留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有取向导热结构柔性相变复合材料的制备及导热性能

王筹萱 杨航 赵中国 刘欣月 薛嵘 陈承志 王开源

王筹萱, 杨航, 赵中国, 等. 具有取向导热结构柔性相变复合材料的制备及导热性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 王筹萱, 杨航, 赵中国, 等. 具有取向导热结构柔性相变复合材料的制备及导热性能[J]. 复合材料学报, 2024, 42(0): 1-13.
WANG Chouxuan, YANG Hang, ZHAO Zhonguo, et al. Preparation and thermal conductivity of flexible phase change composite materials with oriented thermal conductivity structure[J]. Acta Materiae Compositae Sinica.
Citation: WANG Chouxuan, YANG Hang, ZHAO Zhonguo, et al. Preparation and thermal conductivity of flexible phase change composite materials with oriented thermal conductivity structure[J]. Acta Materiae Compositae Sinica.

具有取向导热结构柔性相变复合材料的制备及导热性能

基金项目: 陕西理工大学博士启动人才项目(SLGRCQD2329);陕西省大学生创新创业大赛项目(S202310720045)
详细信息
    通讯作者:

    赵中国,博士,副教授,硕士生导师,研究方向为功能化高分子纳米复合材料的制备及性能研究 E-mail:zhaozhongguo@snut.edu.cn

  • 中图分类号: TB332

Preparation and thermal conductivity of flexible phase change composite materials with oriented thermal conductivity structure

Funds: Doctoral Startup Talent Project of Shaanxi University of Technology (SLGRCQD2329); Shaanxi Province College Student Innovation and Entrepreneurship Competition Project (S202310720045)
  • 摘要: 为解决高分子基复合材料固有热导率较差这一问题,本研究采用简单高效、易工业化的开炼法在聚乙烯辛烯共弹性体(POE)基体中构建有序的取向结构,制备了一种具有优异综合性能的柔性相变复合材料。在开炼机的强剪切场作用下,石蜡(PW)和氮化硼(BN)在POE基体内部沿剪切场方向发生了定向取向排列,促进了导热通路的构建。当石墨烯纳米片(GNPs)和BN添加量分别为2wt%和25wt%时,PW-2wt%GNPs-25wt%BN/POE相变复合材料热导率(λ)从1.01W·m−1·K−1 (PW/POE)提高到2.59 W·m−1·K−1,提高了156%。并且PW-2wt%GNPs-25wt%BN/POE相变复合材料具有优异的拉伸强度(18.3MPa)和断裂伸长率(720%),在弯曲、折叠成复杂的形状后不会出现任何的破裂,在10次循环往复拉伸测试中具有良好的可回复性。此外,添加30wt%的PW能够赋予PW-2wt%GNPs-25wt%BN/POE一定的焓值44.1 J·g−1;当施加80 mW·cm−2的光照强度时,表面贴有PW-2wt%GNPs-25wt%BN/POE复合材料的瓶内温度高达54.3℃,较未添加GNPs的PW/POE提高了20℃,并且在光照条件下,PW-2wt%GNPs-25wt%BN/POE复合材料具有优异的光驱动可恢复性能,使其具有潜在的光热转换应用前景,在实际应用和工业化生产方面具备巨大潜力。

     

  • 图  1  (a)和(b)分别为氮化硼(BN)和石墨烯纳米片(GNPs)的SEM图像

    Figure  1.  SEM images of (a) boron nitride (BN) and (b) graphene nanosheets (GNPs), respectively

    图  2  石蜡(PW)-GNPs-BN/聚乙烯辛烯共弹性体(POE)相变复合材料的制备工艺示意图

    Figure  2.  Schematic diagram of the preparation process of paraffin wax (PW)-GNPs-BN/ polyolefin elastomer (POE) phase change composite materials

    图  3  SEM图像:(a)PW/POE,(a1)高温处理的PW/POE,(b) PW-2wt%GNPs/POE,(c) PW-25wt%BN/POE,(d) PW-2wt%GNPs-5wt%BN/POE,(e) PW-2wt%GNPs-10wt%BN/POE,(f) PW-2wt%GNPs-15wt%BN/POE,(g) PW-2wt%GNPs-25wt%BN/POE以及局部放大图(g1) PW-2wt%GNPs-25wt%BN/POE

    Figure  3.  SEM images: (a) PW/POE, (a1) thermal heated PW/POE, (b) PW-2wt%GNPs/POE, (c) PW-25wt%BN/POE, (d) PW-2wt%GNPs-5wt%BN/POE, (e) PW-2wt%GNPs-10wt%BN/POE, (f) PW-2wt%GNPs-15wt%BN/POE, (g) PW-2wt%GNPs-25wt%BN/POE and local magnified image (g1) PW-2wt%GNPs-25wt%BN/POE

    图  4  PW和PW-GNPs-BN/POE相变复合材料的XRD图像:(a)表面,(b)断面

    Figure  4.  XRD images of PW and PW-GNPs-BN/POE phase change composite materials: (a) surface, (b) section

    图  5  (a)PW-GNPs-BN/POE相变复合材料的DSC熔融曲线,(b)PW-2wt%GNPs-25wt%BN/POE的循环熔融曲线

    Figure  5.  (a) DSC melting curve of PW-GNPs-BN/POE phase change composite materials, (b) cycle melting curve of PW-2wt%GNPs-25wt%BN/POE

    图  6  PW-GNPs-BN/POE相变复合材料的力学性能曲线:(b):1#、2#、3#、4#、5#、6#和7#分别代表PW/POE、PW-2wt%GNPs/POE、PW-2wt%GNPs-5wt%BN/POE、PW-2wt%GNPs-10wt%BN/POE、PW-2wt%GNPs-15wt%BN/POE、PW-2wt%GNPs-25wt%BN/POE和PW-25wt%BN/POE

    Figure  6.  Mechanical property curve of PW-GNPs-BN/POE phase change composite materials: (b): 1#, 2#, 3#, 4#, 5#, 6#, and 7# represent PW/POE, PW-2wt%GNPs/POE, PW-2wt%GNPs-5wt%BN/POE, PW-2wt%GNPs-10wt%BN/POE, PW-2wt%GNPs-15wt%BN/POE, PW-2wt%GNPs-25wt%BN/POE, and PW-25wt%BN/POE, respectively.

    图  7  PW-GNPs-BN/POE相变复合材料的(a)热扩散系数,(b)λ。其中,1#、2#、3#、4#、5#、6#和7#分别代表PW/POE、PW-2wt%GNPs/POE、PW-2wt%GNPs-5wt%BN/POE、PW-2wt%GNPs-10wt%BN/POE、PW-2wt%GNPs-15wt%BN/POE、PW-2wt%GNPs-25wt%BN/POE和PW-25wt%BN/POE

    Figure  7.  (a) Thermal diffusion coefficient, (b) λ of PW-GNPs-BN/POE phase change composite materials. Among them, 1#, 2#, 3#, 4#, 5#, 6#, and 7# represent PW/POE, PW-2wt%GNPs/POE, PW-2wt%GNPs-5wt%BN/POE, PW-2wt%GNPs-10wt%BN/POE, PW-2wt%GNPs-15wt%BN/POE, PW-2wt%GNPs-25wt%BN/POE, and PW-25wt%BN/POE respectively.

    图  8  POE-PW-GNPS/BN相变复合材料的导热提高率,其中,1#、2#、3#、4#、5#、6#和7#分别代表PW/POE、PW-2wt%GNPs/POE、PW-2wt%GNPs-5wt%BN/POE、PW-2wt%GNPs-10wt%BN/POE、PW-2wt%GNPs-15wt%BN/POE、PW-2wt%GNPs-25wt%BN/POE和PW-25wt%BN/POE

    Figure  8.  Thermal conductivity enhancement of PW-GNPs-BN/POE phase change composite materials. Among them, 1#, 2#, 3#, 4#, 5#, 6#, and 7# represent PW/POE, PW-2wt%GNPs/POE, PW-2wt%GNPs-5wt%BN/POE, PW-2wt%GNPs-10wt%BN/POE, PW-2wt%GNPs-15wt%BN/POE, PW-2wt%GNPs-25wt%BN/POE, and PW-25wt%BN/POE respectively.

    图  9  PW-GNPs-BN/POE相变复合材料的LED灯热管理应用:(a)时间-温度曲线,(b)红外热成像图像

    Figure  9.  PW-GNPs-BN/POE phase change composite materials for LED lamp thermal management applications: (a) time-temperature curves; (b) corresponding infrared thermography images

    图  10  (a)光-热转换测量装置示意图,PW-GNPs-BN/POE相变复合材料分别在(b) 80 mW·cm−2和(c)在不同光照强度下的光热转换曲线图。其中,1#、2#、3#、4#、5#、6#和7#分别代表PW/POE、PW-2wt%GNPs/POE、PW-2wt%GNPs-5wt%BN/POE、PW-2wt%GNPs-10wt%BN/POE、PW-2wt%GNPs-15wt%BN/POE、PW-2wt%GNPs-25wt%BN/POE和PW-25wt%BN/POE

    Figure  10.  (a) Schematic diagram of the light-to-heat conversion measurement device, photothermal conversion curve of PW-GNPs-BN/POE phase change composite materials (b) under 80 mW cm−2 and (c) under different light intensities. Among them, 1#, 2#, 3#, 4#, 5#, 6#, and 7# represent PW/POE, PW-2wt%GNPs/POE, PW-2wt%GNPs-5wt%BN/POE, PW-2wt%GNPs-10wt%BN/POE, PW-2wt%GNPs-15wt%BN/POE, PW-2wt%GNPs-25wt%BN/POE, and PW-25wt%BN/POE respectively.

    图  11  通过模拟热管理应用得到不同样品的时间-温度曲线。其中,1#、2#、6#和7#分别代表PW/POE、PW-2wt%GNPs/POE、PW-2wt%GNPs-25wt%BN/POE和PW-25wt%BN/POE

    Figure  11.  Time-temperature curves of different samples obtained by simulated thermal management application. Among them, 1#, 2#, 6#, and 7# represent PW/POE, PW-2wt%GNPs/POE, PW-2wt%GNPs-25wt%BN/POE, and PW-25wt%BN/POE respectively.

    图  12  在光照强度为80 mW·cm−2时PW-GNPs-BN/POE相变复合材料的红外热成像

    Figure  12.  Infrared thermography of PW-GNPs-BN/POE phase change composite materials at a light intensity of 80 mW·cm−2

    图  13  PW-GNPs-BN/POE相变复合材料的光驱动恢复图像:(a)光照强度为80 mW·cm−2,(b)无光照

    Figure  13.  Photographs of light-driven recoverability of PW-GNPs-BN/POE phase change composite materials:(a) the light intensity is 80 mW·cm−2, (b) no illumination

    表  1  样品配方

    Table  1.   Sample Formula

    SamplesPOE/wt%PW/wt%Mass ratio of PW/POEGNPs/wt%BN/wt%
    PW/POE70307:300
    PW-2wt%GNPs/POE68.629.47:320
    PW-2wt%GNPs-5wt%BN/POE65.127.97:325
    PW-2wt%GNPs-10wt%BN/POE61.626.47:3210
    PW-2wt%GNPs-15wt%BN/POE58.124.97:3215
    PW-2wt%GNPs-25wt%BN/POE51.121.97:3225
    PW-25wt%BN/POE52.522.57:3025
    下载: 导出CSV

    表  2  PW-GNPs-BN/POE相变复合材料的取向度

    Table  2.   Orientation degree of PW-GNPs-BN/POE phase change composite materials

    SamplesOrientation factor
    PW-2wt%GNPs-5wt%BN/POE0.49
    PW-2wt%GNPs-10wt%BN/POE0.51
    PW-2wt%GNPs-15wt%BN/POE0.57
    PW-2wt%GNPs-25wt%BN/POE0.83
    PW-25wt%BN/POE0.55
    下载: 导出CSV

    表  3  在融化过程中PW和PW-GNPs-BN/POE相变复合材料的相变参数

    Table  3.   Phase transition parameters of PW and PW-GNPs-BN/POE phase change composite materials during the melting process.

    Samples TM/℃ HM/(J·g−1)
    PW 56.2 141.2
    PW/POE 52.3 46.6
    PW-2wt%GNPs/POE 49.6 56.6
    PW-2wt%GNPs-5wt%BN/POE 50.16 51.9
    PW-2wt%GNPs-10wt%BN/POE 49.8 51.9
    PW-2wt%GNPs-15wt%BN/POE 49.8 47.5
    PW-2wt%GNPs-25wt%BN/POE 49.8 44.1
    PW-25wt%BN/POE 49.8 45.1
    Notes:TM: Melting temperature; HM: Melting enthalpy.
    下载: 导出CSV
  • [1] FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110(10): 163-172.
    [2] ZHENG J L, DENG Y, LIU Y L, et al. Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management applications[J]. Chemical Engineering Journal, 2023, 453 (P1).
    [3] SATHISHKUMAR A S, BALASUBRAMANIAN K A, RAMKUMAR T. Investigations on thermal properties of MWCNT-NBN Paraffin Wax phase change material for thermal storage applications[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(13): 3263-3271.
    [4] LI R F, ZHOU Y, DUAN X L. A novel composite phase change material with paraffin wax in tail-ings porous ceramics[J]. Applied thermal engi-neering: Design, processes, equipment, econom-ics, 2019, 151-115.
    [5] QI G Q, YANG J, BAO R Y, et al. Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2015, 88: 196-205.
    [6] 杨效田, 沈梁玉, 王彩龙, 等. 石蜡对无机复合相变储热体系的改性研究[J]. 复合材料学报, 2022, 39(5): 2421-2429.

    YANG Xiaotian, SHEN Liangyu, WANG Cailong, et al. Modification of inorganic composite phase change thermal storage systems by paraffin waxes[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2421-2429(in Chinese).
    [7] GUO Z J, LiIN F K, QIAO J X, et al. A modified kapok fiber based phase change composite for highly-efficient solar-thermal conversion[J]. Nano Energy, 2023, 108: 108205-108214. doi: 10.1016/j.nanoen.2023.108205
    [8] WANG Z K, ZHANG X G, XU Y F, et al. Preparation and thermal properties of shape-stabilized composite phase change materials based on paraffin wax and carbon foam[J]. Polymer, 2021, 237: 124361-124370. doi: 10.1016/j.polymer.2021.124361
    [9] SHEN J P, LIU Z T, XU B, et al. Tuning the thermal, mechanical, and combustion properties of NC-TEGDN-RDX propellants via incorporation of graphene nanoplates[J]. Journal of Energetic Materials, 2020, 38(1/4): 326-335.
    [10] MO Z J, MO P J, YI M M, et al. Ti3C2TX@Polyvinyl alcohol foam-Supported Phase Change Materials with Simultaneous Enhanced Thermal Conductivity and Solar-Thermal Conversion Performance[J]. Solar Energy Materials and Solar Cells, 2021, 219(1): 110813.
    [11] YAO Y M, ZHU X D, ZENG X L, et al. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites[J]. ACS applied materials interfaces, 2018, 10(11): 9669-9678. doi: 10.1021/acsami.8b00328
    [12] ZHAO Y H, WU Z K, BAI S L, et al. Study on thermal properties of graphene foam/graphene sheets filled polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 200-206. doi: 10.1016/j.compositesa.2015.02.011
    [13] ZHANG L B, LI R Y, TANG B, et al. Solar-thermal conversion and thermal energy storage of graphene foam-based composites[J]. Nanoscale, 2016, 8(30): 14600-14607. doi: 10.1039/C6NR03921A
    [14] FENG C P, BAI L, BAO R Y, et al. Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression[J]. Advanced Composites and Hybrid Materials, 2018, 1: 160-167. doi: 10.1007/s42114-017-0013-2
    [15] 冯昌平, 孙凯印, 倪海鹰, 等. 具有有序导热网络结构的UHMWPE基复合材料的制备[J]. 塑料工业, 2022, 50(10): 164-168.

    Feng Changping, Sun Kaiyin, Ni Haiying, et al. Preparation of UHMWPE based composite materials with ordered thermal conductivity network structure[J]. China Plastics Industry, 2022, 50(10): 164-168(in Chinese).
    [16] TAKAHASHI S, LMAI Y, KAN A, et al. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications[J]. Journal of alloys and compounds, 2014, 615: 141-145. doi: 10.1016/j.jallcom.2014.06.138
    [17] CHO H B, NAKAYAMA T, SUEMATSU H, et al. Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets[J]. Composites Science and Technology, 2016, 129(6): 205-213.
    [18] DANESHPAYEH S, GHASEMI F A, GHASEMI I. Experimental investigation on mechanical properties of nanocomposites based on poly lactic acid/ polyolefin elastomer reinforced with multi-walled carbon nanotubes, and graphene nanoplatelets[J]. Polymers and Polymer Composites, 2022, 30.
    [19] WANG R, XIE C Z, GOU B, et al. Preparation and properties of carbon-based epoxy nanocomposites: Dynamic mechanical, dielectric, and thermal properties[J]. Polymer Composites, 2020, 41(12): 4974-4982. doi: 10.1002/pc.25767
    [20] Khamaj A, Farouk W M, Shewakh W M, et al. Effect of lattice structure evolution on the thermal and mechanical properties of Cu-Al2O3/GNPs nanocomposites[J]. Ceramics International, 2021, 47(12): 16511-16520. doi: 10.1016/j.ceramint.2021.02.219
    [21] 张正国, 龙娜, 方晓明. 石蜡/膨胀石墨复合相变储热材料的性能研究[J]. 功能材料, 2009, 6(5): 1313-1315.

    Zhang Zhengguo, Long Na, Fang Xiaoming. A Study on the Properties of Paraffin/Expanded Graphite Composite Phase Change Thermal Storage Materials[J]. Journal of Functional Materials, 2009, 6(5): 1313-1315(in Chinese).
    [22] FENG C P, BAI L, SHAO Y, et al. A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management[J]. Advanced Materials Interfaces, 2018, 5(2).
    [23] GU J, XIA D H, WANG L, et al. Low concentration graphene nanoplatelets for shape stabilization and thermal transfer reinforcement of Mannitol: a phase change material for a medium-temperature thermal energy system[J]. Materials Research Express, 2018, 5(3).
    [24] 陆逊, 王君豪, 朱大志, 等. 撕裂模式下乙烯-乙酸乙烯酯共聚物/氯丁橡胶热塑性硫化胶的Mullins效应及其可逆回复[J]. 合成橡胶工业, 2023, 046(01): 14-18.

    Lu Xun, Wang Junhao, Zhu Dazhi, et al. Mullins effect and reversible recovery of ethylene vinyl acetate co-polymer/chloroprene rubber thermoplastic vulcanizate under tearing mode[J]. China Synthetic Rubber Industry, 2023, 046(01): 14-18(in Chinese).
    [25] CUI S F, WU W, LIU C, et al. Modification of the three-dimensional graphene aerogel self-assembled network using a titanate coupling agent and its thermal conductivity mechanism with epoxy composites[J]. Nanoscale, 2021, 13(43): 18247-18255. doi: 10.1039/D1NR04075H
    [26] WANG Y, LENG S, HUANG J, et al. Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets[J]. International journal for numerical methods in biomedical engineering, 2020, 36(1): e3275.1-e3275.10.
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-04-24
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回