Pore structure and thermal conductivity of basalt fiber reinforced foam concrete under freeze-thaw cycles
-
摘要: 为研究冻融循环作用下的玄武岩纤维泡沫混凝土(BFRFC)的孔结构及热传导特性。选取四种不同纤维掺量的BFRFC试样,采用X-CT技术和Avizo软件进行三维重构,分析其孔隙结构和纤维分布特征。通过热力学性能测试和COMSOL数值仿真,研究不同冻融循环次数下BFRFC的导热性能变化规律,并基于多孔介质Bruggeman模型以及纤维的串并联导热机理,提出BFRFC的理论导热模型。结果表明,BFRFC的孔径尺寸和形状因子近似对数正态分布,纤维极角和方位角分别在15°~90°和0°~360°范围内均匀分布;BFRFC导热系数处于0.2~0.4W/(m·K)之间,受孔隙率和冻融循环次数的影响,纤维掺量的影响较小;通过建立BFRFC的数值仿真模型,采用COMSOL模拟导热性能,与实验结果基本一致;基于多相介质Bruggeman模型,结合纤维的串并联模型建立的理论导热模型可以有效地预测不同纤维掺量和孔隙率下BFRFC的导热系数,为寒区工程中BFRFC的应用提供了理论依据。Abstract: To study the pore structure and thermal conductivity characteristics of basalt fiber reinforced foam concrete (BFRFC) under freeze-thaw cycles, four BFRFC samples with different fiber contents were selected. X-CT technology and Avizo software were employed for three-dimensional reconstruction to analyze the pore structure and fiber distribution characteristics. Thermodynamic performance tests and COMSOL numerical simulations were conducted to investigate the changes in thermal conductivity of BFRFC under different freeze-thaw cycles. Based on the Bruggeman model for porous media and the parallel and series conduction mechanisms of fibers, a theoretical thermal conductivity model for BFRFC was proposed. The results show that the pore size and shape factor of BFRFC approximately follow a log-normal distribution, with fiber polar and azimuthal angles uniformly distributed in the ranges of 15° to 90° and 0° to 360°, respectively. BFRFC's thermal conductivity ranges from 0.2 to 0.4 W/(m·K), primarily influenced by porosity and freeze-thaw cycles, with fiber content having a smaller impact. By establishing a numerical simulation model of BFRFC and using COMSOL to simulate thermal conductivity, the results were found to be consistent with experimental data. The theoretical thermal conductivity model, based on the Bruggeman model and the parallel-series fiber model, effectively predicts the thermal conductivity of BFRFC under different fiber contents and porosity conditions, providing a theoretical basis for the application of BFRFC in cold region engineering.
-
表 1 BFRFC的配合比(kg/m3)
Table 1. Mix ratio and of BFRFC (kg/m3)
Sample Cement Water BF Foams 0%BF/FC08* 416.67 208.33 0 35.49 0.15%BF/FC08 416.67 208.33 4.2 35.49 0.30%BF/FC08 416.67 208.33 8.4 35.49 0.45%BF/FC08 416.67 208.33 12.6 35.49 0%BF/FC10 743.05 371.53 0 21.83 0.15%BF/FC10 743.05 371.53 4.2 21.83 0.30%BF/FC10 743.05 371.53 8.4 21.83 0.45%BF/FC10 743.05 371.53 12.6 21.83 *Notes: 0.15% BF represents the basalt fiber content; FC08 represents the foam concrete matrix, where 08 and 10 denote densities of 800 kg/m³ and 1000 kg/m³, respectively.表 2 不同冻融次数下BFRFC的孔隙尺寸特征
Table 2. Pore size characteristics of BFRFC under different freeze-thaw cycles
Sample Freeze-thaw
CyclesPorosity/% Pore
numberPore diameter/ μm Distribution parameters X-CT Saturated water
absorptionError Max Min Average μ σ 0%BF/FC08 0 15.43 15.87 −2.85% 326725 4480.61 44.54 458.14 6.03 0.4 40 35.75 35.67 0.22% 300971 4657.25 44.54 642.03 6.35 0.43 80 43.79 43.87 −0.18% 294860 4721.06 44.54 768.12 6.54 0.45 0.15%BF/FC08 0 14.91 15.29 −2.55% 315854 4503.13 44.54 447.85 6.02 0.39 40 34.54 34.44 0.29% 275417 4678.84 44.54 624.54 6.32 0.42 80 42.54 42.67 −0.31% 288012 4745.87 44.54 723.01 6.48 0.39 0.30%BF/FC08 0 14.44 14.84 −2.77% 305145 4534.57 44.54 434.74 6.01 0.36 40 32.87 32.75 0.37% 289874 4705.89 44.54 594.47 6.23 0.43 80 41.87 41.94 −0.17% 281245 4765.47 44.54 688.17 6.42 0.4 0.45%BF/FC08 0 14.02 13.75 1.93% 294180 4556.17 44.54 425.15 5.99 0.34 40 31.82 31.64 0.57% 283498 4724.53 44.54 576.1 6.19 0.42 80 40.71 40.98 −0.66% 274507 4787.56 44.54 641.58 6.35 0.39 0%BF/FC10 0 10.94 11.51 −5.21% 483346 3000.06 44.54 307.18 5.77 0.22 40 19.92 19.90 0.10% 466913 3407.16 44.54 410.41 6.02 0.24 80 26.04 26.47 −1.65% 404889 3870.43 44.54 565.45 6.24 0.29 0.15%BF/FC10 0 10.69 10.45 2.25% 461487 3035.25 44.54 289.73 5.64 0.23 40 19.54 19.87 −1.69% 446674 3458.12 44.54 384.62 5.92 0.25 80 25.87 25.86 0.04% 398743 3954.78 44.54 501.41 6.15 0.27 0.30%BF/FC10 0 10.54 10.92 −3.61% 439784 3094.54 44.54 271.45 5.58 0.26 40 18.95 18.77 0.95% 425174 3536.89 44.54 358.14 5.83 0.27 80 25.71 25.87 −0.62% 394155 4001.34 44.54 479.54 6.13 0.24 0.45%BF/FC10 0 9.93 10.25 −3.22% 417611 3136.87 44.54 244.18 5.51 0.27 40 18.09 18.54 −2.49% 406178 3597.48 44.54 337.4 5.72 0.23 80 24.65 24.55 0.41% 384755 4068.15 44.54 461.34 6.06 0.28 Notes: Due to the testing accuracy and resolution limitations of the X-CT equipment, the smallest pore diameter recorded for the BFRFC specimens is 44.54 μm. However, it is expected that the actual minimum pore diameters of each specimen are likely to be less than 44.54 μm and vary between samples. 表 3 BFRFC各相材料属性
Table 3. Properties of Each Phase Material in BFRFC
Material Density/(kg·m−3) Elastic modulus/GPa Poisson's ratio Thermal conductivity/ (W·(m·K)−1) Specific heat capacity/ (J·(kg·K)−1) Cement 3150 34 0.200 0.508 850 BF 2800 65 0.227 0.035 700 Air 1.208 − − 0.023 1000 表 4 不同纤维掺量的BFRFC导热性能
Table 4. Thermal conductivity of BFRFC in different fiber contents
Materials Fiber fraction /% Thermal conductivity/ (W·(m·K)−1) Error
$E = \left( {\frac{{{\lambda _{\text{t}}} - {\lambda _{\text{s}}}}}{{{\lambda _{\text{t}}}}}} \right)$Test result λt Comsol simulation λs FC08 0 0.372 0.382 −2.69% 0.15 0.382 0.370 3.14% 0.30 0.399 0.379 5.01% 0.45 0.394 0.373 5.33% FC10 0 0.433 0.440 −1.62% 0.15 0.428 0.437 −2.10% 0.30 0.414 0.401 3.14% 0.45 0.415 0.391 5.78% 表 5 BFRFC各项因素与导热系数的灰关联度
Table 5. Grey correlation of BFRFC influence factors with thermal conductivity
Factors Porosity Freeze-thaw cycle Fiber Grey correlation 0.95 0.72 0.51 -
[1] HEN J, CHEN B, CHEN X, et al. Study on pore structure of foamed cement paste by multi-approach synergetics[J]. Construction and Building Materials, 2023, 362: 129748. doi: 10.1016/j.conbuildmat.2022.129748 [2] 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J/OL]. 复合材料学报: 1-11.GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Journal of Composite Materials, 2024, 41(02): 827-838. (in Chinese). [3] JIANG W, SHEN X, HONG S, et. al. Binding capacity and diffusivity of concrete subjected to freeze-thaw and chloride attack: A numerical study[J]. Ocean Engineering, 2019, 186: 106093. doi: 10.1016/j.oceaneng.2019.05.075 [4] 童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2022, 39(11): 5181-5191.TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5181-5191(in Chinese). [5] 郭凌云, 陈波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J/OL]. 复合材料学报, 1-142024-07-29 GUO Lingyun, CHEN Bo, GAO Zhihan, et. al. Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation[J]. Journal of Composite Materials: 1-14[: 2024-04-24]. (in Chinese). [6] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Journal of Composite Materials, 2023, 40(3): 1569-1585(in Chinese). [7] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. doi: 10.11896/cldb.19010130WANG Jingwen, WANG Wei. Response surface based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports, 2019, 33(24): 4092-4097(in Chinese). doi: 10.11896/cldb.19010130 [8] GENCEL O, NODEHI M, BAYRAKTAR O, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326. [9] 周程涛, 陈波, 张娟, 等. 玄武岩纤维泡沫混凝土的细观结构及损伤特性[J/OL]. 复合材料学报: 1-11.ZHOU Chengtao, CHEN Bo, ZHANG Juan, et al. Microstructure and damage characteristics of basalt fiber reinforced foam concrete[J]. Journal of Composite Materials: 1-11[2024-06-23]. (in Chinese). [10] 牛瀚仪, 陈波, 高志涵, 等. 冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征[J/OL]. 复合材料学报: 1-102024-06-22]. NIU Hanyi, CHEN Bo, GAO Zhihan, et al. Damage-acoustic emission characterization of basalt fiber foam concrete under freeze-thaw environment[J]. Journal of Composite Materials: 1-10. [2024-06-22]. (in Chinese). [11] JG/T 266-2011, 泡沫混凝土 [S]. 北京: 中国建筑工业出版社, 2011.JG/T 266-2011, Foam Concrete [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese). [12] JGJ/T 341-2014, 泡沫混凝土技术应用规程 [S]. 北京: 中国建筑工业出版社, 2014.JGJ/T 341-2014, Technical Specification for Application of Foam Concrete [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese). [13] GB/T 10294-2008, 绝热材料稳态热阻及有关特性的测定 防护热板法 [S]. 北京: 中国标准出版社, 2008.GB/T 10294-2008, Determination of Steady-State Thermal Resistance and Relevant Properties of Thermal Insulating Materials—Guarded Hot Plate Method [S]. Beijing: Standards Press of China, 2008. (in Chinese). [14] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730. doi: 10.3969/j.issn.1007-9629.2023.07.004GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.004 [15] EIK M, PUTTONEN J, HERRMANN H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibers[J]. Composite Structures, 2015, 121: 324-336. doi: 10.1016/j.compstruct.2014.11.018 [16] KUMAR N, ARUNKUMAR C, SENTHIL S. Experimental study on mechanical and thermal behavior of foamed concrete[J]. Materials Today: Proceedings, 2018, 5(2): 8753-8760. doi: 10.1016/j.matpr.2017.12.302 [17] 袁志颖, 陈波, 黄梓莘, 等. 基于细观数值模拟的泡沫混凝土热学性能研究[J]. 水电能源科学, 2022, 40(9): 167-171.YUAN Zhiying, CHEN Bo, HUANG Zishen, et al. Research on thermal performance of foamed concrete based on mesoscale numerical simulation.[J]. Water Resources and Power, 2022, 40(9): 167-171(in Chinese). [18] 周程涛, 陈波. 基于三维结构光扫描的泡沫混凝土冻融损伤演化特性[J]. 复合材料学报, 2025, 42: 1-11.ZHOU Chengtao, CHEN Bo. Freeze-thaw damage evolution characteristics of foamed concrete based on three-dimensional laser scanning[J]. Acta Materiae Compositae Sinica, 2025, 42: 1-11 (in Chinese). [19] SHI J, LIU Y, LIU B, et al. Temperature effect on the thermal conductivity of expanded polystyrene foamed concrete: Experimental investigation and model correction[J]. Advances in Materials Science and Engineering, 2019, (1): 8292379. [20] WEI S, YUNSHENG Z, JONES M R. Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete[J]. Construction & Building Materials, 2014, 50: 421-431. [21] MARKL D, WANG P, RIDGWAY C, et al. Characterization of the pore structure of functionalized calcium carbonate tablets by terahertz time-domain spectroscopy and X-Ray computed microtomography[J]. Journal of Pharmaceutical Sciences, 2017: 1586-1595. [22] SHI X, ZHENG K, YIN B. Numerical method for gas-liquid two-phase flow with phase change heat transfer considering compressibility using OpenFOAM[J]. International Journal of Thermal Sciences, 2023: 108195. [23] LI T, HUANG F, ZHU J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Construction and Building Materials, 2020, 231: 117197. doi: 10.1016/j.conbuildmat.2019.117197
计量
- 文章访问数: 83
- HTML全文浏览量: 28
- 被引次数: 0