Morphology Control and Electrochemical Properties of Three-dimensional Hierarchical NiCo2O4 Structure
-
摘要:
材料的物理化学性能与其形貌和尺寸有着密切关系,不同形貌结构的同一种材料会出现很多不同的微观结构依赖的理化性能,因此,形貌结构的调控对材料的电化学性能具有重要影响。目前,各种形貌的钴酸镍电极材料已经被成功制备出来,其中,具有三维多级结构的纳米材料受到广泛关注。因此,系统深入研究通过控制合成制度调控三维多级NiCo2O4形貌结构对于优化其电化学性能具有重要意义。本文在不同溶剂比以及温度下采用溶剂热法结合煅烧合成不同形貌结构的钴酸镍,并对样品的物相组成及形貌结构进行了表征,同时对其生长机制以及电化学性能进行了分析。结果表明,当水与乙醇比例为1:1时,样品为中空的海胆状NiCo2O4,随着水比例的增加,形貌逐渐转变为规则的中心放射状的针状形貌,且有第二相物质的存在。在水与乙醇比例为1:1时,随着温度的增加,形貌主要由毛绒球向花状、海胆状、中心放射状的针状过渡,而样品均为纯NiCo2O4。简而言之,水含量的增加和温度的升高都会驱使形貌由微球向中心放射状的针状形貌转变。90℃合成的样品具有较好的电化学性能,在1 A·g-1 电流密度下,比电容高达1287.5 F·g-1;当扫速从20-100 mV·s-1变化时,电容保持率达到59.4%;循环1500圈,比电容保持率高达80.1%。此外,对储能机制进行了分析,在整个电化学反应过程中扩散控制过程和电容控制过程共同存在,但扩散控制过程在整个电化学反应中占主导地位。以上结果表明NiCo2O4可以作为潜力的超级电容器电极材料。 不同温度下合成NiCo2O4电极材料的机制示意图(a)和电化学性能对比(b) Abstract: The control of the morphology and structure has an important influence on the electrochemical properties of materials. In this work, NiCo2O4 samples with different morphologies and structures were synthesized by solvothermal method combined with calcination at different solvent ratios and temperatures. The phase composition and morphology of the samples were characterized by XRD, SEM and TEM et.al, and the electrochemical performance was further studied. The results show that the sample is hollow sea urchin-like NiCo2O4, when the ratio of water to ethanol is 1∶1. With the increase of the content of water, the morphology gradually changes to regular central radial needle-like morphology, and there is a second phase substance. Under the condition of the ratio of water to ethanol is 1∶1, with the increase of temperature, the morphology mainly changes from fluffy ball to a flower-like, sea urchin-like, and center-radiating needle, while the phases of samples are pure NiCo2O4. The sample synthesized at 90℃ exhibits better electrochemical performance. The specific capacitance is up to 1287.5 F·g−1 at a current density of 1 A·g−1. The specific capacitance retention rate reaches 59.4% with the scan rate changes from 20-100 mV·s−1, and the specific capacitance retention rate is up to 80.1% after 1500 cycles. In addition, the whole electrochemical reaction is dominated by the diffusion-controlled process. -
图 10 不同温度合成的NiCo2O4的(a-d) GCD曲线,(e) 1 A·g-1的GCD曲线对比图,(f) 与e图对应的电容值,插图为90℃ NiCo2O4电流密度与比电容关系图
Figure 10. (a-d) GCD curves, (e) GCD curves at 1 A·g-1, (f) the corresponding specific capacity of Fig. e of the obtained NiCo2O4 at different synthesis temperature and the inset of the relationship between current density and specific capacity of NiCo2O4 at 90℃
表 1 不同溶剂比例合成NiCo2O4的表面原子比
Table 1. Surface atomic ratios of the obtained NiCo2O4
Samples NiCo2O4 Ni2 p3/2 Co2 p3/2 Ni2+/Ni3+ (atomic ratio) Co3+/Co2+ (atomic ratio) Ni/Co (atomic ratio) Ni2+ Ni3+ Co3+ Co2+ 5 mL Water 77.1% 22.9% 72.2% 27.8% 3.37 2.60 0.37 20 mL Water 69.8% 30.2% 80.1% 19.9% 2.31 4.02 0.60 35 mL Water 65.3% 34.7% 75.1% 24.9% 1.88 3.01 0.71 -
[1] LEE G, NA W, KIM J, et al. Improved electrochemical performances of MOF-derived Ni–Co layered double hydroxide complexes using distinctive hollow-in-hollow structures[J]. Journal of Materials Chemistry A,2019,7:17637-17647. doi: 10.1039/C9TA05138D [2] KARIMI-MALEH H, KARIPER İ A, KARAMAN C, et al. Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material[J]. Fuel,2022,325:124843. doi: 10.1016/j.fuel.2022.124843 [3] WANG H F, ZHONG Y J, NING J Q, et al. Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors[J]. Chinese Chemical Letters,2021,32(12):3733-3752. doi: 10.1016/j.cclet.2021.04.025 [4] LI J, YUAN X, LIN C, et al. Achieving High pseudocapacitance of 2 D Titanium Carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials,2017,7(15):1602725. doi: 10.1002/aenm.201602725 [5] LI W, YANG F F, HU Z H, et al. Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2018,749:305-312. [6] HU M, LI Z, HU T, et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation[J]. ACS Nano,2016,10(12):11344-11350. doi: 10.1021/acsnano.6b06597 [7] LIU M, SHI M, LU W, et al. Core–shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes[J]. Chemical Engineering Journal,2017,313:518-526. doi: 10.1016/j.cej.2016.12.091 [8] MA L, SHEN X, ZHOU H, et al. High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites[J]. Chemical Engineering Journal,2015,262:980-988. doi: 10.1016/j.cej.2014.10.079 [9] KHAN A S, PAN L, FARID A, et al. Carbon nanocoils decorated with a porous NiCo2O4 nanosheet array as a highly efficient electrode for supercapacitors[J]. Nanoscale,2021,13:11943-11952. doi: 10.1039/D1NR00949D [10] BHAGWAN J, NAGARAJU G, RAMULU B, et al. Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,299:509-517. doi: 10.1016/j.electacta.2018.12.174 [11] WANG S X, ZOU Y J, XU F, et al. Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors[J]. Journal of Energy Storage,2021,41:102862. doi: 10.1016/j.est.2021.102862 [12] KUMAR R, JOANNI E, SAHOO S, et al. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials[J]. Carbon:An International Journal Sponsored by the American Carbon Society,2022(193-):193. [13] 何广源, 陈学敏, 王雨婷, 等. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7):13. doi: 10.16085/j.issn.1000-6613.2020-1540HE Guangyuan, CHEN Xuemin, WANG Yuting, et al. Research progress of Nickel Cobalt based nanomaterials in supercapacitors[J]. Chemical Industry and Engineering Progress,2021,40(7):13(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1540 [14] ZHOU Q, XING J, GAO Y, et al. Ordered assembly of NiCo2O4 multiple hierarchical Structures for high-performance pseudocapacitors[J]. Acs Applied Materials & Interfaces,2014,6(14):11394. [15] QIAN Y, ZHANG J, JIN J, et al. Flexible solid-state asymmetric supercapacitor with high energy density and ultralong lifetime based on hierarchical 3 D electrode design[J]. 2022, 5: 5830-5840. [16] WANG Y, SHI C, CHEN Y, et al. 3 D flower-like MOF-derived NiCo-LDH integrated with Ti3C2Tx for high-performance pseudosupercapacitors[J]. Electrochimica Acta,2021,376(1):138040. [17] QU Z C, SHI M J, WU H Z, et al. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage[J]. Journal of Power Sources, 2019: 179-187. [18] LI Q, LU C, CHEN C, et al. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor[J]. Energy Storage Materials,2017,8:59-67. doi: 10.1016/j.ensm.2017.04.002 [19] LEI Y, LI J, WANG Y Y, et al. Rapid microwave-assisted green synthesis of 3 D hierarchical flower-shaped NiCo2O4 Microsphere for High-Performance Supercapacitor[J]. ACS Applied Materials & Interfaces,2014,6(3):1773-1780. [20] ZHANG Y, WANG J, YE J, et al. NiCo2O4 arrays nanostructures on nickel foam: Morphology control and application for pseudocapacitors[J]. Ceramics International,2016,42(13):14976-14983. doi: 10.1016/j.ceramint.2016.06.142 [21] 苏展, 于金山, 裴锋, 等. 溶剂热法制备形貌可控的NiCo2O4超电材料及其性能研究[J]. 电镀与精饰, 2021, 43(12):1-6. doi: 10.3969/j.issn.1001-3849.2021.12.001SU Zhan, YU Jinshan, PEI Feng, et al. Preparation of NiCo2O4 supercapacitor electrode materials with controllable morphology by solvothermal method and research of their properties[J]. Plating & Finishing,2021,43(12):1-6(in Chinese). doi: 10.3969/j.issn.1001-3849.2021.12.001 [22] KUMAR D R, PRAKASHA K R, PRAKASH A S, et al. Direct growth of honeycomb-like NiCo2O4@Ni foam electrode for pouch-type high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds,2020,836:155370. doi: 10.1016/j.jallcom.2020.155370 [23] Wan L, Zhao Z, Chen X, et al. Controlled synthesis of bifunctional NiCo2O4@FeNi LDH core-shell nanoarray air electrodes for rechargeable zinc-air batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8:11079-11087. [24] ZHOU X, WEN J, WANG Z, et al. Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber[J]. Journal of Colloid and Interface Science,2021,602:834-845. doi: 10.1016/j.jcis.2021.06.083 [25] Wu H, Wu G, Ren Y, et al. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids[J]. Journal of Materials Chemistry C,2015,3(29):7677-7690. doi: 10.1039/C5TC01716E [26] XIONG W, GAO Y S, WU X, et al. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance[J]. ACS Applied Materials & Interfaces,2014,6,21:19416-19423. [27] WANG T L, ZHANG H, LUO H M, et al. Controlled synthesisof NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheetsfor supercapacitors[J]. Journal of Solid State Electrochemistry,2015,19(11):3309-3317. doi: 10.1007/s10008-015-2940-6 [28] JIN C, LU F, CAO X, et al. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction[J]. Journal of Materials Chemistry A,2013,1(39):12170-12177. doi: 10.1039/c3ta12118f [29] XU R, ZENG H C. Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles[J]. Journal of Physical Chemistry B,2003,107(46):12643-12649. doi: 10.1021/jp035751c [30] HU Y, WANG Q, CHEN S, et al. Flexible supercapacitors fabricated by growing porous NiCo2O4 in-situ on a carbon nanotube film using a hyperbranched polymer template[J]. ACS Applied Energy Materials,2020,3:4043-4050. doi: 10.1021/acsaem.0c00491 [31] KUMAR L, CHAUHAN H, YADAV N, et al. Faster ion switching NiCo2O4 nanoparticle electrode based supercapacitor device with high performances and long cycling stability[J]. ACS Applied Energy Materials,2018,1:6999-7006. doi: 10.1021/acsaem.8b01427 [32] AN C, WANG Y, HUANG Y, et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy,2014,10:125-134. doi: 10.1016/j.nanoen.2014.09.015 [33] KAVINKUMAR T, VINODGOPAL K, NEPPOLIAN B. Development of nanohybrids based on porous spinel MCo2O4 (M=Zn, Cu, Ni and Mn)/reduced graphene oxide/carbon nanotube as promising electrodes for high performance energy storage devices[J]. Applied Surface Science,2020,513(2017):145781. [34] WU W, ZHAO C, NIU D, et al. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors[J]. Applied Surface Science,2021,539:148272. doi: 10.1016/j.apsusc.2020.148272 [35] CAI Y, WANG Y, ZHANG L, et al. 3 D heterostructure constructed by few-layered MXenes with a MoS2 Layer as the shielding shell for excellent hybrid capacitive deionization and enhanced structural stability[J]. 2022, 14: 2833-2847. [36] LI G, CAI H R, LI X L, et al. Construction of hierarchical NiCo2O4@Ni-MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors[J]. ACS applied materials & interfaces,2019,11(41):37675-37684. [37] Li Y, Wang S, Ni G, et al. Facile Synthesis of NiCo2O4 nanowire arrays/few-layered Ti3C2-MXene composite as binder-free electrode for high-performance supercapacitors[J]. Molecules,2022,27(19):6452. doi: 10.3390/molecules27196452 [38] PATIL A M. Redox-ambitious route to boost energy and capacity retention of pouch type asymmetric solid-state supercapacitor fabricated with graphene oxide-based battery-type electrodes[J]. Applied Materials Today,2020,19:100563. doi: 10.1016/j.apmt.2020.100563 [39] LIU H, HU R, QI J, et al. A facile method for synthesizing NiS nanoflower grown on MXene (Ti3C2Tx) as positive electrodes for "supercapattery"[J]. Electrochimica Acta,2020,353:136526. doi: 10.1016/j.electacta.2020.136526 -

计量
- 文章访问数: 40
- HTML全文浏览量: 16
- 被引次数: 0