留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料回转体网格结构热矫形机理及仿真模型研究

张鹏 祁国成 付平俊 李健芳 王乐辰 左小彪 孙宏杰 王荣 张博明

张鹏, 祁国成, 付平俊, 等. 复合材料回转体网格结构热矫形机理及仿真模型研究[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 张鹏, 祁国成, 付平俊, 等. 复合材料回转体网格结构热矫形机理及仿真模型研究[J]. 复合材料学报, 2024, 42(0): 1-10.
ZHANG Peng, QI Guocheng, FU Pingjun, et al. Research on hot sizing mechanism and simulation model of composite cylindrical grid structures[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Peng, QI Guocheng, FU Pingjun, et al. Research on hot sizing mechanism and simulation model of composite cylindrical grid structures[J]. Acta Materiae Compositae Sinica.

复合材料回转体网格结构热矫形机理及仿真模型研究

基金项目: 国家自然科学基金(12302162)
详细信息
    通讯作者:

    祁国成,博士,副教授,硕士生导师,研究方向为复合材料力学 E-mail: gchqi@bjtu.edu.cn

Research on hot sizing mechanism and simulation model of composite cylindrical grid structures

Funds: National Natural Science Foundation of China (12302162)
  • 摘要: 复合材料回转体网格结构呈现多特征复杂结构属性,工艺固化变形限制了结构的制造装配精度。基于双马树脂的粘弹性,开展航天802双马树脂高温蠕变拉伸测试,证实双马树脂蠕变卸载后存在不可恢复的粘性流动应变,揭示了可以通过热矫形减少大型复合材料网格结构工艺变形的微观组分材料机理。推导建立复合材料网格结构的应变能增量理论,模拟复合材料网格结构热矫形荷载施加、松弛以及回弹过程,确定网格结构矫形回弹轮廓,与实验结果对比验证应变能理论模型有效性。分析复合材料网格结构热矫形内应力失效、矫形点个数、基于时温等效的工艺条件等影响因素,形成了复合材料网格舱段结构热矫形变形控制工艺变形仿真方法。

     

  • 图  1  树脂基复合材料结构热矫形机理

    Figure  1.  Mechanism of hot sizing of polymer matrix composite structures

    U—Displacement imposed by the correction; T—Temperature imposed by the correction; $ {{ \varepsilon }}_{\text{1}} $—General elastic deformation; $ {{ \varepsilon }}_{\text{2}} $—High elastic deformation; $ {{ \varepsilon }}_{\text{3}} $—Viscous flow deformation; E—Modulus of elasticity; $ \eta $—Coefficient of viscous flow

    图  2  复合材料网格结构热矫形全过程轮廓变化

    Figure  2.  Profile changes throughout the entire process of hot sizing of composite gird structures

    $ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u } _1} $—Field of change of applied corrective displacement; $ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u } _2} $—Field of displacement change when deformation rebound occurs in the interstage segment; $ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u } _3} $—Difference between the residual deformation and the initial deformation displacement field after the cabin segment has undergone creep

    图  3  802双马树脂在210℃不同应力水平下的高温蠕变及恢复过程中的应变-时间关系

    Figure  3.  Strain and time relationships of 802 bismaleimide resin during high temperature creep and recovery under different stress at 210℃

    图  4  802双马树脂高温蠕变应变曲线拟合

    Figure  4.  Strain curve fitting of 802 bismaleimide resin for high temperature creep

    图  5  TG800/802双马树脂复合材料网格结构热矫形模拟流程图

    Figure  5.  Flow chart for hot sizing simulation of TG800/802 bismaleimide resin composite grid structures

    图  6  圆度定义(a)、TG800/802双马树脂复合材料网格舱段结构(b)、TG800/802双马树脂复合材料网格舱段固化变形预报结果((c)、(d))

    Figure  6.  Definition of roundness (a), TG800/802 bismaleimide resin composite grid interstage segment (b), predicted results of curing deformation of TG800/802 bismaleimide resin composite grid interstage segment ((c), (d))

    图  7  TG800/802双马树脂复合材料网格舱段16点矫形位移载荷大小

    Figure  7.  Magnitude of displacement loads at 16 sizing points in the TG800/802 bismaleimide resin composite grid interstage segment

    图  8  TG800/802双马树脂复合材料网格舱段热矫形全过程应变能变化

    Figure  8.  Changes in strain energy during hot sizing of TG800/802 bismaleimide resin composite grid inter-stage segment

    图  9  TG800/802双马树脂复合材料网格舱段“固化变形-矫形荷载施加后-残留变形”轮廓

    Figure  9.  Profiles of “curing deformation, application of corrective load, and residual deformation”of TG800/802 bismaleimide resin composite grid interstage segment

    图  10  TG800/802双马树脂复合材料网格舱段热矫形内应力云图:(a)S22;(b)最大主应力;(c)S12;(d)S13

    Figure  10.  Internal stress distribution of hot sizing of TG800/802 bismaleimide resin composite grid interstage segment: (a) S22; (b) Max principle; (c) S12; (d) S13

    图  11  不同矫形点个数下的TG800/802双马树脂复合材料网格舱段轮廓

    Figure  11.  Contours of TG800/802 bismaleimide resin composite grid interstage segment with different number of corrective points

    图  12  TG800/802双马树脂复合材料网格舱段热矫形后残留横向拉应力S22:(a)树脂模量衰减5%;(b)树脂模量衰减9%

    Figure  12.  Residual transverse tensile stress after hot sizing of TG800/802 bismaleimide resin composite grid interstage segment S22:(a) Resin modulus attenuation by 5%; (b) Resin modulus attenuation by 9%

    表  1  TG800/802双马树脂复合材料室温力学性能

    Table  1.   TG800/802 bismaleimide resin composite properties at room temperature

    E11/MPa E22/MPa G12/MPa G23/MPa $ {\mu }_{\text{12}} $ $ {\sigma }_{\text{11}}\text{/MPa} $ $ {\sigma}_{\text{22}}\text{/MPa} $ ILSS/MPa $ {\sigma}_{\text{12}}\text{/MPa} $
    164000 9310 5690 3280 0.38 2482 59 101 88
    Notes: E—Modulus of elasticity; G—Modulus of shear; μ—Poisson’s ratio; σ—Intensity of stress; ILSS—Interlaminar shear strength.
    下载: 导出CSV

    表  2  TG800/802复合材料平板及舱段结构铺层

    Table  2.   Plying of TG800/802 composite laminate and grid interstage segment

    Composite Ply
    Skin [45/−45/0/90/0/0/90/0/−45/45]
    End frame [45/−45/0/90/0/0/90/0/−45/45]3
    Thickened zone [45/0/−45/0/15/0/−15/0/15/90]6
    下载: 导出CSV

    表  3  网格舱段层合板单元失效指数

    Table  3.   Failure index of grid interstage segment laminate unit

    Failure modeHashin
    Fiber tensile failure0.008
    Fiber compression failure0.000
    Matrix tension failure0.889
    Matrix compression failure0.157
    下载: 导出CSV

    表  4  树脂模量等效衰减程度对应残留应力水平

    Table  4.   Equivalent attenuation degree of resin modulus corresponding to residual stress

    Decay of
    resin
    modulus
    Internal stress/MPa
    Maximum
    principal stress
    S22 S12 S13
    5% 194.7 17.1 6.9 19.6
    6% 227.4 19.8 8.1 22.9
    9% 410.8 33.2 18.6 40.5
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, (1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, (1): 1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 蒋贵刚, 孙天峰, 陈静, 等. 先进复合材料网格结构制备工艺及关键技术研究进展[J]. 纤维复合材料, 2020, 37(04): 101-105+109.

    JIANG Guigang, SUN Tianfeng, CHEN Jing, et al. Overview of Preparation Process and Key Technology on Advanced Composite Grid Structures[J]. 2020, 37(04): 101-105+109(in Chinese).
    [3] Vasiliev V, Barynin V, Rasin A. Anisogrid lattice structures-survey of development and application[J]. Composite Structures, 2001, 54(2): 361-370.
    [4] Giusto G, Totaro G, Spena P, et al. Composite grid structure technology for space applications[J]. Materials today: proceedings, 2021, 34(1): 332-340.
    [5] 周磊, 姚凯, 李会民, 等. 复合材料双向波纹夹层结构力学性能[J]. 复合材料学报, 2021, 38(11): 3661-3671.

    ZHOU Lei, YAO Kai, LI Huimin, et al. Mechanical properties of composite bi-directional corrugated sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3661-3671(in Chinese).
    [6] Vasiliev V, Barynin V, Razin A. Anisogrid composite lattice structures–Development and aerospace applications[J]. Composite Structures, 2011, 94(3): 1117-1127.
    [7] Totaro G, Nicola D F. Recent advance on design and manufacturing of composite anisogrid structures for space launchers[J]. Acta Astronautica, 2012, 81(2): 570-577. doi: 10.1016/j.actaastro.2012.07.012
    [8] Totaro G, Gürdal Z. Optimal design of composite lattice shell structures for aerospace applications[J]. Aerospace Science and Technology, 2008, 13(4): 157-164.
    [9] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(06): 1629-1650.

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. 2021, 38(06): 1629-1650(in Chinese).
    [10] 祖磊, 范文俊, 张骞, 等. 基于非线性有限元理论的复合材料壳体缠绕参数优化设计[J]. 复合材料科学与工程, 2022(10): 5-12+32.

    ZU Lei, FAN Wenjun, ZHANG Qian et al. Optimization design of winding parameters of composite shell based on nonlinear finite element theory[J]. COMPOSITES SCIENCE AND ENGINEERING, 022(10): 5-12+32(in Chinese).
    [11] 陈小平, 杨杰, 刘建超. 复合材料网格结构的研究现状[J]. 宇航材料工艺, 2009, 39(02): 6-11.

    CHEN Xiaoping, YANG Jie, LIU Jianchao. Actuality research on composite grid structures[J]. Aerospace Materials and Technology, 2009, 3 9(2): 6-11(in Chinese).
    [12] 王世勋, 石玉红, 张希, 等. 复合材料格栅结构研究进展与应用[J]. 宇航材料工艺, 2017, 47(1): 5-12. doi: 10.12044/j.issn.1007-2330.2017.01.002

    WANG Shixun, SHI Yuhong, ZHANG Xi, et al. Application and research progress of composite lattice grids structure[J]. Aerospace Materials and Technology, 2017, 47(1): 5-12(in Chinese). doi: 10.12044/j.issn.1007-2330.2017.01.002
    [13] 韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网格结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4): 45-858.

    HAN Zhenyu, ZHANG Peng, ZHANG Tianyu, et al. Research progress grid structure of forming process of fiber reinforced polymer composite[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 45-858(in Chinese).
    [14] 陈浩, 曲中兴, 张立武. 航空航天整体结构件新型校形技术研究现状[J]. 航天制造技术, 2017, (1): 11-16. doi: 10.3969/j.issn.1674-5108.2017.01.004

    CHEN Hao, QU Zhongxing, ZHANG Liwu. Research Status of New Correction Technology of Aerospace Monolithic Component[J]. Aerospace Manufacturing Technology, 2017, (1): 11-16(in Chinese). doi: 10.3969/j.issn.1674-5108.2017.01.004
    [15] 于云程, 李春峰, 江洪伟, 等. 管件端口电磁校形的实验研究[J]. 锻压技术, 2005, (4): 9-12. doi: 10.3969/j.issn.1000-3940.2005.04.004

    YU Yuncheng, LI Chunfeng, JIANG Hongwei, et al. Experimental study of the tube ends sizing with electromagnetic bulging[J]. Forging and Stamping Technology, 2005, (4): 9-12(in Chinese). doi: 10.3969/j.issn.1000-3940.2005.04.004
    [16] 胡建华, 宁博文, 蔡衡, 等. 铝合金曲面板料回弹的电磁成形校正试验[J]. 塑性工程学报, 2013, 20(4): 104-108. doi: 10.3969/j.issn.1007-2012.2013.04.020

    HU Jianhua, NING Bowen, CAI Heng, et al. Experimental study on springback of Aluminum alloy sheet by electromagnetic forming[J]. Journal of Plasticity Engineering, 2013, 20(4): 104-108(in Chinese). doi: 10.3969/j.issn.1007-2012.2013.04.020
    [17] Ueda T , Sentoku E , Wakimura Y , et al. Flattening of sheet metal by laser forming[J]. Optics and Lasers in Engineering, 2009, 47(11): 1097-1102.
    [18] 陈星. 超声波喷丸校形的应用研究[D]. 南京航空航天大学, 2013.

    CHEN Xing. Research of Ultrasonic Shot Peening Technology In Straigthening[D]. Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [19] 姚少非, 张宏彬, 李健, 等. TC4钛合金筒形件热校形仿真分析[J]. 导航与控制, 2021, 20(3): 93-98. doi: 10.3969/j.issn.1674-5558.2021.03.012

    YAO Shaofei, ZHANG Hongbin, LI Jian, et al. Simulation Analysis on Hot Sizing Technology of TC4 Titanium Alloy Cylindrical Workpiece[J]. NAVIGATION AND CONTROL, 2021, 20(3): 93-98(in Chinese). doi: 10.3969/j.issn.1674-5558.2021.03.012
    [20] LuL , GuoK, SunJ, et al. Investigation on hot sizing process based on creep mechanism for laser cladded thin-walled titanium alloy components[J]. Journal of Laser Applications, 2019, 31(4): 042002.
    [21] 罗玲. 基于机器学习的碳纤维复合材料热压罐成型工艺缺陷高通量预测方法[D]. 北京航空航天大学, 2021.

    LUO Ling. High Throughput Prediction Method for Defects in Autoclave Forming Processes of Carbon Fiber Composites Based on Machine Learning[D]. Beihang University, 2021(in Chinese).
    [22] Li H, Zhang B. A new viscoelastic model based on generalized method of cells for fiber-reinforced composites[J]. International Journal of Plasticity, 2015, 6522-32.
    [23] 马宁, 刘书田. 复合材料粘弹性本构关系与热应力松弛规律研究 Ⅱ: 数值分析[J]. 复合材料学报, 2005, (1): 158-163. doi: 10.3321/j.issn:1000-3851.2005.01.028

    MA Ning, LIU Shutian. Study on the thermal stress relaxation and constitutive equations of viscoelastic composite materials, part II: numerical simulation[J]. Acta Materiae Compositae Sinica, 2005, (1): 158-163(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.01.028
    [24] 许英杰, 孙勇毅, 杨儒童, 等. 考虑强度与固化变形的复合材料加筋壁板铺层优化方法[J]. 计算力学学报, 2021, 38(3): 297-304.

    XU Yingjie, SUN Yongyi, YANG Rutong, et al. An optimization method for ply placement of stiffened composite panels considering strength and cure deformation[J]. Chinese Journal of Computational Mechanics, 2021, 38(3): 297-304(in Chinese).
    [25] 王浩军, 黄雪萌, 房晓斌, 等. 复合材料C型梁类零件变形控制工艺方法的研究[J]. 橡塑技术与装备, 2018, 44(22): 34-37.

    WANG Haojun, HUANG Xuemeng, FANG Xuebin. Research on deformation control technology of composite C beam parts[J]. CHINA RUBBER/PLASTICS TECHNOLOGY AND EQUIPMENT (PLASTICS), 2018, 44(22): 34-37(in Chinese).
    [26] 王海雷, 刘凯, 张博明, 等. 复合材料机翼结构热矫形工艺实验及数值模拟[J]. 复合材料学报, 2021, 38(5): 1487-1496.

    WANG Hailei, LIU Kai, ZHANG Boming, et al. Simulation and experimental studies of hot sizing process for composite wing structures[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1487-1496(in Chinese).
    [27] Liu K, Ye J, Zhang B, et al. Experimental and finite element studies on hot sizing process for L-shaped composite beams[J]. Composites Part A, 2016, 87161-169.
    [28] Sallah M. A mathematical model of autoclave age forming[J]. Journal of Materials Processing Technology, 1991, 28(1-2): 211-219. doi: 10.1016/0924-0136(91)90220-9
    [29] 陈春奎, 黄永坚, 王以璠, 等. 钛和钛合金钣金零件的热校形[J]. 金属科学与工艺, 1985, (2): 89-100.

    CHEN Chunkui, HUANG Yongjian, WANG Yifan, et al. Thermal shaping of titanium and titanium alloy sheet metal parts[J]. METAL SCIENCE & TECHNOLOGY, 1985, (2): 89-100(in Chinese).
    [30] 陈明和, 高霖, 翟建军. TC4钛板飞行器蒙皮零件热校形研究[J]. 航空精密制造技术, 1999, 35(5): 19-21. doi: 10.3969/j.issn.1003-5451.1999.05.006

    CHEN Minghe, GAO Lin, ZHAI Jianjun. Thermal shaping of skin parts of TC4 titanium sheet vehicle[J]. Aviation Precision Manufacturing Technology, 1999, 35(5): 19-21(in Chinese). doi: 10.3969/j.issn.1003-5451.1999.05.006
    [31] Shong Z. C. , Ling Z. R. , Peklenik J. A Study of the Hot Sizing and High Temperature Mechanical Behaviour for Titanium Alloy Sheet[J]. CIRP Annals-Manufacturing Technology, 1983, 32, (1): 161–165.
    [32] Masuko Y, Kawai M. Application of a phenomenological viscoplasticity model to the stress relaxation behavior of unidirectional and angle-ply CFRP laminates at high temperature[J]. Composites Part A: Applied Science & Manufacturing, 2004, 35(7): 817-826.
    [33] Chung I. , Sun C. T. , Chang I. Y. Modeling Creep in Thermoplastic Composites[J]. Journal of Composite Materials, 1993, 27: 1009-1029.
    [34] 过梅丽. 高分子物理[J]. 北京: 北京航空航天大学出版社, 2005, 9: 174-178.

    GUO Meili. Thermally corrected polymers[J]. Beijing: Beihang University Press, 2005, 9: 174-178(in Chinese).
    [35] 方征平. 关于模拟聚合物非线性黏弹行为的四元件模型[J]. 高分子通报, 2018, (12): 63-69.

    FANG Zhenping, On the Four-Element Model of Polymer Viscoelasticity[J]. Polymer Bulletin, 2018, (12): 63-69(in Chinese).
    [36] 朱迅, 王明寅, 王荣国, 等. 纤维增强聚合物基复合材料的蠕变力学研究进展[J]. 纤维复合材料, 2004, (3): 51-53. doi: 10.3969/j.issn.1003-6423.2004.03.016

    ZHU Xun, WANG Mingyin, WANG Rongguo, et al. Progress in the Development of Creep Behavior of Fiber Reinforced Polymer Composites[J]. FIBER COMPOSITES, 2004, (3): 51-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2004.03.016
    [37] NELSON R B, LORCH D R. A Refined Theory for Laminated Orthotropic Plates[J/OL]. Journal of Applied Mechanics, 1974: 177-183.
    [38] Paley, M, Aboudi, J. Micromechanical analysis of composites by the generalized cells model[J]. Mechanics of Materials, 1992, 14(2): 127-139. doi: 10.1016/0167-6636(92)90010-B
    [39] 唐占文, 张博明. 复合材料设计制造一体化中的固化变形预报技术[J]. 航空制造技术, 2014, (15): 32-37. doi: 10.3969/j.issn.1671-833X.2014.15.003

    TANG Zhanwen, ZHANG Boming. Prediction of Curing Deformation in Integrated Design and Manufacture of Composites[J]. Aeronautical Manufacturing Technology, 2014, (15): 32-37(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.003
    [40] 罗玲, 张涛, 田智立, 等. 碳纤维复合材料固化变形预报方法对比[J]. 复合材料科学与工程: 1-10

    2023-12-14]. LUO Ling, ZHANG Tao, TIAN Zhili, et al. Comparison of process-induced distortion prediction methods of carbon fiber composites[J]. Composites Science and Engineering. 1-10 [2023-12-14](in Chinese).
    [41] Affdl J C H , Kardos J L . The Halpin-Tsai equations: A review[J]. Polymer Engineering & Science, 1976, 16(5): 344-352.
    [42] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. ASME Journal of Applied Mechanics, 1980, 47: 329-334. doi: 10.1115/1.3153664
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-06-06
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回