 Bi2O3/BiOI复合光催化材料光生电子空穴对的分离
利用荧光强度来分析光生电子空穴对的复合速率,荧光强度越小,则光生电子复合速率越低,图6为不同光催化材料的荧光光谱。可以看出,在520 nm处,Bi2O3/BiOI的荧光强度低于单一BiOI和Bi2O3,表明复合光催化材料的光生电子空穴对复合速率最低,光催化活性最高。
通过电化学阻抗法研究了不同光催化材料的电荷转移效率,结果如图7所示。Bi2O3/BiOI的圆弧半径小于单一BiOI和Bi2O3,说明其电荷转移电阻较低,电导率增强。电化学阻抗图表明Bi2O3/BiOI能增强光生电子空穴对的电荷转移能力,提高其分离效率,这与荧光分析的结果一致。
2.6 Bi2O3/BiOI复合光催化材料的性能
2.6.1 不同制备条件对光催化性能的影响
通过探究反应物的不同摩尔比、反应温度、反应时间及pH对所制备材料的光催化性能的影响。从图8(a)~8(d)可以看出:当Bi2O3与BiOI的摩尔比为0.8∶1时,在pH=5、180℃下反应20 h得到的Bi2O3/BiOI复合光催化材料对四环素的降解效果最佳,在3 h内对四环素的降解率可达75%。
2.6.2 光催化性能
通过在模拟太阳光照射下降解四环素来评价所制备样品的光催化性能,图9(a)为模拟太阳光照射下降解四环素的曲线图。在3 h内,BiOI、Bi2O3、Bi2O3/BiOI对四环素的降解率分别为55%、57%、75%。图9(b)为模拟太阳光照射下降解四环素的动力学曲线,Bi2O3/BiOI的动力学速率常数(0.007 min−1)分别是BiOI(0.004 min−1)、Bi2O3(0.0045 min−1)的1.75倍、1.56倍。因此,所制备出的Bi2O3/BiOI具有较高的光催化活性。
2.7 Bi2O3/BiOI复合光催化材料降解四环素的机制
使用对苯醌(BQ)、乙二胺四乙酸二钠盐(EDTA-2Na)、异丙醇(IPA)作为·O2−、h+、·OH的捕捉剂,实验结果如图10所示。BiOI对四环素的降解率分别为50%、31%、53%、,由此可以得出h+是BiOI降解四环素的主要活性物质。Bi2O3对四环素的降解率分别为55%、52%、35%,由此可以得出·OH是Bi2O3降解四环素的主要活性物质。
当Bi2O3和BiOI复合后形成Z型异质结时,Bi2O3/BiOI光催化材料对四环素的降解率分别为35%、66%、66%,由此可以得出·O2−是光催化材料降解四环素的主要活性物质。
Bi2O3/BiOI异质结的形成可以提高光生电子空穴对的分离速率,从而提高光催化活性。BiOI 、Bi2O3的导带和价带可以通过下式计算:
ECB=X−Ee−0.5Eg Eg=EVB−ECB 式中:X为半导体的电负性,BiOI和Bi2O3的X值分别为5.94 eV 和6.23 eV;Ee为自由电子在氢标上的能量(约为4.50 eV);Eg为对应的带隙能量,由图3(b)可以得出BiOI和Bi2O3的Eg值分别为1.82 eV和2.60 eV。因此,BiOI和Bi2O3的导带(CB)边缘分别位于0.53 eV和0.43 eV,BiOI和Bi2O3的价带(VB)边缘分别位于2.35 eV和3.03 eV。在可见光照射下所制备的Bi2O3/BiOI异质结被激发并生成光生载流子且BiOI比Bi2O3的CB更正。事实上,在Bi2O3/BiOI异质结中,光子能量会激发BiOI CB上的电子到更高的电位位置(−0.68 eV),因此BiOI CB上的光生电子会转移到Bi2O3的CB上。同时,Bi2O3 VB上的空穴将转移到BiOI的VB上。而Bi2O3 CB上的电子不能与O2反应生成·O2−(O2/·O2−=−0.33 eV),·O2−是降解四环素的主要活性物质,这与捕获实验的结果不一致。结合以上结果,提出了一种更可能的光催化机制,如图11所示。BiOI和Bi2O3在可见光照射下都能产生光生电子空穴对,Bi2O3 CB上的光生电子和BiOI VB上的空穴在库仑力的作用下会重新组合。此外,BiOI的CB上的光生电子可以与O2反应生成·O2−,然后·O2−与TC反应,有效地实现了Bi2O3/BiOI异质结的光催化降解过程。综上所述,Bi2O3/BiOI异质结能够有效提高光生电子空穴对的分离效率,从而显著提高光催化性能。
3. 结 论
(1) 以五水硝酸铋为原料,采用溶剂热法制备了Bi2O3/BiOI复合光催化材料,在制备过程中加入Bi2O3可以提高单一BiOI的光催化性能,在3 h内对四环素的降解率为75%,是单一BiOI降解速率的1.75倍。
(2) BiOI、Bi2O3成功复合在一起并形成了异质结结构,Bi2O3/BiOI复合光催化材料通过提高光生电子空穴对的分离速率从而提高光催化活性。
(3) 降解机制研究表明,·O2−在降解四环素中起主要作用,且所制得的复合材料可应用于对四环素的降解,并有望进一步用于对其他抗生素的降解处理以解决实际问题。
-
-
[1] YANG Wen, WANG Ying. Enhanced electron and mass transfer flow-through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in ampicillin wastewater[J]. Applied Catalysis B: Environmental,2021,282:119574. DOI: 10.1016/j.apcatb.2020.119574
[2] YU Yutang, WU Kun, XU Weicheng, et al. Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method[J]. Journal of Hazardous Materials,2021,404:124171. DOI: 10.1016/j.jhazmat.2020.124171
[3] LIU Shuyuan, RU Jiling, LIU Fanzhe. NiP/CuO composites: Electroless plating synthesis, antibiotic photodegradation and antibacterial properties[J]. Chemosphere,2021,267:129220. DOI: 10.1016/j.chemosphere.2020.129220
[4] ZHANG Hao, TANG Guogang, WAN Xiong, et al. High-efficiency all-solid-state Z-scheme Ag3PO4/g-C3N4/MoSe2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination[J]. Applied Surface Science,2020,530:147234. DOI: 10.1016/j.apsusc.2020.147234
[5] ZHONG Shuang, WANG Xiaozhu, WANG Yu, et al. Preparation of Y3+-doped BiOCl photocatalyst and its enhancing effect on degradation of tetracycline hydrochloride wastewater[J]. Journal of Alloys and Compounds,2020,843:155598. DOI: 10.1016/j.jallcom.2020.155598
[6] ZHU M T, TONNI A K, YOU Y P, et al. Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite for photodegradation of tetracycline in aqueous solutions[J]. Journal of Environmental Management,2020,270:110839.
[7] JIANG Xueding, LAI Shufeng, XU Weicheng, et al. Novel ternary BiOI/g-C3N4/CeO2catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process[J]. Journal of Alloys and Compounds,2019,809:151804. DOI: 10.1016/j.jallcom.2019.151804
[8] YANG Yang, ZENG Zhuotong, ZHANG Chen, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal,2018,349:808-821. DOI: 10.1016/j.cej.2018.05.093
[9] GUO Siyao, LUO Huihua, LI Ying, et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline[J]. Journal of Alloys and Compounds,2021,852:157026. DOI: 10.1016/j.jallcom.2020.157026
[10] KANDI Debasmita, BEHERA Arjun, SAHOO Srikant, et al. CdS QDs modified BiOI/Bi2MoO6 nanocomposite for degradation of quinolone and tetracycline types of antibiotics towards environmental remediation[J]. Separation and Purification Technology,2020,253:117523. DOI: 10.1016/j.seppur.2020.117523
[11] HUANG Liying, YANG Lei, LI Yeping, et al. p-n BiOI/Bi3O4Cl hybrid junction with enhanced photocatalytic performance in removing methyl orange, bisphenol A, tetracycline and Escherichia coli[J]. Applied Surface Science,2020,527:146748. DOI: 10.1016/j.apsusc.2020.146748
[12] CHEN Yongyang, LIU Yonggang, XIE Xin, et al. Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation[J]. Journal of Materials Science: Materials in Electronics,2019,30(10):9311-9321. DOI: 10.1007/s10854-019-01261-9
[13] YAN Qishe, WANG Peiying, GUO Yuan, et al. Constructing a novel hierarchical ZnMoO4/BiOI heterojunction for efficient photocatalytic degradation of tetracycline[J]. Journal of Materials Science: Materials in Electronics,2019,30(20):19069-19076. DOI: 10.1007/s10854-019-02264-2
[14] HAO Rong, XIAO Xin, ZUO Xiaoxi, et al. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres[J]. Journal of Hazardous Materials,2012,209:137-145.
[15] YUAN Ding, HUANG Liying, LI Yeping, et al. A novel AgI/BiOI/pg-C3N4 composite with enhanced photocatalytic activity for removing methylene orange, tetracycline and E. coli[J]. Dyes and Pigments,2020,177:108253. DOI: 10.1016/j.dyepig.2020.108253
[16] WANG Qi, SHI Xiaodong, LIU Enqin, et al. Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction[J]. Journal of Hazardous Materials,2016,317:8-16. DOI: 10.1016/j.jhazmat.2016.05.044
[17] CONG Yanqing, JI Yun, GE Yaohua, et al. Fabrication of 3D Bi2O3-BiOI heterojunction by a simple dipping method: Highly enhanced visible-light photoelectrocatalytic activity[J]. Chemical Engineering Journal,2017,307:572-582. DOI: 10.1016/j.cej.2016.08.114
[18] HAN Suiqi, LI Jia, YANG Kailun, et al. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal[J]. Chinese Journal of Catalysis,2015,36(12):2119-2126.
[19] CHAKRABORTY A K, GANGULI S, BERA S, et al. Preparation of CdS/BiOCl/Bi2O3 double composite system for visible light active photocatalytic applications[J]. Journal of Photochemistry & Photobiology A: Chemistry,2018,364:159-168.
[20] XIE Xin, WANG Shenbo, ZHANG Yongjiang, et al. Facile construction for new core-shell Z-scheme photocatalyst GO/AgI/Bi2O3 with enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science,2021,581:148-158. DOI: 10.1016/j.jcis.2020.07.128
[21] LI Bo, NENGZI Lichao, GUO Ruonan, et al. Novel synthesis of Z-scheme α-Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance: Influence of calcination temperature[J]. Chinese Chemical Letters,2020,31(10):2705-2711. DOI: 10.1016/j.cclet.2020.04.026
[22] LI Binrong, CHU Jinyu, LI Yi, et al. Preparation and performance of visible-light-driven Bi2O3/ZnS heterojunction functionalized porous CA membranes for effective degradation of Rhodamine B[J]. Physica Status Solidi A: Applications and Materials Science,2018,215(11):1701061.
[23] WEI Zhiping, ZHENG Nan, DONG Xiaoli, et al. Green and controllable synthesis of one-dimensional Bi2O3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI)[J]. Chemosphere,2020,257:127210.
[24] LI Yongyu, WANG Jianshe, YAO Hongchang, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities[J]. Catalysis Communications, 2011, 12(7): 660-664.
-
期刊类型引用(8)
1. 谭浩,张文彬,卢文玉,祁志强,蔡红珍,杨科研. 高粱秸秆负载HKUST-1对四环素的吸附行为与机制. 复合材料学报. 2025(01): 514-526 . 本站查看
2. 李碧秋,李希成,熊俊夫,李金韩,贾博雅,汪长征. 铋系光电催化剂降解水中有机污染物的研究进展. 材料工程. 2024(06): 92-108 . 百度学术
3. 黄鹏伟,李静,林博,王宜民,陈仪,谢楠耿. AgI/BiOI异质结光电催化甲醇氧化. 山西化工. 2024(07): 4-6+10 . 百度学术
4. 杜书雅,王旭东,董永浩,吕嘉辰,李洁. MOF-808/AgBr的制备及光催化降解盐酸四环素性能研究. 功能材料. 2024(11): 11137-11146 . 百度学术
5. 严惠儒,林水源,钟祥康,黄学帅,杨玉如,冯梓盈,朱淼,谢伟. Au/BiOI花状微米球的制备及其对抗生素的降解特性. 广州化工. 2023(05): 43-46 . 百度学术
6. 王振宇,刘燕才,陈琨,乔江浩,李晓伟. 等离子喷涂-化学气相沉积制备α/β-Bi_2O_3薄膜的相结构调控和光催化降解性能. 硅酸盐学报. 2023(07): 1800-1810 . 百度学术
7. 刘松林,王仲民,钱熹,王童,冉兆晋,黄志民,吴晨曦,李桂银. 磁性氮掺杂石墨烯改性柿单宁复合材料对四环素的吸附行为. 复合材料学报. 2023(07): 4048-4059 . 本站查看
8. 袁亦雷,谢水波,刘岳林,史艳丹,刘迎九. g-C_3N_4-Bi_2O_3/Al_2O_3复合材料光催化还原水中U(Ⅵ). 化工环保. 2022(05): 609-615 . 百度学术
其他类型引用(8)
-