Research progress of superhydrophobic coatings in the field of metal corrosion protection
-
摘要: 金属材料凭借其优异的力学性能,在航空航天、海洋工程、交通运输等众多领域具有广泛的应用。然而,金属腐蚀问题仍是制约其在工业领域广泛应用的关键因素之一。研究人员从自然中汲取灵感,通过研究荷叶等动植物表面的微结构,成功设计并开发出具有特殊润湿性能的超疏水表面,将其应用于金属表面后,展现出卓越的抗腐蚀性能。本文回顾了近年来关于超疏水涂层在金属防腐蚀领域的研究成果,归纳了超疏水涂层的耐蚀性和制备技术,阐述了基本润湿理论以及腐蚀防护机制。最后,总结了超疏水涂层在金属防腐蚀领域的研究现状和存在的问题,并对其在金属防腐蚀领域的未来发展趋势和应用前景做了展望。Abstract: With its excellent mechanical properties, metal materials have a wide range of applications in aerospace, marine engineering, transportation and many other fields. However, metal corrosion is still one of the key factors restricting its widespread use in the industrial field. Drawing inspiration from nature, the researchers have successfully designed and developed superhydrophobic surfaces with special wetting properties by studying the microstructure of animal and plant surfaces such as lotus leaves. When applied to metal surfaces, it exhibits excellent corrosion resistance. In this paper, we review the research results of superhydrophobic coatings in the field of metal corrosion protection in recent years, summarize the corrosion resistance and preparation technology of superhydrophobic coatings, and expound the basic wetting theory and corrosion protection mechanism. Finally, the research status and existing problems of superhydrophobic coatings in the field of metal anti-corrosion are summarized, and the future development trend and application prospect of superhydrophobic coatings in the field of metal anti-corrosion are prospected.
-
图 4 超疏水在金属表面的防腐蚀机制;(a)Lotus效应[32];(b)阻碍电化学反应的过程[33];(c)提高界面结合力[34];(d)气垫效应保护层[35]
Figure 4. Corrosion protection mechanism of superhydrophobic metal surface; (a) The Lotus effect[32]; (b) Processes that hinder electrochemical reactions[33]; (c) Improve interface binding force[34]; (d) Protective layers of air cushion effect[35]
图 6 (a) Ti合金在NaCl溶液中的腐蚀机制示意图[44];(b)超疏水双层涂层界面鲁棒性增强的机制以及示意图[47];(c)腐蚀机制示意图[51]
Figure 6. (a) Corrosion mechanism diagram of Ti alloy in NaCl solution[44]; (b) Mechanism and schematic diagram of enhanced interface robustness of superhydrophobic double-layer coatings[47]; (c) Schematic diagram of corrosion mechanism[51]
图 7 (a)制备碳化硅及其复合涂层的实验方法以及不同涂层的塔菲尔图[62];(b)超疏水纳米涂层材料涂刷在钢筋的盐雾腐蚀试验和超+疏水纳米涂层材料的热重曲线[70];(c) BNNP强化抗腐蚀机制图和3 μm与300 nm片径BNNP涂层的阻抗谱[79]
Figure 7. (a) Experimental method for preparing silicon carbide and its composite coating and Tafel diagram of different coatings[62]; (b) Salt spray corrosion test and thermogravimetric curve of superhydrophobic nano-coating material applied to steel bar[70]; (c) BNNP enhanced corrosion resistance mechanism diagram and impedance spectra of 3 μm and 300 nm slice diameter BNNP coatings[79]
图 8 (a) TiO2/PDMS超疏水涂层的制备流程示意图和不同试样在3.5 wt%NaCl溶液中的Tafel曲线以及超疏水涂层防腐蚀机制原理图[107];(b)盐雾腐蚀不同时间后LDH-F膜的宏观形貌和经不同时间改性后LDH-V-F膜的SEM形貌[110];(c)不同激光功率刻蚀不锈钢试样表面的接触角和不锈钢电极在NaCl溶液中的极化曲线[117];(d)EL-1、EL-5、EL-10和EL-15的SEM图像[120]
Figure 8. (a) The preparation process diagram of TiO2/PDMS superhydrophobic coating, the Tafel curve of different samples in 3.5 wt%NaCl solution, and the schematic diagram of the anti-corrosion mechanism of the superhydrophobic coating[107]; (b) The macroscopic morphology of LDH-F film after salt spray corrosion for different time and the SEM morphology of LDH-V-F film after modification for different time[110]; (c) The contact Angle of stainless steel specimen surface and the polarization curve of stainless steel electrode in NaCl solution were etched by different laser power[117]; (d) SEM images of EL-1, EL-5, EL-10 and EL-15[120]
图 9 (a)超疏水膜形成示意图以及电化学测试阻抗图[152];(b)试样在海水中的极化曲线[156];(c)镁合金、磷化膜和复合膜在3.5 wt%NaCl溶液中浸泡24 h后的极化曲线以及镁合金和复合膜在3.5 wt%NaCl溶液中浸泡24 h后的腐蚀形貌[161];(d)吸附了不同浓度LLE聚集材料的Q235钢电极在1 mol/L HCl溶液中的动电位极化曲线[165]
Figure 9. (a) Schematic diagram of superhydrophobic film formation and impedance diagram of electrochemical test[152]; (b) Polarization curve of sample in seawater[156]; (c) Polarization curves of magnesium alloy, phosphating film and composite film after soaking in 3.5 wt%NaCl solution for 24 h and corrosion morphology of magnesium alloy and composite film after soaking in 3.5 wt%NaCl solution for 24 h[161]; (d) Potentiodynamic polarization curves of Q235 steel electrodes adsorbed with different concentrations of LLE aggregates in 1 mol/L HCl solution[165]
表 1 润湿理论在金属防腐蚀方面的潜在优势
Table 1. Potential advantages of wetting theory in metal corrosion protection
Performance Principle Reference Enhanced corrosion resistance Adjusting the wetting properties of metal surfaces can reduce the direct contact between corrosive mediums (such as water, saline solutions, etc.) and the metal surface, thereby delaying the corrosion process of the metal surface [25] Self-cleaning ability Superhydrophobic surfaces can achieve self-cleaning through the lotus effect, thereby reducing the accumulation of dirt and microorganisms, both of which are factors that promote metal corrosion [26] Extended service life By improving the wetting properties of metal surfaces, the durability and service life of metal structures in harsh environments can be enhanced [27] Sustainability Strategies involving the modification of surface wetting properties using physical or chemical methods can be environmentally friendly, providing a sustainable alternative to reducing the use of traditional corrosion inhibitors [28] 表 2 不同涂层类型的耐腐蚀性能及其防腐蚀机制
Table 2. Corrosion resistance of different coating types and its anti-corrosion mechanism
Type Materials Evaluation method CA Corrosion mechanism Reference Corrosion resistant superhydrophobic polymer coating Zn-coated carbon steel CA、SEM、EIS 159.8° Resistance to electrochemical corrosion [82] magnesium alloy CA、SEM 152.6° Resistance to electrochemical corrosion [83] Corrosion resistant nano superhydrophobic coating aluminum alloy CA、EIS 162.4° Air cushion effect [84] Galvanized steel CA、XDR 150° Improve interface binding force [85] Steel SEM、EIS 155.4° Lotus effect [86]
Corrosion resistant superhydrophobic ceramic coatingglass ceramics CA、Sanding with sandpaper 158° Air cushion effect [87] rare-earth oxide ceramics CA、SEM 160° Air cushion effect [88] 表 3 不同制备方法的优缺点以及在金属表面的表征
Table 3. Advantages and disadvantages of different preparation methods and characterization on metal surfaces
Processing method Strengths/Weaknesses Materials CA Reference Self-assembly method Simplicity、Low cost、Versatility、Self-healing ability、Scalability/Structural control difficulties、Stability issues、Complexity and predictability、Scale limitations 6082-T6 Aluminum alloy 180° [137] Sol-gel method Low temperature processes、Uniformity and purity、Controllable microstructure、Diversity、Coating and film preparation/Drying and heat Treatment、Shrinkage and cracking、Reaction time、Complexity、Cost Cu 155° [138] Chemical vapor
depositionHigh-quality films、Wide applicability、Suitable for complex shapes、Good adhesion and interfacial quality、Controllable chemical composition/High-temperature processes、Complex equipment and control、Precursor selection and cost、Environmental concerns、Limited deposition rates Aluminum 158° [139] Laser etching Non-contact process、High accuracy and resolution、Speed and flexibility、Multiple material suitability/Heat affected zone、Equipment cost、Processing time、Possibility of reprocessing 3 Cr13 stainless steel 164° [140] Chemical etching High precision、Wide range of application、High performance/Poor selectivity、Environmental impact、Etching control difficulty Stainless-steel 151.6° [141] Electrochemical etching method Good selectivity、Wide range of applications、Environmentally friendly/Batch processing restriction、Current distribution problem、Equipment and technical requirements Aluminum alloy (152.3±4.5)° [142] Spraying method Simple and practicable、Low cost、Rapid production、Wide applicability/Limited accuracy、Coating thickness control is difficult、Coating thickness control is difficult Q235 Steel plate 163.9° [143] Electrochemical
deposition methodGood uniformity、Environmentally friendly、Precise shape control/High equipment requirements、Limited to conductive substrates、The deposition rate is slow Stainless-steel 160.6° [144] -
[1] 常坤, 梁恩泉, 张韧, 等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182. doi: 10.11896/cldb.19100153CHANG Kun, LIANG Enquan, ZHANG Ren, et al. Status of Metal Additive Manufacturing and Its Application Research in the Field of Civil Aviation[J]. Materials Review, 2021, 35(3): 3176-3182(in Chinese). doi: 10.11896/cldb.19100153 [2] CHU F, WU X. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures[J]. APPLIED SURFACE SCIENCE, 2016, 371: 322-328. doi: 10.1016/j.apsusc.2016.02.208 [3] 王杨松, 王英丹, 于帅, 等. 金属防腐及其防腐蚀措施的研究[J]. 辽宁化工, 2020, 49(3): 315-318. doi: 10.3969/j.issn.1004-0935.2020.03.031WANG Yangsong, WANG Yingdan, YU Shuai, et al. Research on Metal Corrosion Prevention and Corrosion Prevention Measures[J]. Liaoning Chemical Industry, 2020, 49(3): 315-318(in Chinese). doi: 10.3969/j.issn.1004-0935.2020.03.031 [4] 孙小舟. 浅析金属腐蚀的防护技术[J]. 当代化工研究, 2022, (7): 123-125. doi: 10.3969/j.issn.1672-8114.2022.07.041SUN Xiaozhou. Analysis on the Protection Technology of Metal Corrosion[J]. Modern Chemical Research, 2022, (7): 123-125(in Chinese). doi: 10.3969/j.issn.1672-8114.2022.07.041 [5] HOU B, LI X, MA X, et al. The cost of corrosion in China[J]. Materials Degradation, 2017, 1(1): 4. doi: 10.1038/s41529-017-0005-2 [6] XING J, ZAYED T, MA S. Corrosion -based failure analysis of steel saltwater pipes: A Hong Kong case study[J]. ENGINEERING FAILURE ANALYSIS, 2024, 161: 108266. doi: 10.1016/j.engfailanal.2024.108266 [7] WANG J, ZHANG M, XIAN H. 24Model-based comparative analysis of two catastrophic hazardous chemical pipeline accidents[J]. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS, 2024, 30(2): 549-558. doi: 10.1080/10803548.2024.2325258 [8] 柳泽邦, 冉博元, 裴恒, 等. 金属铝用复配缓蚀剂协同缓蚀作用研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322. doi: 10.11902/1005.4537.2023.186LIU Zebang, RAN Boyuan, PEI Heng, et al. Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(2): 312-322(in Chinese). doi: 10.11902/1005.4537.2023.186 [9] HU P, LI S, JIANG N, et al. Effect of applied current density on corrosion behavior and protection efficiency of hanger steel wire for suspension bridge in marine rainfall environment[J]. OCEAN ENGINEERING, 2024, 308: 118286. doi: 10.1016/j.oceaneng.2024.118286 [10] HABIB S, QURESHI A, SAJJAD S, et al. TiO2-Mesoporous Ceria Carrier Modified with Sodium Benzoate: An Innovative Polyurethane Matrix for Enhanced Corrosion Protection of steel[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 697: 134471. [11] 智鹏飞. 金属材料的腐蚀与防腐技术研究[J]. 山西冶金, 2023, 46(2): 63-64,81.ZHI Pengfei. Study on Corrosion and Anti-corrosion Technology of Metallic Materials[J]. Shanxi Metallurgy, 2023, 46(2): 63-64,81(in Chinese). [12] HAN X, REN L, MA Y, et al. A mussel-inspired self-repairing superhydrophobic coating with good anti-corrosion and photothermal properties[J]. CARBON, 2022, 197: 27-39. doi: 10.1016/j.carbon.2022.05.056 [13] 刘双平, 俞熹. 荷叶效应的研究[J]. 大学物理, 2011, 30(9): 50-54,61. doi: 10.3969/j.issn.1000-0712.2011.09.015LIU Shuangping, YU Xi. A study on lotus effect[J]. College Physics, 2011, 30(9): 50-54,61(in Chinese). doi: 10.3969/j.issn.1000-0712.2011.09.015 [14] 陈耀峰, 邵文鹏, 赵广宾, 等. 金属基体表面超疏水涂层材料的制备及应用研究进展[J]. 材料研究与应用, 2024, 18(1): 106-115.CHEN Yaofeng, SHAO Wenpeng, ZHAO Guangbin, et al. Research Progress on the Preparation and Application of Superhydrophobic Coating Materials on Metal Substrate Surface[J]. Materials Research and Application, 2024, 18(1): 106-115(in Chinese). [15] ZENG Q, MIN X, LUO Z, et al. In-situ preparation of superhydrophobic Zn-Al layered double hydroxide coatings for corrosion protection of aluminum alloy[J]. MATERIALS LETTERS, 2022, 328: 133077. doi: 10.1016/j.matlet.2022.133077 [16] 徐乾坤, 张玉林, 解承东, 等. 铝基表面彩色超疏水膜层的制备与耐蚀性研究[J]. 稀有金属, 2022, 46(12): 1580-1588.XU Qiankun, ZHANG Yulin, XIE Chengdong, et al. Preparation and Corrosion Resistance of Color Superhydrophobic Films on Aluminum Base Surface[J]. Chinese Journal of Rare Metals, 2022, 46(12): 1580-1588(in Chinese). [17] 刘明明, 侯媛媛, 陈唐建, 等. 超疏水防/除冰材料的基础理论和制备技术研究进展[J]. 材料保护, 2023, 56(5): 40-62.LIU Mingming, HOU Yuanyuan, CHEN Tangjian, et al. Research Progress of Basic Theory and Preparation Technology of Superhydrophobic Anti/De-Icing Materials[J]. Materials Protection, 2023, 56(5): 40-62(in Chinese). [18] SHARMA J, BHANDARI A, KHATRI N, et al. A brief review of transitional wetting regimes for superhydrophobic surfaces[J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46(5): 273. doi: 10.1007/s40430-024-04844-8 [19] YOUNG T. An essay on the cohesion of fluids[J]. Royal Society of London, 1805, 95: 65-87. [20] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. [21] CASSIE A, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546 [22] CASSIE A. Contact angles[J]. Discussions of the Faraday, 1948, (3): 11-16. [23] 柯冲, 李中发, 朱志平, 等. 超疏水涂层的制备及其在金属防腐领域的应用研究进展[J]. 材料保护, 2022, 55(2): 145-159,194.KE Chong, LI Zhongfa, ZHU Zhiping, et al. Research Progress on Preparation of Superhydrophobic Coatings and Its Application in Metal Anti-Corrosive Field[J]. Materials Protection, 2022, 55(2): 145-159,194(in Chinese). [24] XU J, CAI Q, LIAN Z, et al. Research Progress on Corrosion Resistance of Magnesium Alloys with Bio-inspired Water-repellent Properties: A Review[J]. JOURNAL OF BIONIC ENGINEERING, 2021, 18(4): 735-763. doi: 10.1007/s42235-021-0064-5 [25] CHOBAOMSUP V, METZNER M, BOONYONGMANEERAT Y. Superhydrophobic surface modification for corrosion protection of metals and alloys[J]. Journal of Coatings Technology and Research, 2020, 17(3): 583-595. doi: 10.1007/s11998-020-00327-2 [26] DEEPA M J, ARUNIMA S R, SHIBLI S M A. Hydrophobic and corrosion-resistant composite (BiVO4/TiO2) hot-dip zinc coating with enhanced self-cleaning ability[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924: 166522. doi: 10.1016/j.jallcom.2022.166522 [27] SUBESHAN B, ASMATULU R. Corrosion mitigation of metals and alloys via superhydrophobic coatings with plasma surface and heat treatment processes[J]. Engineering failure analysis, 2022, 139: 106437. doi: 10.1016/j.engfailanal.2022.106437 [28] YU M, ZHANG M, SUN J, et al. Facile Electrochemical Method for the Fabrication of Stable Corrosion-Resistant Superhydrophobic Surfaces on Zr-Based Bulk Metallic Glasses[J]. Molecules (Basel, Switzerland), 2021, 26(6): 1558. doi: 10.3390/molecules26061558 [29] SABZAVAR S, GHAHARI M, ROSTAMI M, et al. Preparation of active-passive anticorrosion antistatic epoxy nanocomposite coatings loaded with CeO2, CeO2@C, and CHS particles[J]. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2024, 21(4): 1263-1279. doi: 10.1007/s11998-023-00890-4 [30] JIANG L, YANG J, WU C, et al. Fabrication of a robust superhydrophobic coating exhibiting superior corrosion resistance via spray application technique[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 687: 133497. [31] XIA R, ZHANG B, DONG K, et al. HD-SiO2/SiO2Sol@PDMS Superhydrophobic Coating with Good Durability and Anti-Corrosion for Protection of Al Sheets[J]. Materials, 2023, 16(9): 3532. doi: 10.3390/ma16093532 [32] YU Y, WEI Y, GUO Y, et al. Electrodeposition of nanotubes for corrosion inhibition: Dual role as superhydrophobic matrix and nanocontainer for storing-releasing corrosion inhibitor[J]. APPLIED SURFACE SCIENCE, 2023, 640: 158377. doi: 10.1016/j.apsusc.2023.158377 [33] LIU L, LEI J, LI L, et al. Robust Rare-Earth-Containing Superhydrophobic Coatings for Strong Protection of Magnesium and Aluminum Alloys[J]. ADVANCED MATERIALS INTERFACES, 2018, 5(16): 1800213. doi: 10.1002/admi.201800213 [34] ZHANG C, LI C, SI X, et al. Mechanical durable ceria superhydrophobic coating fabricated by simple hot-press sintering[J]. APPLIED SURFACE SCIENCE, 2020, 529: 147113. doi: 10.1016/j.apsusc.2020.147113 [35] MIAO C, LI C, HUANG X, et al. A robust anticorrosive coating derived from superhydrophobic, superoleophobic, and antibacterial SiO2@POS/N + composite materials[J]. MATERIALS TODAY COMMUNICATIONS, 2023, 35: 105566. doi: 10.1016/j.mtcomm.2023.105566 [36] 张邦维. 纳米材料与荷叶效应[J]. 科学中国, 2007, (10): 38-41.ZHANG Bangwei. Nanomaterials and the Lotus Leaf Effect[J]. KEXUE ZHONGGUO, 2007, (10): 38-41(in Chinese). [37] CUI M, HUANG H, WU H, et al. Achieving superhydrophobicity of Zr-based metallic glass surface with anti-corrosion and anti-icing properties by nanosecond laser ablation and subsequent heat treatment[J]. Surface and Coatings Technology, 2023, 475: 130159. doi: 10.1016/j.surfcoat.2023.130159 [38] WANG J, YU S, YIN X, et al. Fabrication of cross-like ZIF-L structures with water repellency and self-cleaning property via a simple in-situ growth strategy[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 623: 126731. [39] LI B, OUYANG Y, HAIDER Z, et al. One-step electrochemical deposition leading to superhydrophobic matrix for inhibiting abiotic and microbiologically influenced corrosion of Cu in seawater environment[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 616: 126337. [40] 刘战剑, 付雨欣, 任丽娜, 等. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011.LIU Zhanjian, FU Yuxin, REN Lina, et al. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011(in Chinese). [41] XIN G, WU C, LIU W, et al. Anti- corrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 881: 160649. doi: 10.1016/j.jallcom.2021.160649 [42] 张颖怀, 许立宁, 路民旭, 等. 用电化学阻抗谱(EIS)研究环氧树脂涂层的防腐蚀性能[J]. 腐蚀与防护, 2007, 28(5): 227-230,234. doi: 10.3969/j.issn.1005-748X.2007.05.004ZHANG Yinghuai, XU Lining, LU Minxu, et al. AN EIS STUDY OF THE ANTICORROSION PERFORMANCE OF EPOXY RESIN COATING[J]. CORROSION AND PROTECTION, 2007, 28(5): 227-230,234(in Chinese). doi: 10.3969/j.issn.1005-748X.2007.05.004 [43] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376. doi: 10.11896/cldb.18080178YIN Xiaoli, YU Sirong, HU Jinhui. Fabrication of Ni3S2 Micro-nanostructure Superhydrophobic Surface with Anti-corrosion Property[J]. Materials Review, 2019, 33(20): 3372-3376(in Chinese). doi: 10.11896/cldb.18080178 [44] LIU C, TONG S, YUE Y, et al. Laser-based fabrication of superwetting titanium alloy with enhanced corrosion and erosion-corrosion resistance[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 688: 133648. [45] WANG W, TIAN Y, SHEN H, et al. Modified potassium titanate whiskers for preparation of enhanced corrosion-resistant phosphating conversion coatings with high NIR reflectivity on mild steel[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 955: 170247. doi: 10.1016/j.jallcom.2023.170247 [46] Firdavs Sultonzoda, 王晶, 周瑾萱, 等. 超疏水铝合金表面的制备、耐腐蚀及防污性能[J]. 中国有色金属学报, 2020, 30(10): 2316-2321. doi: 10.11817/j.ysxb.1004.0609.2020-39298FIRDAVS Sultonzoda, WANG Jing, ZHOU Jinxuan, et al. Fabrication, anti-corrosion and antifouling performance of superhydrophobic aluminum alloy surface[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(10): 2316-2321(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-39298 [47] ZHANG B, YANG G, FAN X, et al. Intermediate-layer strengthened superhydrophobic coating with stable corrosion resistance, delayed icing and long-term weatherability[J]. Journal of Industrial and Engineering Chemistry, 2023, 127: 331-342. doi: 10.1016/j.jiec.2023.07.018 [48] 赵明欣, 赵旭, 郎小尘. 钛合金表面超疏水膜的制备及其耐蚀性与机械稳定性[J]. 电镀与精饰, 2024, 46(2): 44-51. doi: 10.3969/j.issn.1001-3849.2024.02.007ZHAO Mingxin, ZHAO Xu, LANG Xiaochen. Preparation and corrosion resistance and mechanical stability of superhydrophobic film on titanium alloy[J]. Plating and Finishing, 2024, 46(2): 44-51(in Chinese). doi: 10.3969/j.issn.1001-3849.2024.02.007 [49] 于元昊, 董玉花, 邢静, 等. Q235碳钢表面SiO2/PDMS超疏水涂层的制备及防腐性能研究[J]. 表面技术, 2023, 52(9): 209-219.YU Yuanhao, DONG Yuhua, XING Jing, et al. Preparation and Anti-corrosion Properties of SiO2/PDMS Super-hydrophobic Coating on Q235 Carbon Steel[J]. Surface Technology, 2023, 52(9): 209-219(in Chinese). [50] 张凯, 文邦伟, 谭勇. 超疏水膜层防腐蚀机理及气相法制备技术研究进展[J]. 腐蚀科学与防护技术, 2018, 30(4): 441-448. doi: 10.11903/1002.6495.2017.153ZHANG Kai, WEN Bangwei, TAN Yong. Current Status of Research on Anticorrosion Mechanism and Vapor Phase Preparation Technique of Uperhydrophobic Film on Metallic Materials[J]. Corrosion Science and Protection Technology, 2018, 30(4): 441-448(in Chinese). doi: 10.11903/1002.6495.2017.153 [51] GUO H, YANG C, WANG C. Sodium alginate/epoxy resin was separated by emulsion phase to fabricate a strong superhydrophobic coating[J]. Surfaces and Interfaces, 2024, 45: 103941. doi: 10.1016/j.surfin.2024.103941 [52] BICO J, THIELE U, QUERE D. Wetting of textured surfaces[J]. Colloids Surf. Physicochem. Eng. Asp, 2002, 206A: 41. [53] HE T, WANG Y, ZHANG Y, et al. Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater[J]. Corrosion Science, 2009, 51(8): 1757-1761. doi: 10.1016/j.corsci.2009.04.027 [54] 王鑫, 王兵兵, 杨威, 等. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321.WANG Xin, WANG Bingbing, YANG Wei, et al. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321(in Chinese). [55] KLIMOV V V, KOLYAGANOVA O V, BRYUZGIN E V, et al. Investigation of the Mechanical and Chemical Stability of Superhydrophobic Coatings Based on Reactive Copolymers of Glycidyl Methacrylate and Fluoroalkyl Methacrylates[J]. COLLOID JOURNAL, 2024, 86(1): 52-63. doi: 10.1134/S1061933X23601208 [56] SHEN X, MAO T, LI C, et al. Durable superhydrophobic coatings based on CNTs-SiO2gel hybrids for anti-corrosion and thermal insulation[J]. PROGRESS IN ORGANIC COATINGS, 2023, 181: 107602. doi: 10.1016/j.porgcoat.2023.107602 [57] ZHANG D, ZHANG X, WEI E, et al. Construction of superhydrophobic film on the titanium alloy welded joint and its corrosion resistance study[J]. ANTI-CORROSION METHODS AND MATERIALS, 2023, 70(6): 328-340. doi: 10.1108/ACMM-05-2023-2812 [58] WANG H, LIU L, FEI G, et al. Enhancement of anticorrosion resistance of a fluorinated polyimide matrix by incorporating self-fixing POSS-GO[J]. PROGRESS IN ORGANIC COATINGS, 2024, 187: 108135. doi: 10.1016/j.porgcoat.2023.108135 [59] MORADI M, REZAEI M. Construction of highly anti-corrosion and super-hydrophobic polypropylene/graphene oxide nanocomposite coatings on carbon steel: Experimental, electrochemical and molecular dynamics studies[J]. CONSTRUCTION AND BUILDING MATERIALS, 2022, 317: 126136. doi: 10.1016/j.conbuildmat.2021.126136 [60] 安然, 韩飞, 兰柯, 等. 聚苯胺-氮化硼纳米颗粒复合水性环氧涂层的制备与防腐性能研究[J]. 材料保护, 2024, 57(2): 18-27.AN Ran, HAN Fei, LAN Ke, et al. Preparation and Anti-Corrosion Properties of Polyaniline-Boron Nitride Nanoparticle Composite Waterborne Epoxy Coating[J]. Materials Protection, 2024, 57(2): 18-27(in Chinese). [61] DU J, WU P, KOU H, et al. Self-healing superhydrophobic coating with durability based on EP + PDMS/SiO2 double-layer structure design[J]. PROGRESS IN ORGANIC COATINGS, 2024, 190: 108359. doi: 10.1016/j.porgcoat.2024.108359 [62] 吕艾娟, 孙俊涛, 胡青青, 等. EDOT-含氟聚合物涂层的制备及其防腐蚀性能[J]. 浙江师范大学学报(自然科学版), 2023, 46(4): 408-415.LV Aijuan, SUN Juntao, HU Qingqing, et al. Preparation of EDOT-fluoropolymer coatings and their anti-corrosion properties[J]. Journal of Zhejiang Normal University(Natural Sciences), 2023, 46(4): 408-415(in Chinese). [63] ZHANG Z, ZHAO N, QI F, et al. Reinforced Superhydrophobic Anti-Corrosion Epoxy Resin Coating by Fluorine-Silicon-Carbide Composites[J]. COATINGS, 2020, 10(12): 1244. doi: 10.3390/coatings10121244 [64] ROBERT R B J, HIKKU G S, JEYASUBRAMANIAN K, et al. ZnO nanoparticles impregnated polymer composite as superhydrophobic anti-corrosive coating for Aluminium-6061 alloy[J]. MATERIALS RESEARCH EXPRESS, 2019, 6(7): 075705. doi: 10.1088/2053-1591/ab153f [65] GUO F, DUAN S, WU D, et al. Micro-nano structure constructed AA7055 superhydrophobic surface with long service life and high corrosion resistance[J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140(14): 53702. doi: 10.1002/app.53702 [66] SHARMA K, MALIK M K, CHAWLA A, et al. Development of corrosion-resistant superhydrophobic coating on brass using modified silica nanoparticles[J]. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2023, 105(3): 701-708. [67] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059.ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059(in Chinese). [68] 曹怀杰, 徐群杰. 二维纳米材料增强复合涂层设计及防腐性能研究[Z]. 中国贵州贵阳: 2021: 037442.CAO Huaijie, XU Qunjie. Design and anti-corrosion property of composite coating incorporatedwithtwo-dimensional materials[Z]. Guizhou Guiyang, China: 2021: 037442(in Chinese). [69] HUANG W, JIANG X, ZHANG Y, et al. Robust superhydrophobic silicone/epoxy functional coating with excellent chemical stability and self-cleaning ability[J]. NANOSCALE, 2023, 15(44): 17793-17807. doi: 10.1039/D3NR04062C [70] 高旭超. 超疏水纳米涂层材料的制备及其在钢筋防锈中的应用[J]. 当代化工研究, 2023, (8): 53-55.GAO Xuchao. Preparation of Superhydrophobic Nano-coating and Its Application in Rust Prevention of Reinforcement[J]. Modern Chemical Research, 2023, (8): 53-55(in Chinese). [71] 李健鹏, 万红霞, 涂小慧, 等. 纳米颗粒对ZM5镁合金微弧氧化涂层耐磨和耐蚀性能的影响[J]. 表面技术, 2022, 51(12): 131-141.LI Jianpeng, WAN Hongxia, TU Xiaohui, et al. Effect of Nanoparticles on the Wear and Corrosion Resistance of MAO Coatings on ZM5 Mg Alloy[J]. Surface Technology, 2022, 51(12): 131-141(in Chinese). [72] 张思, 傅海丰, 张欣, 等. 聚苯胺-二氧化硅/锌双层涂层的制备与防腐蚀性能[J]. 电镀与涂饰, 2023, 42(14): 55-63.ZHANG Si, FU Haifeng, ZHANG Xin, et al. Preparation and anticorrosion property of PANI–SiO2/Zn double-layer coating[J]. Electroplating & Finishing, 2023, 42(14): 55-63(in Chinese). [73] WANG H, DI D, ZHAO Y, et al. A multifunctional polymer composite coating assisted with pore-forming agent: Preparation, superhydrophobicity and corrosion resistance[J]. PROGRESS IN ORGANIC COATINGS, 2019, 132: 370-378. doi: 10.1016/j.porgcoat.2019.04.027 [74] LI Y, ZHANG X, CUI Y, et al. Anti-corrosion enhancement of superhydrophobic coating utilizing oxygen vacancy modified potassium titanate whisker[J]. CHEMICAL ENGINEERING JOURNAL, 2019, 374: 1326-1336. doi: 10.1016/j.cej.2019.06.028 [75] 李雪伍, 段世龙, 石甜, 等. 无氟铜基超疏水表面的制备及其耐腐蚀性能研究[J]. 材料保护, 2023, 56(6): 22-26.LI Xuewu, DUAN Shilong, SHI Tian, et al. Study on Preparation and Corrosion Resistance of Fluorine Free Copper Based Superhydrophobic Surface[J]. Materials Protection, 2023, 56(6): 22-26(in Chinese). [76] FARHADI S S, ALIOFKHAZRAEI M, DARBAND G B, et al. Corrosion and wettability of PEO coatings on magnesium by addition of potassium stearate[J]. JOURNAL OF MAGNESIUM AND ALLOYS, 2017, 5(2): 210-216. doi: 10.1016/j.jma.2017.06.002 [77] FU J, SUN Y, JI Y, et al. Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods[J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 306: 117641. doi: 10.1016/j.jmatprotec.2022.117641 [78] 王丽, 孙倩倩, 付文. AZ31镁合金疏水性TiO2陶瓷涂层的制备及其性能研究[J]. 热加工工艺, 2020, 49(12): 100-104.WANG Li, SUN Qianqian, FU Wen. Research on Preparation of Hydrophobic TiO2 Ceramic Coating on AZ31 Alloy and Its Property[J]. Hot Working Technology, 2020, 49(12): 100-104(in Chinese). [79] 李东升, 杨网, 王永光, 等. 氮化硼纳米片增强胶黏陶瓷涂层的耐腐蚀行为[J]. 材料工程, 2023, 51(3): 105-112.LI Dongsheng, YANG Wang, WANG Yongguang, et al. Corrosion resistance of boron nitride nanoplatelet reinforced chemically bonded ceramic coatings[J]. Journal of Materials Engineering, 2023, 51(3): 105-112(in Chinese). [80] 刘富, 相珺, 孙丽月, 等. 304钢表面陶瓷涂层的制备条件优化及其性能表征[J]. 稀有金属与硬质合金, 2019, 47(4): 65-69.LIU Fu, XIANG Jun, SUN Liyue, et al. Optimization of Preparation Conditions and Performance Characterization of Ceramic Coatings on 304 Steel Surface[J]. Rare Metals and Cemented Carbides, 2019, 47(4): 65-69(in Chinese). [81] LI X, DU S, MA C, et al. Nano-SiO2 based anti-corrosion superhydrophobic coating on Al alloy with mechanical stability, anti-pollution and self-cleaning properties[J]. CERAMICS INTERNATIONAL, 2024, 50(6): 9469-9478. doi: 10.1016/j.ceramint.2023.12.264 [82] HU C, KWAN K, XIE X, et al. Superhydrophobic polyaniline/TiO2 composite coating with enhanced anticorrosion function[J]. REACTIVE & FUNCTIONAL POLYMERS, 2022, 179: 105381. [83] CAO K, YU Z, ZHU L, et al. Fabrication of superhydrophobic layered double hydroxide composites to enhance the corrosion-resistant performances of epoxy coatings on Mg alloy[J]. SURFACE & COATINGS TECHNOLOGY, 2021, 407: 126763. [84] YU Y, DONG Y, NING H, et al. A robust superhydrophobic coating with multi-dimensional micro-nano structure on 5052 aluminum alloy[J]. SURFACE & COATINGS TECHNOLOGY, 2023, 465: 129564. [85] CAO L, WAN Y, LI Y, et al. Corrosion-resistant and friction-reducing performance of super-hydrophobic coating on hot-dip galvanised steel in a 3.5% NaCl solution[J]. LUBRICATION SCIENCE, 2021, 33(6): 325-334. doi: 10.1002/ls.1555 [86] LI J, LIU Z, WANG Z. Study of nano-ZnO improvement of the mechanical properties and corrosion resistance of modified-SiO2/PTFE superhydrophobic nanocomposite coatings by one-step spraying[J]. NEW JOURNAL OF CHEMISTRY, 2023, 47(13): 6246-6257. doi: 10.1039/D2NJ06376J [87] ZHONG W, WU M, XIONG B, et al. High stability superhydrophobic glass-ceramic surface with micro–nano hierarchical structure[J]. Ceramics International, 2022, 48(16): 23527-23535. doi: 10.1016/j.ceramint.2022.04.350 [88] AZIMI G, KWON H, VARANASI K K. Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics[J]. MRS Communications, 2014, 4(3): 95-99. doi: 10.1557/mrc.2014.20 [89] SONG X G, LIANG Z H, WANG H J, et al. Fabrication of functional surfaces of aluminum alloy with a transition from superhydrophilic to superhydrophobic by nanosecond laser irradiation[J]. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2023, 20(6): 1897-1912. doi: 10.1007/s11998-023-00785-4 [90] GE-ZHANG S, YANG H, NI H, et al. Biomimetic superhydrophobic metal /nonmetal surface manufactured by etching methods: A mini review[J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10: 958095. doi: 10.3389/fbioe.2022.958095 [91] WANG X, LI X, LEI Q, et al. Fabrication of superhydrophobic composite coating based on fluorosilicone resin and silica nanoparticles[J]. ROYAL SOCIETY OPEN SCIENCE, 2018, 5(7): 180598. doi: 10.1098/rsos.180598 [92] 姜丹, 黄国胜, 马力, 等. 仿生表面/涂层在金属腐蚀防护中的研究进展[J]. 表面技术, 2022, 51(6): 180-193.JIANG Dan, HUANG Guosheng, MA Li, et al. Research Progress of Bionic Surface/Coating in Metal Corrosion Protection[J]. Surface Technology, 2022, 51(6): 180-193(in Chinese). [93] SOLMAZ R, DUESUN Y A, SAHIN E A, et al. Bingol propolis self-assembled monolayer films: Preparation, characterization and application as corrosion inhibitors for copper protection in NaCl environment[J]. MATERIALS CHEMISTRY AND PHYSICS, 2024, 315: 128956. doi: 10.1016/j.matchemphys.2024.128956 [94] HATTAB M, HASSEN S B, SPRIANO S, et al. Ce-doped MgO films on AZ31 alloy substrate for biomedical applications: preparation, characterization and testing[J]. BIOMEDICAL MATERIALS, 2024, 19(2): 025013. doi: 10.1088/1748-605X/ad1dfa [95] WANG G, GUO L, RUAN Y, et al. Improved wear and corrosion resistance of alumina alloy by MAO and PECVD[J]. SURFACE & COATINGS TECHNOLOGY, 2024, 479: 130556. [96] JIANG P, WANG G, WU Y, et al. Microstructure Evolution, Tribological and Corrosion Properties of Amorphous Alloy Strengthening Stainless Steel Fabricated by Selective Laser Melting in NaCl Solution[J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2024, 37(5): 825-839. doi: 10.1007/s40195-024-01665-5 [97] 代学玉, 于娇娇, 汪永丽. 层层自组装法制备超疏水表面的研究进展[J]. 山东化工, 2020, 49(12): 44-45. doi: 10.3969/j.issn.1008-021X.2020.12.018DAI Xueyu, YU Jiaojiao, WANG Yongli. Research Progress on the Preparation of Superhydrophobic Surfaces by Layer-by-layer Self-assembly Method[J]. Shandong Chemical Industry, 2020, 49(12): 44-45(in Chinese). doi: 10.3969/j.issn.1008-021X.2020.12.018 [98] FENG J, CHEN F, CHAO J, et al. Anti-corrosion property of superhydrophobic copper mesh with one-step self-assembled perfluorothiolate monolayers[J]. Surface and Interface Analysis, 2022, 54(10): 1087-1097. doi: 10.1002/sia.7135 [99] WANG L, LU S, XIE F, et al. Influence of synergistic effect of phosphate on corrosion resistance of self-assembled superhydrophobic composite film on 6061 aluminum alloy surfaces[J]. Journal of industrial and engineering chemistry (Seoul, Korea), 2023, 128: 335-345. doi: 10.1016/j.jiec.2023.07.068 [100] MA C, LIU J, ZHANG Z, et al. Preparation and Properties of Micro-Arc Oxidation/Self-Assembly Coatings with Different Hydrophobicities on Magnesium Alloy[J]. ADVANCED ENGINEERING MATERIALS, 2022, 24(12): 2200741. doi: 10.1002/adem.202200741 [101] YANG S, ZOU P, WANG Y, et al. Novel method for protecting copper: An in-situ click-assembly film on copper surface[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 677: 132355. [102] FENG L, REN X, FENG Y, et al. Self-assembly of new O- and S-heterocycle-based protective layers for copper in acid solution[J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22(8): 4592-4601. doi: 10.1039/C9CP06910K [103] CHWATAL S, ZAZIMAL F, BURSIKOVA V, et al. Modification of silicon-polyurethane-based sol-gel coatings through diverse plasma technologies: investigation of impact on surface properties[J]. NEW JOURNAL OF CHEMISTRY, 2024, 48(12): 5232-5246. doi: 10.1039/D3NJ05986C [104] WANG S, GUO X, XIE Y, et al. Preparation of superhydrophobic silica film on Mg-Nd-Zn-Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol-gel method[J]. SURFACE & COATINGS TECHNOLOGY, 2012, 213: 192-201. [105] SUN B, YAN L, GAO K. Hydrophobicity and Improved Corrosion Resistance of Weathering Steel via a Facile Sol-Gel Process with a Natural Rust Film[J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15(39): 46400-46407. [106] 刘富, 相珺, 张越, 等. 溶胶凝胶法制备304钢表面陶瓷涂层的耐蚀性研究[J]. 表面技术, 2017, 46(12): 233-237.LIU Fu, XIANG Jun, ZHANG Yue, et al. Corrosion Resistance of Ceramic Coating on 304 Steel in Sol-Gel Method[J]. Surface Technology, 2017, 46(12): 233-237(in Chinese). [107] 薛鑫宇, 尹正生, 蒋永锋, 等. 碳钢表面防腐超疏水TiO2/PDMS涂层的制备及性能[J]. 中国表面工程, 2021, 34(4): 53-59. doi: 10.11933/j.issn.1007-9289.20210227001XUE Xinyu, YIN Zhengsheng, JIANG Yongfeng, et al. Preparation and Properties of TiO2/PDMS Anticorrosion Superhydrophobic Coating on Carbon Steel[J]. China Surface Engineering, 2021, 34(4): 53-59(in Chinese). doi: 10.11933/j.issn.1007-9289.20210227001 [108] 贠柯, 张澄, 杨旭, 等. 基板表面粗糙度对TiO2-SiO2复合薄膜制备及耐蚀性影响研究[J]. 涂层与防护, 2023, 44(7): 35-40.YUN Ke, ZHANG Cheng, YANG Xu, et al. Effect of Substrate Surface Roughness on Preparation and Corrosion Resistance of TiO2-SiO2 Composite Films[J]. Coating and Protection, 2023, 44(7): 35-40(in Chinese). [109] BOEKE F, GINER I, KELLER A, et al. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD )[J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8(28): 17805-17816. [110] 杨文广, 刘振红, 朱梅婷, 等. 铝合金表面超疏水缓蚀自修复膜的制备及其耐蚀性[J]. 腐蚀与防护, 2021, 42(5): 1-7. doi: 10.11973/fsyfh-202105001YANG Wenguang, LIU Zhenhong, ZHU Meiting, et al. Preparation of Super-Hydrophobic Corrosion-Inhibited Self-Repairing Film on Aluminum Alloy Surface and Its Corrosion Resisatnce[J]. Corrosion & Protection, 2021, 42(5): 1-7(in Chinese). doi: 10.11973/fsyfh-202105001 [111] ZHANG M, ZHOU T, LI H, et al. UV-durable superhydrophobic ZnO/SiO2 nanorod arrays on an aluminum substrate using catalyst-free chemical vapor deposition and their corrosion performance[J]. Applied Surface Science, 2023, 623: 157085. doi: 10.1016/j.apsusc.2023.157085 [112] 李小兵, 余雄, 胡顺保, 等. 一步电沉积法制备铜表面稀土镧/石墨烯超疏水复合涂层及其耐腐蚀性能[J]. 材料保护, 2024, 57(5): 152-157.LI Xiaobing, YU Xiong, HU Shunbao, et al. Preparation and Corrosion Resistance Performance of Rare Earth Lanthanum/Graphene Superhydrohobic Composite Coatings on Copper Surface by One-Step Electrodeposition Method[J]. Materials Protection, 2024, 57(5): 152-157(in Chinese). [113] 陈清新, 单广程, 周希, 等. 石墨烯对镍钛形状记忆合金耐腐蚀性能的影响[J]. 化学通报, 2017, 80(1): 104-107.CHEN Qingxin, SHAN Guangcheng, ZHOU Xi, et al. Effects of Graphene on Anticorrosion Properties of Nickel Titanium Shape Memory Alloys[J]. Chemistry, 2017, 80(1): 104-107(in Chinese). [114] 李思仪, 董玉华, 周琼, 等. 石墨烯及石墨烯/环氧复合涂层的防腐蚀性能[J]. 腐蚀与防护, 2015, 36(8): 748-753. doi: 10.11973/fsyfh-201508012LI Siyi, DONG Yuhua, ZHOU Qiong, et al. Corrosion Performance of Graphene and Graphene/Epoxy Composite Coating[J]. Corrosion & Protection, 2015, 36(8): 748-753(in Chinese). doi: 10.11973/fsyfh-201508012 [115] ABDOLMALEKI M, ALLAHGHOLIPOUR G R, TAHZIBI H, et al. Fabrication of superhydrophobic aluminum with enhanced anticorrosive property[J]. MATERIALS CHEMISTRY AND PHYSICS, 2024, 313: 128711. doi: 10.1016/j.matchemphys.2023.128711 [116] 郑博源, 底月兰, 王海斗, 等. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120. doi: 10.11896/cldb.19090218ZHENG Boyuan, DI Yuelan, WANG Haidou, et al. Research Progress in Preparation of Super-hydrophobic Surface of Metal Matrix by Laser Processing[J]. Materials Review, 2020, 34(23): 23109-23120(in Chinese). doi: 10.11896/cldb.19090218 [117] 王帅, 于世胜, 于庆华, 等. 纳秒激光诱导超疏水316L不锈钢表面的制备及其耐腐蚀性能研究[J]. 热加工工艺, 2023, 52(8): 108-112.WANG Shuai, Yu Shisheng, YU Qinghua, et al. Preparation of Superhydrophobic 316L Stainless Steel Surface by Nanosecond Laser-Induced and Its Corrosion Resistance[J]. Hot Working Technology, 2023, 52(8): 108-112(in Chinese). [118] 刘祁文, 刘国东, 李子航, 等. 纳秒激光制备镁合金超疏水表面及其性能研究[J]. 激光与光电子学进展, 2022, 59(5): 214-221.LIU Qiwen, LIU Guodong, LI Zihang, et al. Preparation and Properties of Superhydrophobic Surface of Magnesium Alloy by Nanosecond Laser[J]. Laser & Optoelectronics Progress, 2022, 59(5): 214-221(in Chinese). [119] 徐雷秋, 万晓峰, 董菁, 等. 盐酸-激光复合刻蚀+SA修饰制备镁合金表面超疏水结构的耐腐蚀性能[J]. 机械工程材料, 2019, 43(10): 6-10. doi: 10.11973/jxgccl201910002XU Leiqiu, WAN Xiaofeng, DONG Jing, et al. Corrosion Resistance of Superhydrophobic Structure on Magnesium Alloy Surface Prepared by Hydrochloric Acid-Laser Composite Etching and SA Modification[J]. Materials for Mechanical Engineering, 2019, 43(10): 6-10(in Chinese). doi: 10.11973/jxgccl201910002 [120] CHEN X, SUN S, WANG D, et al. Construction of superhydrophobic surfaces with different water adhesion on the low-temperature steels by picosecond laser processing[J]. SURFACE & COATINGS TECHNOLOGY, 2024, 477: 130340. [121] WU Z, LIU Y, ZHANG Y, et al. The effect of micro/nanostructures formed by laser ablation on the superhydrophobicity of AZ31B magnesium alloy[J]. JOURNAL OF MATERIALS RESEARCH, 2024, 39(5): 850-863. doi: 10.1557/s43578-023-01275-4 [122] FAN H, LU P, ZHU X, et al. Development of superhydrophobic and corrosion resistant coatings on carbon steel by hydrothermal treatment and fluoroalkyl silane self-assembly[J]. MATERIALS CHEMISTRY AND PHYSICS, 2022, 290: 126569. doi: 10.1016/j.matchemphys.2022.126569 [123] PILLADO B, MATYKINA E, OLIVIER M, et al. Functionalization of Plasma Electrolytic Oxidation/Sol-Gel Coatings on AZ31 with Organic Corrosion Inhibitors[J]. COATINGS, 2024, 14(1): 84. doi: 10.3390/coatings14010084 [124] ZHENG X, YANG Y, XIAN Y, et al. In Situ Grown Vertically Oriented Graphene Coating on Copper by Plasma-Enhanced CVD to Form Superhydrophobic Surface and Effectively Protect Corrosion[J]. NANOMATERIALS, 2022, 12(18): 3202. doi: 10.3390/nano12183202 [125] ZHANG Q, ZHANG H. Corrosion resistance and mechanism of micro-nano structure super - hydrophobic surface prepared by laser etching combined with coating process[J]. ANTI-CORROSION METHODS AND MATERIALS, 2019, 66(3): 264-273. doi: 10.1108/ACMM-07-2018-1964 [126] YANG H, GAO Y, QIN W, et al. A robust superhydrophobic surface on AA3003 aluminum alloy with intermetallic phases in-situ pinning effect for corrosion protection[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898: 163038. doi: 10.1016/j.jallcom.2021.163038 [127] KALGUDI S, PAVITHRA G P, PRABHU K N, et al. Effect of surface treatment on wetting behavior of copper[J]. MATERIALS TODAY-PROCEEDINGS, 2021, 35: 295-297. doi: 10.1016/j.matpr.2020.01.379 [128] RODIC P, KAPUN B, MILOSEV I. Superhydrophobic Aluminium Surface to Enhance Corrosion Resistance and Obtain Self-Cleaning and Anti-Icing Ability[J]. MOLECULES, 2022, 27(3): 1099. doi: 10.3390/molecules27031099 [129] KHASKHOUSSI A, CALABRESE L, PROVERBIO E. Anticorrosion Superhydrophobic Surfaces on AA6082 Aluminum Alloy by HF/HCl Texturing and Self-Assembling of Silane Monolayer[J]. MATERIALS, 2022, 15(23): 8549. doi: 10.3390/ma15238549 [130] 李纬, 马宁, 张亚雄. 电化学法制备TA15钛合金超疏水表面及性能研究[J]. 机械设计与制造工程, 2022, 51(10): 37-42.LI Wei, MA Ning, ZHANG Yaxiong. Study on superhydrophobic surface and properties of TA15 titanium alloy prepared by electrochemical method[J]. Machine Design and Manufacturing Engineering, 2022, 51(10): 37-42(in Chinese). [131] MA N, CHEN Y, ZHAO S, et al. Preparation of super - hydrophobic surface on Al-Mg alloy substrate by electrochemical etching[J]. SURFACE ENGINEERING, 2019, 35(5): 394-402. doi: 10.1080/02670844.2017.1421883 [132] BEN J, WU P, WANG Y, et al. Preparation and Characterization of Modified ZrO2/SiO2 /Silicone-Modified Acrylic Emulsion Superhydrophobic Coating[J]. MATERIALS, 2023, 16(24): 7621. doi: 10.3390/ma16247621 [133] LIN Z, ZHANG W, XU L, et al. Fabrication of Ni-Co/Cu super-hydrophobic coating with improved corrosion resistance[J]. MATERIALS CHEMISTRY AND PHYSICS, 2022, 277: 125503. doi: 10.1016/j.matchemphys.2021.125503 [134] YANG J, CUI H, ZHANG Y, et al. A double-layer multifunctional superhydrophobic coating with excellent anti-corrosion performance based on fluorine-free chemicals[J]. PROGRESS IN ORGANIC COATINGS, 2024, 187: 108150. doi: 10.1016/j.porgcoat.2023.108150 [135] MA D, LIN H, ZHENG K, et al. Rose-like Cr-Fe robust super-hydrophobic surfaces with high adhesion and corrosion resistance[J]. JOURNAL OF MATERIALS SCIENCE, 2022, 57(39): 18640-18654. doi: 10.1007/s10853-022-07724-5 [136] LIU T, CUI Y, LI X, et al. EFFECT OF CRYSTALLINE WATER MOLECULES ON THE PREPARATION AND GROWTH OF SUPERHYDROPHOBIC FILMS VIA ELECTRODEPOSITION[J]. SURFACE REVIEW AND LETTERS, 2022, 29(4): 2250051. doi: 10.1142/S0218625X22500512 [137] KHASKHOUSSI A, CALABRESE L, PROVERBIO E. Superhydrophobic Self-Assembled Silane Monolayers on Hierarchical 6082 Aluminum Alloy for Anti-Corrosion Applications[J]. APPLIED SCIENCES-BASEL, 2020, 10(8): 2656. doi: 10.3390/app10082656 [138] RAO A V, LATTHE S S, MAHADIK S A, et al. Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate[J]. APPLIED SURFACE SCIENCE, 2011, 257(13): 5772-5776. doi: 10.1016/j.apsusc.2011.01.099 [139] ALZADJALI S, MATOUK Z, ALSHEHHI A, et al. Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces[J]. Applied sciences, 2023, 13(3): 1707. doi: 10.3390/app13031707 [140] LAN L, WANG H, ZHU L, et al. Preparation and Wetting Mechanism of Laser-Etched Composite Self-Assembled 1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane Superhydrophobic Surface Coating[J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219(3): 2100568. [141] ZHANG Z, CHEN Y, GU Q, et al. Preparation and Corrosion Resistance of 304 Super-hydrophobic Stainless-Steel Surface[J]. 2ND INTERNATIONAL CONFERENCE ON FRONTIERS OF MATERIALS SYNTHESIS AND PROCESSING, 2019, 493: 012057. [142] 赵树国, 陈阳, 马宁, 等. 电化学刻蚀法制备铝合金超疏水表面及其润湿性转变[J]. 表面技术, 2018, 47(3): 115-120.ZHAO Shuguo, CHEN Yang, MA Ning, et al. Superhydrophobic Surface of Aluminum Alloy Prepared by Electrochemical Etching and Wettability Transition[J]. Surface Technology, 2018, 47(3): 115-120(in Chinese). [143] QIN X, KONG L, WANG J, et al. Double-layer with electroactive and superhydrophobicity based on polymer nanotubes to improve robustness and anti- corrosion performances[J]. CHEMICAL ENGINEERING JOURNAL, 2024, 488: 150928. doi: 10.1016/j.cej.2024.150928 [144] LI S, LIU Y, TIAN Z, et al. Biomimetic superhydrophobic and antibacterial stainless-steel mesh via double-potentiostatic electrodeposition and modification[J]. SURFACE & COATINGS TECHNOLOGY, 2020, 403: 126355. [145] 尤航, 彭毅, 杨冲, 等. 金属超疏水涂层制备及其耐腐蚀性能研究进展[J]. 中国有色金属学报, 2024, 34(3): 703-724. doi: 10.11817/j.ysxb.1004.0609.2023-44428YOU Hang, PENG Yi, YANG Chong, et al. Research progress on preparation of metal superhydrophobic surface coatings and their corrosion resistance[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(3): 703-724(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2023-44428 [146] 李玉峰, 高文博, 史凌志, 等. 超疏水涂层的制备及其对Mg-Li合金的防腐蚀性能[J]. 中国表面工程, 2020, 33(5): 1-9. doi: 10.11933/j.issn.1007-9289.20200813001LI Yufeng, GAO Wenbo, SHI Lingzhi, et al. Preparation of Superhydrophobic Coating and Its Corrosion Resistance to Mg-Li Alloy[J]. China Surface Engineering, 2020, 33(5): 1-9(in Chinese). doi: 10.11933/j.issn.1007-9289.20200813001 [147] ZHANG W, LI S, WEI D, et al. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 186: 231-243. [148] MAMGAIN H P, SAMANTA K K, BRAJPURIYA R, et al. Fabrication of Nanostructured Corrosion-Resistant Superhydrophobic Coating on Copper by Electrodeposition: A Comprehensive Critical Review[J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2024, 13(4): 043010. doi: 10.1149/2162-8777/ad3c25 [149] FU J, SUN Y, WANG J, et al. Fabrication of Fluorine-Free Superhydrophobic Surface on Aluminum Substrate for Corrosion Protection and Drag Reduction[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11(3): 520. doi: 10.3390/jmse11030520 [150] YANG C, WANG C, ZHAO X, et al. Superhydrophobic surface on MAO-processed AZ31B alloy with zinc phosphate nanoflower arrays for excellent corrosion resistance in salt and acidic environments[J]. MATERIALS & DESIGN, 2024, 239: 112769. [151] MEENA M K, TUDU B K, KUMAR A, et al. Development of polyurethane-based superhydrophobic coatings on steel surfaces[J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378(2167): 20190446. doi: 10.1098/rsta.2019.0446 [152] 曹怀杰, 陈守刚, 刘盈. 铜基超疏水膜的制备及其在干湿交替环境下的抗腐蚀行为研究[J]. 功能材料, 2016, 47(11): 11226-11230. doi: 10.3969/j.issn.1001-9731.2016.11.044CAO Huaijie, CHEN Shougang, LIU Ying. Preparation of superhydrophobic film on copper substrate and its anticorrosion behaviors under dry/wet alternative environment[J]. Journal of Functional Materials, 2016, 47(11): 11226-11230(in Chinese). doi: 10.3969/j.issn.1001-9731.2016.11.044 [153] 蒋翔, 田蒙蒙, 雷瑜, 等. 铜基超疏水表面的制备及防腐蚀特性[J]. 华南理工大学学报(自然科学版), 2020, 48(4): 87-94.JIANG Xiang, TIAN Mengmeng, LEI Yu, et al. Fabrication and Corrosion Resistance of Copper-Based Superhydrophobic Surface[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(4): 87-94(in Chinese). [154] WANG Y, LIU P, LUO R, et al. Design and fabrication of superhydrophobic photothermal coating on copper mesh and its applications on anti-corrosion, anti-icing and oil-water separation[J]. PROGRESS IN ORGANIC COATINGS, 2024, 188: 108243. doi: 10.1016/j.porgcoat.2024.108243 [155] LIU X, ZHAN T, ZHANG B. Attapulgite-based superhydrophobic coating on aluminum alloy substrate with self-cleaning, anti-corrosion and robustness[J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 130: 357-367. doi: 10.1016/j.jiec.2023.09.039 [156] 连峰, 王增勇, 张会臣. 超疏水船用铝合金表面微结构对耐海水腐蚀性能的影响[J]. 材料热处理学报, 2014, 35(12): 179-183.LIAN Feng, WANG Zengyong, ZHANG Huichen. Effect of micro-structure of super-hydrophobic warship aluminum alloy surface on its corrosion resistance in seawater[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 179-183(in Chinese). [157] TRAN N G, CHUN D, ABD-ELRAHIM A G. Superhydrophobic aluminum surfaces with nano-micro hierarchical composite structures: A novel and sustainable approach to corrosion protection[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960: 170907. doi: 10.1016/j.jallcom.2023.170907 [158] CHENG Y, TANG X, LI Z, et al. Preparation technology of Nano-SiO2 super - hydrophobic hybrid coating with low cost and high abrasion-resistant[J]. MATERIALS LETTERS, 2024, 355: 135453. doi: 10.1016/j.matlet.2023.135453 [159] 周垲杰, 辛蕾, 黄小文, 等. 镁合金基底超疏水涂层的制备及其防污防腐性能研究[J]. 材料保护, 2023, 56(5): 71-75.ZHOU Kaijie, XIN Lei, HUANG Xiaowen, et al. Preparation of Superhydrophobic Coating on Magnesium Alloy Substrate and Its Anti-Fouling and Anti-Corrosion Properties[J]. Materials Protection, 2023, 56(5): 71-75(in Chinese). [160] 刘金玉, 张志远, 王东, 等. 镁合金表面不同MOF超疏水涂层的耐蚀行为[J]. 材料工程, 2024, (4): 138-145.LIU Jinyu, ZHANG Zhiyuan, WANG Dong, et al. Corrosion resistance behavior of different MOF superhydrophobic coatings on magnesium alloy surface[J]. Journal of Materials Engineering, 2024, (4): 138-145(in Chinese). [161] 张晓菲. 镁合金表面制备耐久性超疏水复合膜及其性能[J]. 兵器材料科学与工程, 2022, 45(6): 80-86.ZHANG Xiaofei. Preparation of durable superhydrophobic composite film on magnesium alloy and its performance[J]. Ordnance Material Science and Engineering, 2022, 45(6): 80-86(in Chinese). [162] CAI Q, XU J, XU A, et al. Magnesium Alloy Composite Water-Repellent Surface with Durable Corrosion Resistance and Self-Cleaning Behavior[J]. ADVANCED ENGINEERING MATERIALS, 2024, 26(7): 2301936. doi: 10.1002/adem.202301936 [163] YANG F, ZHANG J, PAN J, et al. Preparation of Superhydrophobic Coating on X80 Steel and Its Corrosion Resistance in Oilfield Produced Water[J]. LANGMUIR, 2024, 40(19): 10250-10260. doi: 10.1021/acs.langmuir.4c00687 [164] EMELYANENKO K A, EMELYANENKO A M, BOINOVICH L B. Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review[J]. COATINGS, 2023, 13(1): 194. doi: 10.3390/coatings13010194 [165] 罗为平, 罗雪, 石悦婷, 等. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912. doi: 10.11902/1005.4537.2021.296LUO Weiping, LUO Xue, SHI Yueting, et al. Preparation and Corrosion Inhibition of Superhydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(6): 903-912(in Chinese). doi: 10.11902/1005.4537.2021.296 [166] TANG Z, GAO M, ZHANG Z, et al. Biomimetic construction of green, fire-proof and super - hydrophobic multifunctionality-integrated coatings via one-step spraying method for steel structures[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 683: 133056. [167] 刘艳, 冀杰. 45#钢表面Ni-W/ZnO超疏水复合涂层的制备及性能研究[J]. 电镀与精饰, 2023, 45(5): 26-33. doi: 10.3969/j.issn.1001-3849.2023.05.004LIU Yan, JI Jie. Preparation and properties of Ni-W/ZnO superhydrophobic composite coating on 45# steel[J]. Plating and Finishing, 2023, 45(5): 26-33(in Chinese). doi: 10.3969/j.issn.1001-3849.2023.05.004 [168] 王萃, 刘传辉. 建筑45钢结构表面超疏水结构的制备及其耐蚀性能分析[J]. 材料保护, 2022, 55(1): 165-169.WANG Cui, LIU Chuanhui. Preparation of Superhydrophobic Structure on the Surface of Building 45 Steel Structure and Its CorrosionResistance Analysis[J]. Materials Protection, 2022, 55(1): 165-169(in Chinese).
计量
- 文章访问数: 51
- HTML全文浏览量: 27
- 被引次数: 0