Research progress of graphene oxide composite coatings in metal corrosion protection
-
摘要:
氧化石墨烯(GO)作为石墨烯的衍生物具有优异的综合性能,在金属的防腐蚀领域中表现出了巨大的应用潜力。GO不仅具有石墨烯的二维层状结构,还含有羟基、羰基、羧基和环氧基团等官能团可作为活性位点与其他物质进行共价/非共价性功能化改性,因此GO常被用作填料来增强涂层的综合性能。本文以GO复合涂层为中心,简要地介绍了其理化性质,以当前世界金属腐蚀的情况和腐蚀类型为切入点,针对一些常用的腐蚀防护方法进行了讨论。综述了近年来国内外关于GO与有机物和无机物的复合涂层在金属腐蚀与防护领域的研究进展并对复合涂层的防腐机制进行了简述;最后,总结了目前研究工作中存在的关键科学难题与挑战,对涂层的研究方向与应用前景进行了展望。
Abstract:As a derivative of graphene, graphene oxide (GO) has excellent comprehensive performance, showing great application potential in metal corrosion and protection. GO has not only a two-dimensional layered structure but also contains hydroxyl, carbonyl, carboxyl, epoxy groups and other functional groups that can be used as active sites with other substances for covalent/non-covalent functionalization modification, so GO is often used as a filler to enhance the comprehensive performance of coatings. This paper reviews the recent research progress on GO composite coating in metal corrosion and protection. The first part summarizes the morphology of metal corrosion and the corrosion protection methods, explains the primary forms of metal corrosion, and discusses the current main metal corrosion protection methods. The second part introduces the physicochemical properties of graphene and its derivatives. In this paper, GO is the main focus. It has tremendous application potential in metal corrosion protective coatings due to its sheet structure, excellent dispersion, and abundant oxygen-containing functional groups on the surface, which are the active point of the reaction and easy modification. The third part introduces the current GO composite coating, which compares the corrosion resistance of traditional coatings, GO organic/inorganic unit composite coatings and GO multi-composite coatings. It is found that the performance of GO multi-component composite coating is far better than that of GO organic/inorganic unit composite coating and traditional coating. This is due to the excellent dispersion of GO, which enables it to fill the pores that occur during the curing and film-forming process of organic polymer materials and improve the corrosion resistance of the coating. The photogenic cathodic protection mechanism and current situation of GO anti-corrosion coating are introduced, and due to the green environmental protection and excellent anti-corrosion effect, it is regarded as the future development trend of GO composite coating. The fourth part summarizes the key scientific issues and challenges of GO composite anti-corrosion coating in the current research. It looks forward to the research direction and application prospect of GO composite anti-corrosion coating.
-
雾霾已经成为全球环境污染问题之一,而造成雾霾的重要因素之一是工业生产过程中粉尘的排放,特别是PM2.5颗粒已经严重影响居民生活生产和身体健康[1-2]。2019年4月生态环境部、国家发改委等五部委联合发布《关于推进实施钢铁行业超低排放的意见》,强调钢铁行业所有生产环节一次排放颗粒物浓度不高于10 mg/m3。烧结工序烟气污染物占整个冶金工业的60%以上,其中粉尘颗粒物占整个行业25%左右,其中烟气中含水率高达8%~13%[3]。目前,很多钢铁烧结厂采用的是静电除尘技术,排放颗粒物浓度大于50 mg/ m3,很难满足超低排放的技术要求。袋式除尘器因其技术成熟、过滤效率高、价格便宜被广泛应用在工业粉尘处理上[4-5]。滤袋作为袋式除尘器关键材料,对袋式除尘器过滤性能具有决定性作用。然而,面对烧结烟气的高含水率,水蒸气与固体颗粒会在滤料表面吸附形成黏附膜,产生黏附作用,造成滤料微孔堵塞、糊袋[6]等现象,进而造成压降变大、难以清灰[7]等问题。因此,对滤料进行表面改性,改善滤料的疏水性能,以提高滤料在高湿环境下的过滤性能成为业界研究的重点。
超疏水性[8]是指材料表面与水的接触角(WCA)大于150°且滚动角(SA)小于10°,是一种极端的浸润性[9]。Barthlott和Neinhuis[10]研究发现荷叶表面的超疏水特性源于其表面的大量微米级凸起结构和蜡状物质。GAO等[11]和CHEN等[12]发现荷叶等超疏水特性是因其自身多尺度的微纳结构。可见,类“荷叶效应”[13-14]的仿生超疏水材料表面有着不被润湿的特性,水滴极易滚落。
通常实现超疏水表面的方法有两种:降低表面能和构造表面微纳米级粗糙结构[15]。表面的微观多尺度粗糙形貌的构造是超疏水的关键技术,目前常用方法主要有:模板法[16]、刻蚀法[17]、化学气相沉积法[18]、静电纺丝法[19-20]、相分离法[21]、水热法[22]等。但是,上述方法普遍存在制备工艺复杂、成本昂贵的缺点,严重限制了超疏水材料在工业生产中的运用。因此,选择一种工艺简单、价格低廉的方法制备稳定的超疏水材料显得尤为重要。
本文以冶金工业袋式除尘器中常用的聚对苯二甲酸乙二醇酯(PET)滤料为基体材料,以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为改性剂,采用溶胶-凝胶法在PET纤维表面形成纳米级SiO2颗粒粗糙、褶皱甚至凸起形貌,完成了对PET滤料表面的原位改性,有效提升PET滤料的疏水性能、过滤面积,并对其综合过滤性能、高湿环境下的自清洁性能与超疏水稳定性进行评价,以期为满足钢铁烧结高湿环境工序下袋式除尘材料的开发提供一定的理论基础和实验依据。
1. 实 验
1.1 原材料
正硅酸乙酯(TEOS)、甲基三乙氧基硅烷(MTES),均为分析纯,购自阿拉丁试剂公司;乙醇、氨水,均为分析纯,由国药集团化学试剂公司提供;聚对苯二甲酸乙二醇酯(PET)滤料,由江苏东方滤袋股份有限公司提供,单位面积质量为500 g/m2,厚度约为0.8 mm;去离子水实验室自制。
1.2 样品制备
PET滤料制备前用乙醇洗涤3遍,60℃烘箱中干燥2 h留备用。不同改性剂添加量时PET滤料的具体配方见表1。
表 1 不同改性剂添加量时PET滤料的具体配方Table 1. Formulation of PET filter with different modifiers loadingSample PET/g TEOS/g MTES/g Polyethylene terephthalate (PET) 1.0 0 0 TEOS-modified PET (T-PET) 1.0 4.0 0 MTES-modified PET (M-PET) 1.0 0 4.0 TEOS and MTES modified PET (MT-PET) 1.0 2.5 1.5 Notes: TEOS—Tetraethyl orthosilicate; MTES—Methyl triethoxysilane. 不同滤料样品的制备:首先在三口烧杯中,加入150 mL乙醇与50 mL去离子水混合搅拌均匀后,在45℃恒温水浴锅中将1.0 g PET滤料加入三口烧杯中,用氨水调节pH至11,搅拌30 min后,将一定量的TEOS以1滴/s速度逐滴滴加入三口烧杯中,滴加完毕后在45℃条件下搅拌4 h,取出滤料在60℃烘箱中干燥2 h。然后在三口烧杯中加入150 mL乙醇与50 mL去离子水,混合搅拌均匀后再加入上述烘干滤料,用氨水调节pH至11,搅拌30 min后,将一定量的MTES以1滴/s速度逐滴加入三口烧杯中,在45℃条件下搅拌4 h,取出滤料在60℃烘箱中干燥2 h,获得一系列PET滤料。
1.3 性能表征
采用场发射扫描电子显微镜(FESEM-EDS,NanoSEM 430,FEI公司,美国)测试滤料样品微观形貌,并采用其配套的能谱仪(EDS)分析其表面元素组成;利用傅里叶变换红外光谱仪(FTIR,Nicolet6700,尼高力公司,美国) 在4 000~400 cm−1波数范围内扫描,测试滤料样品组成结构;借助接触角测量仪(JC2000D3M,上海中晨数字技术设备有限公司,中国),测试滤料样品表面上的静态接触角(WCA)和流失角(WSA),滴量为6 μL/滴,每个样品测定点为5个,取平均值。
为了研究改性前后滤料长时间暴露于高湿粉尘环境下自清洁性能,将0.3 g不同湿度烧结工序排放粉尘样品均匀喷涂在滤料表面,将其置于10°倾角实验工作台上,保持24 h后,用恒压滴液漏斗以1 s/滴滴水置于粉尘上,持续5 s后观察滤料表面粉尘的变化情况。待表面粉尘全部剥离后再将滤料放置在60℃烘箱中干燥2 h,再测量其WCA。将改性后PET滤料浸泡在蒸馏水(室温)中,每隔12 h取出一个样品,在60℃烘箱中干燥2 h后再测量WCA,观察其疏水性的变化情况,验证超疏水滤料的稳定性。
2. 结果与讨论
2.1 PET滤料微观结构
图1为PET滤料的SEM图像。从图1(a)、图1(c)、图1(e)和图1(g)可以看出,对比PET、TEOS改性的PET(T-PET),MTES改性的PET(M-PET)和TEOS、MTES共同改性PET (MT-PET)的纤维空隙结构未发生明显变化,说明本次实验的TEOS、MTES没有改变滤料中纤维的空隙结构,即不会增加气流阻力,对过滤压降未产生不利影响。结合图1(a)与图1(b)可以看出,PET纤维表面光滑且相互交错,但未出现结合现象;在图1(c)和图1(d)中,T-PET纤维表面被TEOS水解产生的凝胶所覆盖,其中局部表面呈现纳米粒子的堆积现象,导致其表面粗糙;在图1(e)与图1(f)中,M-PET纤维表面较光滑,只有零星纳米粒子附着在纤维表面,未出现局部堆积现象;在图1(g)与图1(h)中,一方面MT-PET纤维表面被凝胶包裹,局部表面呈现较大颗粒的纳米粒子堆积现象;另一方面MT-PET纤维表面形貌表现为粗糙、褶皱甚至凸起,形成致密的保护层。
不同改性剂添加量时PET滤料产物的表面EDS图像及元素成分含量如图2和表2所示。结合表2,从图2(a)可以看出,PET含C和O两种元素,其中66.18%为C;从图2(b)、图2(c)和图2(d)可以看出,T-PET、M-PET和MT-PET纤维表面均含有C、O和Si三种元素,说明SiO2纳米粒子成功附着在其表面。对比于PET,T-PET的C元素含量下降,O元素基本不变,而M-PET、MT-PET的C元素含量有较明显的增加,O元素则下降了约14%~15%;相对于T-PET和M-PET,MT-PET的Si元素含量出现显著的提升。T-PET、M-PET和MT-PET滤料中的SiO2纳米粒子的存在有效地改善纤维的表面形貌,出现局部粗糙特征。
表 2 不同改性剂添加量时PET滤料产物的EDS元素成分Table 2. EDS element content of PET filter products with different modifier additionswt% Sample PET T-PET M-PET MT-PET Element C 66.18 61.94 78.25 73.28 O 33.82 33.58 18.29 19.78 Si 0 4.48 3.46 9.94 2.2 PET滤料表面官能团
图3为不同改性剂添加量时PET滤料产物的FTIR图谱。可以看出,PET是一种常见的饱和聚酯,3 432 cm−1处对应于滤料纤维表面吸附水O—H键的伸缩振动峰,2 975 cm−1处是C—H键伸缩振动峰,1 712 cm−1处因有苯环的共轭效应,出现酯类的C=O的伸缩振动,1 413 cm−1处是PET分子链苯环上C=C的伸缩振动,1 236 cm−1处是C—O不对称伸缩振动吸收峰,1 101 cm−1对应于C—O—C键的对称伸缩振动[23],723 cm−1处是C—H键的面外弯曲振动[24]。T-PET、M-PET、MT-PET相比于PET的伸缩振动峰,在3 432 cm−1、2 975 cm−1、1 712 cm−1、1 413 cm−1、1 236 cm−1、1 101 cm−1及723 cm−1处吸收峰皆有明显减弱,这主要是由于TEOS、MTES作用下滤料纤维表面沉积了SiO2凝胶所致。
进一步从图3可以看出,T-PET、M-PET和MT-PET在464 cm−1处出现新峰对应于Si—O键伸缩振动,在1 101 cm−1处的宽峰对应于Si—O—Si反对称伸缩振动与PET的C—O—C的对称伸缩吸收峰重合[25-26],进一步说明SiO2凝胶成功附着在滤料表面。T-PET相比于M-PET、MT-PET在3 432 cm−1处的O—H键有较明显的增加,在2 975 cm−1处的C—H键有明显减弱,说明T-PET滤料表面的—OH较多,—CH3较少;而MT-PET在2 975 cm−1处的C—H峰强于M-PET,说明MT-PET相比于样品M-PET增加了带有—CH3的SiO2。通过FTIR图谱分析可知,甲基化的SiO2纳米粒子成功附着在MT-PET样品表面。
2.3 PET滤料浸润性
由于PET滤料表面粗糙、不平整,难以可靠地确定基线位置,常规的滚动角(SA)测量方法不再适用,本研究采用了由Zimmerman等[27]开发的测量纺织品的水流失角(WSA)新技术。
不同改性剂添加量时PET滤料产物的WCA和WSA如表3和图4所示。可以看出,PET滤料表面的WCA为(119.7±2.8)°,WSA为(20.5±1.7)º,表现为一般性的疏水性,这主要是由于PET分子链中既含非极性的—CH2—CH2—结构,还含有一定极性的酯基结构(—COC—)。T-PET滤料表面超级亲水,接触角为0°,水滴可以完全润湿滤料,这主要是由于滤料表面的SiO2凝胶聚合物含有大量的Si—OH基团,具有很强的亲水性;M-PET表面疏水性提升,WCA为(138.6±1.6)°,相比PET滤料有近19°的提升,WSA为(15.6±1.7)°,表现为高疏水特性,这是由于沉积在纤维表面的MTES水解产物富含疏水性的—CH3结构。
表 3 不同改性剂添加量时PET滤料产物的静态接触角(WCA)和水流失角(WSA)Table 3. Water contact angle(WCA) and water shedding angle (WSA) of PET filter products with different modifier additionsSample WCA /(º) WSA/(º) PET 119.7±2.8 20.5±1.7 T-PET 0 − M-PET 138.6±1.6 15.6±1.7 MT-PET 158.8±1.4 6.9±1.2 MT-PET滤料表面WCA为(158.8±1.4)°,WSA为(6.9±1.2)°,呈现超疏水特性,原因有两方面:其一是由于TEOS水解产生的SiO2凝胶可以通过和酯基的相互作用沉积在滤料纤维表面,同时METS可以对亲水性SiO2凝胶进行表面改性,使其表面富含疏水性的—CH3结构;其二TEOS水解产物形成的纳米级SiO2微球附着在滤料纤维表面,产生类“荷叶效应”,而MTES对SiO2纳米微球进行表面处理,使其带有疏水性的—CH3结构,进一步增强了类“荷叶效应”。MT-PET滤料所测试的5个样品WCA都大于150°,WSA都小于10°,说明其已经呈现出非常稳定的超疏水特性。
结合SEM和FTIR测试分析可知,MT-PET滤料表面由不规则的SiO2凝胶,水滴不能完全填满整个粗糙滤料表面的微孔结构,微孔下存在部分空气作用使滤料表面为气-固复合界面,从而有效提高了滤料的疏水性能,上述复合接触面完全符合Cassie-Baxter模型[28],表明水滴与MT-PET滤料接触时,水滴主要受到毛细管力作用和拉普拉斯压力的双重作用所支撑起来的。
2.4 PET滤料自清洁性和稳定性
滤料在不同湿度粉尘作用下,PET和MT-PET滤料表面的自清洁过程和接触角变化情况如表4和图5所示。结合表4和图5观察发现,随着粉尘湿度的增加,滤料的WCA有逐渐下降的趋势,粉尘的残留有逐渐增加的趋势。当水滴滴落在PET滤料样品表面后,水滴滚动缓慢或停滞,而且滤料表面残留有较多粉尘,滤料表面大部分被润湿,在不同湿度粉尘影响下,PET滤料WCA都有不同程度的下降且变化较大,随着粉尘湿度的增加,WCA下降有增大的趋势。
表 4 不同湿度粉尘对PET和MT-PET滤料WCA的影响Table 4. Effect of dust with different humidity on WCA of PET and MT-PET filter materialSample Humidity of dust/% WCA/(°) PET 6 109.7±2.5 9 102.6±2.1 12 86.8±1.6 MT-PET 6 156.6±1.4 9 153.9±1.8 12 151.1±1.6 当水滴滴落在MT-PET滤料样品表面后,水滴迅速从表面滚落并带走粉尘,滤料表面的粉尘基本被全部剥离,且滤料表面没有被润湿;随着粉尘湿度的增加,MT-PET滤料WCA有轻微下降,WSA变化范围为5.9°~8.3°,但其仍保持超疏水的特性。因此,MT-PET滤料在高湿粉尘环境下可以保持稳定的自清洁特性,上述结果也验证了接触角测试准确性。Min等[29]和Xu等[30]所制备的超疏水PET织物表面具有类似的自清洁性能。
室温下不同浸泡时间对MT-PET滤料浸润性的影响变化如图6所示,随着浸泡时间的增加,WCA呈现逐渐减小的趋势,WSA则保持很小的波动。在经过120 h浸泡后,WCA由(158.8±1.2)°下降为(150.2±1.1)°,WSA仍维持在(7.8±0.5)°左右。上述试验说明,在室温环境下,MT-PET滤料在水中浸泡一段时间后仍保持超疏水特性,具有很好的稳定性。
2.5 MT-PET超疏水滤料制备机制
通过以上表征、测试和分析可知,MT-PET超疏水滤料的工作原理如下:TEOS在碱性环境作用下发生水解反应生成带有大量—OH基团的SiO2凝胶和SiO2纳米粒子,沉积在滤料纤维表面。MTES水解后生成CH3—Si(OH)3基团也会与T-PET滤料表面带有—OH基团的SiO2纳米粒子发生缩合反应形成表面带有—CH3基团的SiO2凝胶和纳米粒子,沉积在MT-PET滤料表面,形成纳米级粗糙、褶皱甚至凸起形态。同时,在MT-PET滤料纤维交叉处,CH3—Si(OH)3作用下形成SiO2凝胶聚合物使纤维黏连粘合,增加了滤料的过滤面积。
T-PET滤料纤维表面虽然呈现SiO2纳米粒子粗糙形貌,然而其表面的—OH基团结构使其变为亲水性表面;M-PET滤料纤维表面虽然有—CH3基团的存在,但是难以形成大范围SiO2纳米粒子的粗糙形貌,只能使其表面出现高疏水性结构;MT-PET纤维表面形成有—CH3基团的存在,且纤维在凝胶聚合物粗糙褶皱结构、SiO2纳米粒子突出形貌共同作用下,使其表面出现超疏水性现象。MT-PET超疏水滤料的制备机制过程如图7所示。
3. 结 论
(1)正硅酸四乙酯(TEOS)改性的聚对苯二甲酸乙二醇酯(PET)滤料(T-PET)纤维表面被SiO2凝胶所包裹,出现大量的SiO2纳米粒子沉积,纤维表面出现局部粗糙特征,然而由于纤维表面大量亲水性的—OH基团,其呈现完全润湿性,其静态接触角(WCA)为0°。
(2)甲基三乙氧基硅烷(MTES)改性的PET(M-PET)滤料纤维表面只有少量SiO2凝胶附着,出现零星SiO2纳米粒子,纤维表面未形成粗糙形貌,同时由于纤维表面存在疏水性的—CH3基团,其呈现高疏水性,WCA为138.6°,流失角(WSA)为(15.6±1.7)°。
(3) TEOS和MTES共同改性的PET(MT-PET)滤料表面被SiO2凝胶包裹,出现粗糙、褶皱甚至凸起形貌,形成致密的保护层,同时由于有大量的带有—CH3基团SiO2凝胶和纳米粒子沉积在纤维表面,降低了滤料表面能,其WCA为(158.8±1.2)°,WSA为(6.9±1.5)°,达到超疏水状态。通过喷涂湿粉尘、水中浸泡(室温)滤料对比试验,表明MT-PET滤料具有良好的自清洁性能与稳定性。
(4) TEOS水解生成Si(OH)4基团且生成表面带有—OH基团的SiO2纳米粒子;MTES水解生成CH3—Si(OH)3基团会与T-PET滤料表面带有—OH基团的SiO2纳米粒子发生缩合反应形成表面带有甲基—CH3基团的SiO2凝胶和纳米粒子,沉积在MT-PET滤料表面,赋予滤料表面形成超疏水性能。
-
图 5 GO/Mn-Zn2SiO4材料的腐蚀防护机制图[43]:(a)光生阴极效应;(b)无机锰离子磁感应效应;(c)二维GO屏蔽效应;(d)阴极二次保护效应
Figure 5. Corrosion protection mechanism of GO/Mn-Zn2SiO4 material[43]: (a) Photogenerated cathode effect; (b) Inorganic manganese ion magnetic induction effect; (c) Two-dimensional GO shielding effect; (d) Cathode secondary protection effect
VB—Valence band; CB—Conduction band
表 1 GO作为涂层填料相对于其他常见无机填料的优缺点
Table 1 Advantages and disadvantages of GO as a coating filler over other common inorganic fillers
Type Character Advantages Disadvantages GO 1. High specific surface area, good mechanical properties, excellent barrier and shielding properties;
2. Excellent response reactivity, thermal and chemical stabilities;
3. Oxygen-containing functional group can serve as active sites for reactions; Hydrophilic groups on the surface are more easily modified by polymers or alkali metal oxides;
4. "Maze effect" can increase the diffusion path of the corrosion factor in the coating, and has a high resistance to permeability.1. Easy to agglomerate, dispersibility and stability are reduced after agglomeration;
2. Electrical conductivity, prone to galvanic coupling corrosion at locations of coating defects.Nano-ZnO 1. High melting point;
2. Good oxidation and corrosion resistance.1. High surface activity, easy to agglomerate and lose the special effect of nanoparticles after agglomeration;
2. Hydrophilic and oleophobic, poor dispersibility and stability in organic media;
3. Weak bonding with the substrate, poor interfacial compatibility, easy to produce voids, micro-cracks and other interfacial defects.Nano-Al2O3 1. High strength, thermal conductivity and wear resistance;
2. Excellent electrical insulation;
3. Stable physical and chemical properties.1. Poor compatibility with the substrate, poor dispersion, easy to agglomerate;
2. Functionalisation of the surface may lead to a reduction in filler size, resulting in defects on the surface;
3. Different shapes and sizes also have an effect on the corrosion resistance of the coating.Micro/Nano-
SiO21. High hardness, high mechanical strength;
2. Excellent thermal and chemical stability;
3. Low density, small particle size, large specific
surface area;
4. Colorless, odorless and pollution-friendly;
5. Good corrosion resistance.1. Fine particles and high hydrophilicity, easy to agglomerate;
2. The coating is prone to cracking during curing and reducing the corrosion resistance of the coating. -
[1] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. DOI: 10.1021/nl0731872
[2] GUO S J, DONG S J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672. DOI: 10.1039/c0cs00079e
[3] LIANG X, LI X J, TANG Y, et al. Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification[J]. Journal of Colloid and Interface Science, 2022, 611: 105-117. DOI: 10.1016/j.jcis.2021.12.068
[4] WANG J Q, ZHANG P, LIANG B, et al. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6211-6218. DOI: 10.1021/acsami.5b12723
[5] CHEN J H, LI W G, ZHAO Y T, et al. Application of graphene in anti-corrosive and anti-fouling coating[J]. Surface Technology, 2019, 48(6): 89-97.
[6] ZHANG Y J, SHAO Y W, LIU X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel[J]. Progress in Organic Coatings, 2017, 111: 240-247. DOI: 10.1016/j.porgcoat.2017.06.015
[7] CHENG L, LIU C, HAN D, et al. Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings[J]. Journal of Alloys and Compounds, 2019, 774: 255-264. DOI: 10.1016/j.jallcom.2018.09.315
[8] LE H S, NGUYEN D L, JUKKA S. Enhanced mechanical and thermal properties of polyurethane functionalized graphene oxide composites by in situ polymerization[J]. Plastics, Rubber and Composites, 2019, 48(10): 466-476. DOI: 10.1080/14658011.2019.1664820
[9] SALAVAGIONE H J, MARTÍNEZ G, ELLIS G. Recent advances in the covalent modification of graphene with polymers[J]. Macromolecular Rapid Communications, 2011, 32(22): 1771-1789. DOI: 10.1002/marc.201100527
[10] SUN Y B, YANG S B, CHEN Y, et al. Adsorption and desorption of U(VI) on functionalized graphene oxides: A combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7): 4255-4262.
[11] ASALDOUST S, RAMEZANZADEH B. Synthesis and characterization of a high-quality nanocontainer based on benzimidazole-zinc phosphate (ZP-BIM) tailored graphene oxides; A facile approach to fabricating a smart self-healing anti-corrosion system[J]. Journal of Colloid and Interface Science, 2020, 564: 230-244.
[12] LI Y F, LIU J L, DENG J S, et al. Fabrication of graphene oxide reinforced plasma sprayed Al2O3 coatings[J]. Ceramics International, 2023, 49: 1667-1677. DOI: 10.1016/j.ceramint.2022.09.129
[13] HAMID Z A, GOMAA M H, EL-HOUT S I, et al. α-Fe2O3/Fe3O4@GO nanosheets boost the functionality of Ni-P thin film deposited by electroless method[J]. Surface & Coatings Technology, 2023, 456: 129288.
[14] LALA S R F, SRIVASTAVA C. Correlation between texture, grain boundary constitution and corrosion behaviour of copper-chromium coatings containing graphene oxide[J]. Metallurgical and Materials Transactions A, 2023, 54: 634-645. DOI: 10.1007/s11661-022-06908-7
[15] BAGDE A, SHRIRAME S, BHANVASE B A, et al. Investigation on simultaneous enhancement in mechanical and anticorrosion performance of graphene oxide-zinc phosphate nanocomposite-based coatings[J]. Diamond & Related Materials, 2024, 144: 110960.
[16] 李智, 刘崇宇, 葛毓立, 等. 氧化石墨烯对纳米金属陶瓷复合镀层组织性能影响[J]. 表面技术, 2023, 52(10): 394-401. LI Zhi, LIU Chongyu, GE Yuli, et al. Effect of graphene oxide on microstructure and properties of nano-cermet composite coatings[J]. Surface Technology, 2023, 52(10): 394-401(in Chinese).
[17] ZHANG Y H. Application of water-soluble polymer inhibitor in metal corrosion protection: Progress and challenges[J]. Frontiers in Energy Research, 2022, 10: 3389.
[18] VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface & Coatings Technology, 2018, 341: 40-56.
[19] ZHANG F Y, LIU W Q, LIANG L Y, et al. Applications of hydrophobic α,ω-bis(amino)-terminated polydimethylsiloxane-graphene oxide in enhancement of anti-corrosion ability of waterborne polyurethane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124981. DOI: 10.1016/j.colsurfa.2020.124981
[20] WANG M J, WANG A, ZHAO W J, et al. The ion diffusion-directed self-assembled graphene oxide coating and its synergistic lubrication mechanism against environmental moisture[J]. Tribology International, 2024, 191: 109182. DOI: 10.1016/j.triboint.2023.109182
[21] GUO R T, LI W, WANG X Y, et al. Antimicrobial corrosion study of the epoxy coating with the graphene oxide supported Schiff base quaternary ammonium salt additives[J]. Materials Today Communications, 2023, 35: 105517. DOI: 10.1016/j.mtcomm.2023.105517
[22] 李凤英, 鞠鹏飞, 陈磊, 等. 聚苯胺原位聚合改性氧化石墨烯制备复合涂层及其耐腐蚀性能研究[J]. 表面技术, 2021, 50(11): 287-296. LI Fengying, JU Pengfei, CHEN Lei, et al. Preparation and corrosion resistance of polyaniline/modified graphene oxide composite coating[J]. Surface Technology, 2021, 50(11): 287-296(in Chinese).
[23] ZHU X T, GAO Z S, LI F C, et al. Superlyophobic graphene oxide/polydopamine coating under liquid system for liquid/liquid separation, dye removal, and anti-corrosion[J]. Carbon, 2022, 190: 329-336. DOI: 10.1016/j.carbon.2022.01.018
[24] GAUR M S, RAGHAV R K, SAGAR R, et al. Investigation of anticorrosion properties of epoxy GO nanocomposites spin coated aluminum alloy 7075[J]. Polymers and Polymer Composites, 2022, 30: 1-10.
[25] DU X Q, LIU Y W, CHEN D C, et al. Co-electrodeposition of silane and graphene oxide on copper to enhance the corrosion protection performance[J]. Surface & Coatings Technology, 2022, 436: 128279.
[26] PANG W T, JIANG H, WANG S, et al. Graphene oxides enhanced polyurethane based composite coating with long term corrosion resistance and self-healing property[J]. European Polymer Journal, 2024, 207: 112825. DOI: 10.1016/j.eurpolymj.2024.112825
[27] 郭洪飞, 赵增祺, 朝宝, 等. 2-6二氨基吡啶改性氧化石墨烯复合涂层的制备及防腐性能[J]. 中国表面工程, 2022, 35(2): 126-139. GUO Hongfei, ZHAO Zengqi, CHAO Bao, et al. Preparation and anticorrosion performance of 2-6 diaminopyridine modified graphene oxide composite coating[J]. China Surface Engineering, 2022, 35(2): 126-139(in Chinese).
[28] XUE B, YU M, LIU J, et al. Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide[J]. Journal of Alloys and Compounds, 2017, 725: 84-95.
[29] PARHIZKAR N, RAMEZANZADEH B, SHAHRABI T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets[J]. Applied Surface Science, 2018, 439: 45-59. DOI: 10.1016/j.apsusc.2017.12.240
[30] 楠顶, 李鑫, 徐宇, 等. 硅烷偶联剂改性氧化石墨烯增强环氧树脂复合涂料的防腐性能[J]. 化学工业与工程, 2023, 40(6): 130-135. NAN Ding, LI Xin, XU Yu, et al. Epoxy resin composite coating with silane coupling agent modified graphene oxide generating effective corrosion protection[J]. Chemical Industry and Engineering, 2023, 40(6): 130-135(in Chinese).
[31] LI M M, ZHOU D N, ZHAO B F, et al. Simultaneously improved corrosion/wear resistances of epoxy coating on Mg alloy via the coupled hybridization of GO and nano-SiO2[J]. Diamond and Related Materials, 2022, 128: 109224. DOI: 10.1016/j.diamond.2022.109224
[32] PRASETYA N B A, PUTRI M R, NGADIWIYANA, et al. Polyeugenol-gum arabic/graphene oxide composite coating for high performance anticorrosion material[J]. Case Studies in Chemical and Environmental Engineering, 2024, 9: 100658. DOI: 10.1016/j.cscee.2024.100658
[33] DADKHAH S, GHARIEH A. UV-cured acrylated PANI/graphene oxide nanocomposite coating with superior anticorrosive protection and self-healing abilities[J]. Progress in Organic Coatings, 2024, 189: 108346. DOI: 10.1016/j.porgcoat.2024.108346
[34] HUANG Y X, YANG S H, HU Y, et al. Construction of anticorrosive coatings with emergency response closure by introducing functionalized graphene oxide[J]. Chemical Engineering Journal, 2024, 487: 150539. DOI: 10.1016/j.cej.2024.150539
[35] XIE C, ZHANG P, XUE M S, et al. Long-lasting anti-corrosion of superhydrophobic coating by synergistic modification of graphene oxide with polydopamine and cerium oxide[J]. Construction and Building Materials, 2024, 418: 135283. DOI: 10.1016/j.conbuildmat.2024.135283
[36] WANG H H, YE M Y, WU J H, et al. Development of amine functionalized graphene oxide/fluorinated polyurethane topcoat with integrated anti-corrosion, anti-aging, and anti-bacterial performance[J]. Progress in Organic Coatings, 2024, 189: 108337. DOI: 10.1016/j.porgcoat.2024.108337
[37] XU C A, CHU Z Z, LI X C, et al. Vanillin and organosilicon functionalized graphene oxide modified ester resin composite coatings with excellent anti-corrosion properties[J]. Progress in Organic Coatings, 2023, 183: 107804. DOI: 10.1016/j.porgcoat.2023.107804
[38] SHU S S, WU L, LIU J M, et al. Synthesis and corrosion resistance of silane coupling agent modified graphene oxide/waterborne polyurethane[C]//Proceedings of 2019 5th International Conference on Applied Materials and Manufacturing Technology (ICAMMT 2019). Singapore: IOP Publishing Ltd., 2019, 631: 022058.
[39] WU H, CHENG L, LIU C B, et al. Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance[J]. Journal of Colloid and Interface Science, 2021, 587: 755-766. DOI: 10.1016/j.jcis.2020.11.035
[40] XU C A, LIANG W Z, NI C L, et al. Silicone and nano-diamond modified graphene oxide anticorrosive coating[J]. Surface & Coatings Technology, 2024, 479: 130584.
[41] ZHU J K, LI H, YANG Z Y, et al. CaIn2S4 nanosheets and SnO2 nanoflowers co-sensitized TiO2 nanotubes photoanode for continuous and efficient photocathodic protection of Q235 carbon steel[J]. Journal of Alloys and Compounds, 2024, 970: 172570. DOI: 10.1016/j.jallcom.2023.172570
[42] 陈凡伟, 刘斌, 蹇冬辉, 等. 光生阴极保护技术的研究进展及其存在的问题[J]. 材料工程, 2021, 49(12): 83-90. DOI: 10.11868/j.issn.1001-4381.2021.000469 CHEN Fanwei, LIU Bin, JIAN Donghui, et al. Research progress and existing problems of photocathodic protection technology[J]. Journal of Materials Engineering, 2021, 49(12): 83-90(in Chinese). DOI: 10.11868/j.issn.1001-4381.2021.000469
[43] HUANG W Q, CHAI Z L, ZHAO S R, et al. Design synthesis and excellent anti-corrosion property of GO/Mn-Zn2SiO4 composite materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130281. DOI: 10.1016/j.colsurfa.2022.130281
[44] 陈廷廷, 李波, 张小龙, 等. GO/PANI改性环氧树脂@TiO2/CdS涂层的光生阴极保护性能[J]. 微纳电子技术, 2023, 60(8): 1211-1223. CHEN Tingting, LI Bo, ZHANG Xiaolong, et al. Photogenerated cathodic protection performance of GO/PANI modified epoxy resin@TiO2/CdS coating[J]. Micronanoelectronic Technology, 2023, 60(8): 1211-1223(in Chinese).
[45] 李波, 何锦航, 余思伍, 等. TiO2/GO/EP复合涂层的光电化学防腐蚀性能研究[J]. 涂料工业, 2023, 53(1): 22-29, 36. DOI: 10.12020/j.issn.0253-4312.2022-194 LI Bo, HE Jinhang, YU Siwu, et al. Study on photoelectrochemical corrosion protection performance of TiO2/GO/EP composite coating[J]. Paint & Coatings Industry, 2023, 53(1): 22-29, 36(in Chinese). DOI: 10.12020/j.issn.0253-4312.2022-194
[46] MA L W, WANG J K, ZHAO F T, et al. Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications[J]. Composites Science and Technology, 2019, 181: 107696. DOI: 10.1016/j.compscitech.2019.107696
[47] QIAN B, ZHENG Z L, MICHAILIDS M, et al. Mussel-inspired self-healing coatings based on polydopamine-coated nanocontainers for corrosion protection[J]. ACS Applied Materials & Interfaces, 2019, 10(11): 10283-10291.
[48] MARINETTI S, VAVILOV V. IR thermographic detection and characterization of hidden corrosion in metals: General analysis[J]. Corrosion Science, 2010, 52(3): 865-872. DOI: 10.1016/j.corsci.2009.11.005
[49] KHALILI P, CAWLEY P. The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations[J]. NDT & E International, 2018, 99: 80-92.
[50] SILVA M Z, GUOYON R, LEPOUTRE F. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis[J]. Ultrasonics, 2003, 414(4): 301-305.
[51] DU G, LI J, WANG W K, et al. Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques[J]. Corrosion Science, 2011, 53(9): 2918-2926. DOI: 10.1016/j.corsci.2011.05.030
[52] TSANGOURI E, AGGELIS D G, TITTELBOOM K V, et al. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation[J]. The Scientific World Journal, 2013, 2013: 424560. DOI: 10.1155/2013/424560
[53] BUCHHEIT R G, GUAN H, MAHAJANAM S, et al. Active corrosion protection and corrosion sensing in chromate-free organic coatings[J]. Progress in Organic Coatings, 2003, 74(3-4): 174-182.
[54] ZHELUDKEVICH M L, TEDIM J, FERREIRA M G S. "Smart" coatings for active corrosion protection based on multi-functional micro and nanocontainers[J]. Electrochimica Acta, 2012, 82: 314-323. DOI: 10.1016/j.electacta.2012.04.095
[55] FUGOLIN A P P, FERRACANE J L, PFEIFER C S. "Fatigue-crack propagation behavior in microcapsule-containing self-healing polymeric networks"[J]. Materials & Design, 2022, 223: 111142.
[56] EXBRAYAT L, SALALUK S, UEBEL M, et al. Nanosensors for monitoring early stages of metallic corrosion[J]. ACS Applied Energy Materials, 2019, 2(2): 812-818.
[57] HU M H, PEIL S, XING Y W, et al. Monitoring crack appearance and healing in coatings with damage self-reporting nanocapsules[J]. Materials Horizons, 2018, 5: 51-58.
[58] MAIA F, TEDIM J, BASTOS A C, et al. Nanocontainer-based corrosion sensing coating[J]. Nanotechnology, 2013, 24(41): 415502. DOI: 10.1088/0957-4484/24/41/415502
[59] ZHENG X, WANG Q, LI Y, et al. Microcapsule-based visualization smart sensors for damage detection: Principles and applications[J]. Advanced Materials Technologies, 2019, 52: 1900832.
[60] LIU J G, HUANG W R, ZHANG K L, et al. Early warning and self-repair properties of o-phenanthroline modified graphene oxide anti-corrosion coating[J]. Progress in Organic Coatings, 2024, 189: 108274. DOI: 10.1016/j.porgcoat.2024.108274
[61] LI Y F, NING C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling[J]. Bioactive Materials, 2019, 4: 189-195. DOI: 10.1016/j.bioactmat.2019.04.003
[62] MELCHERS R E. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel[J]. Bioelectrochemistry, 2014, 97: 89-96. DOI: 10.1016/j.bioelechem.2013.07.002
[63] LI Z C, LIU P, CHEN S W, et al. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies[J]. European Polymer Journal, 2023, 190: 111997. DOI: 10.1016/j.eurpolymj.2023.111997
[64] LEONARDI A K, OBER C K. Polymer-based marine antifouling and fouling release surfaces: Strategies for synthesis and modification[J]. Annual Review of Chemical and Biomolecular Engineering, 2019, 10: 241-264. DOI: 10.1146/annurev-chembioeng-060718-030401
[65] XIE Q Y, PAN J S, MA C F, et al. Dynamic surface antifouling: Mechanism and systems[J]. Soft Matter, 2019, 15(6): 1087-1107.
[66] BEYER J, SONG Y, TOLLEFSEN K E, et al. The ecotoxicology of marine tributyltin (TBT) hotspots: A review[J]. Marine Environmental Research, 2022, 179: 105689. DOI: 10.1016/j.marenvres.2022.105689
[67] HU P, XIE Q Y, MA C F, et al. Silicone-based fouling-release coatings for marine antifouling[J]. Langmuir, 2022, 36(9): 2170-2183.
[68] LI C, YANG J J, HE W J, et al. A review on fabrication and application of tunable hybrid micro-nano array surfaces[J]. Advanced Materials Interfaces, 2023, 10(6): 2202160.
[69] ZHENG N, JIA B, LIU J, et al. Multi-strategy combined bionic anti-fouling coating for long-term and stable protection against marine biofouling[J]. Journal of Materials Science and Technology, 2025, 210: 265-277.
-
目的
氧化石墨烯(GO)作为石墨烯的衍生物具有高比表面积、良好的机械性能、阻隔屏蔽性、反应活性、热稳定性及化学稳定性等优异的综合性能,在金属防腐蚀领域中表现出了巨大的应用潜力。本文综述了近年来国内外关于GO复合涂层在金属腐蚀与防护领域的研究进展,同时也对GO复合涂层未来发展的趋势进行了展望。
方法本文以GO复合涂层为中心,分别从GO-无机物复合涂层、GO-有机物复合涂层、GO多元复合涂层三个方面展开,将GO作为涂层填料相对于其他常见无机填料的优缺点进行了对比,同时对国内外现有GO复合涂层在制备方法、掺杂成分、GO掺杂浓度、涂层耐蚀性提高等方面取得的进展进行了归纳总结。
结果GO掺杂在不同的复合涂层中的作用机理、涂层优势及不足之处各不相同。(1)GO与无机物的复合机理主要是通过分子间氢键及静电力的作用,GO在其中起到的是物理阻隔增加腐蚀介质渗透路径及细化无机粒子晶粒的作用。但GO表面的含氧官能团能够提供大量的反应结合位点这一优势不能被充分的利用,而且由于范德华力及p-p键的相互作用,GO作为填料在无机物中很容易团聚,导致分散性和稳定性都降低,“迷宫效应”无法充分发挥,这些都导致涂层的耐蚀性受到一定限制。(2)相较于无机物,GO与有机物复合时,更能发挥出其自身的优异性能。GO的分散性使它能够填补有机高分子材料固化和成膜过程中出现的孔隙;GO的含氧官能团与有机物能够通过反应形成共价键,对有机物的化学性能和力学性能均有所改变,同时保持着GO原有的物理阻隔性能这一优点。但仍有一些不足之处存在其中。首先,GO易团聚依然是GO-有机物复合涂层耐蚀性提高的关键制约因素之一。其次,在涂层制备过程中,有机溶剂的挥发及不合理的固化方式都会导致传统的聚合物涂层在固化后,不仅会有微孔、微裂纹等缺陷的产生,而且残余的亲水基团或表面活性剂易形成极性孔道。这些缺陷及孔道会为腐蚀介质的入侵提供便捷途径,加速腐蚀介质的吸收和渗透,导致涂层的耐蚀性变差。最后,GO具有一定的导电性,在涂层缺陷的位置容易发生局部电偶腐蚀。(3)GO多元复合涂层不仅使GO的分散性有一定提高,而且其自身的可结合反应位点的利用率也大大提高。关于GO复合涂层的最新研究聚焦在以下几个方面:(1)改善GO团聚性;(2)GO光阴极保护;(3)自预警自修复GO复合涂层。
结论针对目前GO复合涂层存在的问题,未来的重点研究方向应集中在:(1)开发在耐高、低温领域可应用的GO复合涂层;(2)探索新的改性方法对复合涂层中的GO绝缘处理;(3)减少GO智能复合涂层自修复时间,提高自修复效率。