Effect of fit conditions on mechanical properties of C/SiC online riveting unit
-
摘要: 针对化学气相沉积(CVI)工艺2D C/SiC材料制备热结构中大量采用的在线铆钉连接形式及地面试验中表现出的特点,研究了铆钉与平板开孔之间采用间隙或过盈配合不同形式对力学性能的影响。制备了典型含铆钉单元试件并进行了细观形貌观测,通过铆钉顶出试验得到了不同配合条件下顶出静强度及疲劳规律;通过不同配合条件下含铆钉试件与开孔试件的拉伸静强度试验,获得了C/SiC在线铆接导致的面内连接强度性能下降的规律;描述了纤维束变形和材料局部区域破坏的特点,并依据形貌观测开展了数值计算验证;在此基础上,针对C/SiC过盈配合铆接形式提出了考虑孔边应力集中影响的改进点应力失效准则。结果表明,过盈配合可以改善铆钉与平板之间的连接可靠性,显著提高铆钉顶出静强度和疲劳强度,但过盈配合铆接的工艺过程使得孔边局部碳布纤维产生挤压偏折变形并导致了孔边预应力。Abstract: According to the on-line rivet connection forms widely used in Chemical vapor infiltration (CVI) process 2D-C/SiC thermal structures and characteristics shown in ground tests, the effects of different forms of clearance or interference fit between rivets and flat openings on mechanical properties were studied. A typical test piece with rivets was prepared and the microscopic morphology was observed. Through rivet push-out test, the push-out static strength and fatigue rules under different matching conditions were obtained. By comparing the tensile static strength of the specimens with rivets and the specimens with holes under different matching conditions, the rule of in-plane strength performance degradation caused by C/SiC online riveting was obtained. The characteristics of fiber bundle deformation, hole edge pre-stress and local area damage of materials were analyzed, and numerical modeling calculation was carried out according to morphology observation. Then, an improved point stress failure criterion (PSC) considering the effect of stress concentration at the hole edge was proposed for C/SiC interference fit riveting. Research shows that interference fit can improve the connection reliability between rivet and hole, significantly improve the push-out static strength and fatigue strength of rivet. But the interference fit riveting process makes the local carbon fiber at the hole edge extrude and deform, which leads to the prestress at the hole edge.
-
Key words:
- C/SiC /
- online rivet connection /
- strength character /
- fatigue test /
- fitting condition
-
表 1 C/SiC材料及组分材料力学性能
Table 1. Mechanical properties of the C/SiC and component materials
Property Value Elastic modulus Ex(Ey) of C/SiC /GPa 115 Elastic modulus Ez of C/SiC /GPa 35 Poisson's ratio νxy of C/SiC 0.05 Poisson's ratio νxz(νyz) of C/SiC 0.01 Shear modulus Gxy of C/SiC /GPa 35 Shear modulus Gxz(Gyz) of C/SiC /GPa 32 Elastic modulus E1 of carbon fibre /GPa 124 Elastic modulus E2(E3) of carbon fibre /GPa 14 Shear modulus G23 of carbon fibre /GPa 18 Shear modulus G12(G13) of carbon fibre /GPa 20 Poisson's ratio ν12(ν13) of carbon fibre 0.17 Poisson's ratio ν23 of carbon fibre 0.01 Elastic modulus E of SiC matrix with voids /GPa 150 Shear modulus G of SiC matrix with voids /GPa 70 Poisson's ratio ν of SiC matrix with voids 0.08 表 2 C/SiC单独开孔状态下的强度特征长度
Table 2. Strength characteristic length of C/SiC under the condition of opening
Hole radius
ra/mmTensile strength
σN/mmσN/σ0 Characteristic
length da/mm0 212.0 1 / 1.0 186.0 0.877 1.38 1.75 159.3 0.751 1.32 2.0 152.0 0.717 1.32 2.75 136.1 0.642 1.39 -
[1] 韩国凯, 解维华, 孟松鹤, 等. 防隔热一体化复合材料整体性能优化设计方法[J]. 复合材料学报, 2019, 36(2): 450-460.HAN Guokai, XIE Weihua, MENG Songhe, et al, Optimization design method of integrated thermal protection/insulation composite material [J]. Acta Materiae Compositae Sinica, 2019, 36(2): 450-460 (in Chinese). [2] 张立同. 纤维增韧碳化硅陶瓷复合材料: 模拟、表征与设计[M]. 北京: 化学工业出版社, 2009.ZHANG Litong. Fiber-reinforced silicon carbide ceramic composites: modelling, characterization and design [M]. Beijing: Chemical Industry Press, 2009 (in Chinese). [3] 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10):1295-1302. doi: 10.3873/j.issn.1000-1328.2013.10.001MENG Songhe; YANG Qiang, HUO Shiyu, et al. State-of-arts and trend of integrated thermal protection systems[J]. Journal of Astronautics,2013,34(10):1295-1302(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.10.001 [4] ZHANG Q M, LI G S. A review of the application of C/SiC composite in thermal protection system[J]. Multidiscipline Modeling in Materials and Structures,2009,5(2):199-203. doi: 10.1163/157361109787959903 [5] HUDSON L D, STEPHENS C A. X-37 C/SiC ruddervator subcomponent test program [C]. NASA 2009 Annual Meeting, Houston, USA, 2009. [6] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-11. doi: 10.3321/j.issn:1000-3851.2007.01.001DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-11(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001 [7] ZOU P, CHEN X M, CHEN H, et al. Damage propagation and strength prediction of a single-lap interference-fit laminate structure[J]. Frontiers of Mechanical Engineering,2020,15(4):558-570. doi: 10.1007/s11465-020-0591-5 [8] 邹鹏, 曲凡. 复合材料衬套螺栓干涉连接安装过程损伤机制[J]. 复合材料学报, 2022, 39(5):2449-2459. doi: 10.13801/j.cnki.fhclxb.20210616.007ZOU Peng, QU Fan. Damage mechanism of composite sleeve-type bolt interference fit structure during the installation process[J]. Acta Materiae Compositae Sinica,2022,39(5):2449-2459(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210616.007 [9] 宋祚禹, 王西昌, 曹正华, 等. 碳纤维/聚脂亚胺树脂基复合材料开孔件的连接力学性能[J]. 航空制造技术, 2009, S1:139-144. doi: 10.3969/j.issn.1671-833X.2009.z1.043SONG Zuoyu, WANG Xichang, CAO Zhenghua, et al. Joint mechanical properties of open-hole carbon fiber reinforced polyimide composites[J]. Aeronautical Manufacturing Technology,2009,S1:139-144(in Chinese). doi: 10.3969/j.issn.1671-833X.2009.z1.043 [10] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015.ZHAO Libin, XU Jifeng. Analysis method for advanced composite joints [M]. Beijing: Beihang University Press, 2015 (in Chinese). [11] 张毅. CVI-2 D C/SiC复合材料铆接单元的力学行为与失效机制[D]. 西安: 西北工业大学, 2017.ZHANG Yi. Mechanical behaviors and failure mechanisms of z-pinned joints for 2 D C/SiC composite prepared by chemical vapor infiltration [D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). [12] ZHANG Y, ZHANG L T, HE J Y, et al. Modelling shear behaviors of 2 D C/SiC z-pinned joint prepared by chemical vapor infiltration[J]. Ceramics International,2018,44(6):6433-6442. doi: 10.1016/j.ceramint.2018.01.038 [13] LEONE F A, DAVILA C G, CIROLAMO D G. Progressive damage analysis as a design tool for composite bonded joints[J]. Composites Part B:Engineering,2015,77:474-483. doi: 10.1016/j.compositesb.2015.03.046 [14] LI G D, WU X F, ZHANG C R, et al. Theoretical simulation and experimental verification of C/SiC joints with pins or bolts[J]. Materials & Design,2014,53:1071-1076. [15] He Z B, Zhang L T, Zhang Y, et al. Microstructural characterization and failure analysis of 2 D C/SiC two-layer beam with pin-bonded hybrid joints[J]. International Journal of Adhesion and Adhesives,2015,57:70-78. doi: 10.1016/j.ijadhadh.2014.10.008 [16] ZHANG X Y, SUO T, WANG B, et al. Fatigue behavior and residual strength evolution of 2 D C/SiC Z-pinned joints prepared by chemical vapour infiltration[J]. Journal of the European Ceramic Society,2019,39:3575-3582. doi: 10.1016/j.jeurceramsoc.2019.04.051 [17] ZOU P, ZHANG K F, LI Y, et al. Bearing strength and failure analysis on the interference-fit double shear-lap pin-loaded composite[J]. International Journal of Damage Mechanics,2016,27(2):179-200. [18] ZOU P, LI Y, ZHANG K F, et al. Mode I delamination mechanism analysis on CFRP interference-fit during the installation process[J]. Materials and Design,2017,116:268-277. doi: 10.1016/j.matdes.2016.11.063 [19] LI Y, XIAO P, LUO H, et al. Fatigue behavior and residual strength evolution of 2.5 D C/C-SiC composites[J]. Journal of the European Ceramic Society,2016,36(16):3977-3985. doi: 10.1016/j.jeurceramsoc.2016.07.009 [20] 杨晔楠, 赵美英, 周银华. 过盈配合对复合材料多钉连接强度的影响研究[J]. 航空工程进展, 2012, 3(3):311-316. doi: 10.3969/j.issn.1674-8190.2012.03.012YANG Yenan, ZHAO meiying, ZHOU yinhua. Study on effect of interference fit on joint strength for multi-fasteners in composites[J]. Advances in Aeronautical Science and Engineering,2012,3(3):311-316(in Chinese). doi: 10.3969/j.issn.1674-8190.2012.03.012 [21] 邹鹏. 复合材料干涉螺接结构损伤萌生与扩展机理研究[J]. 西安:西北工业大学, 2017:17-42.ZOU Peng. Research on the damage initiation and evolution mechanism of composite interference-fit bolted structures[J]. Xi’an:Northwestern Polytechnical University,2017:17-42(in Chinese). [22] HWAN C L, TSAI K H, CHEN W L, et al. Strength prediction of braided composite plates with a center hole[J]. Journal of Composite Materials,2011,45(19):1991-2002. doi: 10.1177/0021998311399483 [23] TAN Z Y, DONG W L, MEI J, et al. Strength and mechanical response of C/C composite open-hole and bolted plates[J]. Materials Testing,2017,59(9):774-778. doi: 10.3139/120.111067 [24] AVESTON J, COOPER G, KELLY A. Properties of fiber composites[J]. PA:IPC Science and Technology Press Hellertown,1971:15-24. -