留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环下玄武岩纤维泡沫混凝土孔结构及导热性能

郭凌云 陈波 高志涵 陈长征

郭凌云, 陈波, 高志涵, 等. 冻融循环下玄武岩纤维泡沫混凝土孔结构及导热性能[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 郭凌云, 陈波, 高志涵, 等. 冻融循环下玄武岩纤维泡沫混凝土孔结构及导热性能[J]. 复合材料学报, 2024, 42(0): 1-14.
GUO Lingyun, CHEN Bo, GAO Zhihan, et al. Pore structure and thermal conductivity of basalt fiber reinforced foam concrete under freeze-thaw cycles[J]. Acta Materiae Compositae Sinica.
Citation: GUO Lingyun, CHEN Bo, GAO Zhihan, et al. Pore structure and thermal conductivity of basalt fiber reinforced foam concrete under freeze-thaw cycles[J]. Acta Materiae Compositae Sinica.

冻融循环下玄武岩纤维泡沫混凝土孔结构及导热性能

基金项目: 国家自然科学基金项目(52079049; 52239009);国家重点实验室基本科研业务费(522012272);国家资助博士后项目(GZC20230671); 江苏省卓越博士后项目(2023 ZB703);中央高校基本科研业务费专项资金(2016-423318)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528;TB332

Pore structure and thermal conductivity of basalt fiber reinforced foam concrete under freeze-thaw cycles

Funds: General Program of National Natural Science Foundation of China (52079049; 52239009); Basic Scientific Research Business Expenses of National Key Laboratories (522012272); National Funded Postdoctoral Program (GZC20230671); Jiangsu Province Outstanding Postdoctoral Program (2023 ZB703);Special Fund for Fundamental Research of Central Universities (2016-423318)
  • 摘要: 为研究冻融循环作用下的玄武岩纤维泡沫混凝土(BFRFC)的孔结构及热传导特性。选取四种不同纤维掺量的BFRFC试样,采用X-CT技术和Avizo软件进行三维重构,分析其孔隙结构和纤维分布特征。通过热力学性能测试和COMSOL数值仿真,研究不同冻融循环次数下BFRFC的导热性能变化规律,并基于多孔介质Bruggeman模型以及纤维的串并联导热机理,提出BFRFC的理论导热模型。结果表明,BFRFC的孔径尺寸和形状因子近似对数正态分布,纤维极角和方位角分别在15°~90°和0°~360°范围内均匀分布;BFRFC导热系数处于0.2~0.4W/(m·K)之间,受孔隙率和冻融循环次数的影响,纤维掺量的影响较小;通过建立BFRFC的数值仿真模型,采用COMSOL模拟导热性能,与实验结果基本一致;基于多相介质Bruggeman模型,结合纤维的串并联模型建立的理论导热模型可以有效地预测不同纤维掺量和孔隙率下BFRFC的导热系数,为寒区工程中BFRFC的应用提供了理论依据。

     

  • 图  1  实验过程图

    Figure  1.  Experimental process flowchart

    图  2  X-CT的3维重构模型

    Figure  2.  3 D reconstruction model of X-CT

    图  3  冻融循环下各BFRFC试样的孔径分布和表面粗糙度

    Figure  3.  Pore size distributions and surface roughness of different BFRFC samples under freeze-thaw cycles

    图  4  冻融循环下各密度等级BFRFC的孔隙形状特征统计

    Figure  4.  Statistical characteristics of pore shapes for BFRFC of different density grades under freeze-thaw cycles

    图  5  玄武岩纤维空间坐标位置示意

    Figure  5.  Schematic diagram of the spatial coordinates of basalt fibers

    图  6  玄武岩纤维的空间分布情况

    Figure  6.  Spatial distribution characteristics of basalt fibers

    图  7  BFRFC建模流程图

    Figure  7.  Flowchart of BFRFC modeling process

    图  8  冻融循环下BFRFC的导热性能

    Figure  8.  Thermal conductivity of each BFRFC under freeze-thaw cycles

    图  9  BFRFC传热温度分布图(t=600 s)

    Figure  9.  BFRFC heat transfer temperature profile (t=600 s)

    图  10  BFRFC不同位置温度变化情况

    Figure  10.  Thermal conductivity of BFRFC with freeze-thaw cycles

    图  11  BFRFC传热特征温度分布平面图(t=600 s)

    Figure  11.  BFRFC heat transfer temperature profile (t=600 s)

    图  12  EMPT 导热模型结构示意图

    Figure  12.  EMPT model thermal conductivity structure

    图  13  导热并联串联模型结构示意图

    Figure  13.  Schematic diagram of thermal conductivity parallel and series models

    图  14  BFRFC孔隙交接界面示意图

    Figure  14.  Pore interface of BFRFC

    de is the pore diameter

    图  15  BFRFC导热系数预测值与实测值和模拟值比较

    Figure  15.  Comparison of predicted, measured, and simulated thermal conductivity values for BFRFC

    表  1  BFRFC的配合比(kg/m3)

    Table  1.   Mix ratio and of BFRFC (kg/m3)

    SampleCementWaterBFFoams
    0%BF/FC08*416.67208.33035.49
    0.15%BF/FC08416.67208.334.235.49
    0.30%BF/FC08416.67208.338.435.49
    0.45%BF/FC08416.67208.3312.635.49
    0%BF/FC10743.05371.53021.83
    0.15%BF/FC10743.05371.534.221.83
    0.30%BF/FC10743.05371.538.421.83
    0.45%BF/FC10743.05371.5312.621.83
    *Notes: 0.15% BF represents the basalt fiber content; FC08 represents the foam concrete matrix, where 08 and 10 denote densities of 800 kg/m³ and 1000 kg/m³, respectively.
    下载: 导出CSV

    表  2  不同冻融次数下BFRFC的孔隙尺寸特征

    Table  2.   Pore size characteristics of BFRFC under different freeze-thaw cycles

    SampleFreeze-thaw
    Cycles
    Porosity/%Pore
    number
    Pore diameter/ μmDistribution parameters
    X-CTSaturated water
    absorption
    ErrorMaxMinAverage μσ
    0%BF/FC08015.4315.87−2.85%3267254480.6144.54458.146.030.4
    4035.7535.670.22%3009714657.2544.54642.036.350.43
    8043.7943.87−0.18%2948604721.0644.54768.126.540.45
    0.15%BF/FC08014.9115.29−2.55%3158544503.1344.54447.856.020.39
    4034.5434.440.29%2754174678.8444.54624.546.320.42
    8042.5442.67−0.31%2880124745.8744.54723.016.480.39
    0.30%BF/FC08014.4414.84−2.77%3051454534.5744.54434.746.010.36
    4032.8732.750.37%2898744705.8944.54594.476.230.43
    8041.8741.94−0.17%2812454765.4744.54688.176.420.4
    0.45%BF/FC08014.0213.751.93%2941804556.1744.54425.155.990.34
    4031.8231.640.57%2834984724.5344.54576.16.190.42
    8040.7140.98−0.66%2745074787.5644.54641.586.350.39
    0%BF/FC10010.9411.51−5.21%4833463000.0644.54307.185.770.22
    4019.9219.900.10%4669133407.1644.54410.416.020.24
    8026.0426.47−1.65%4048893870.4344.54565.456.240.29
    0.15%BF/FC10010.6910.452.25%4614873035.2544.54289.735.640.23
    4019.5419.87−1.69%4466743458.1244.54384.625.920.25
    8025.8725.860.04%3987433954.7844.54501.416.150.27
    0.30%BF/FC10010.5410.92−3.61%4397843094.5444.54271.455.580.26
    4018.9518.770.95%4251743536.8944.54358.145.830.27
    8025.7125.87−0.62%3941554001.3444.54479.546.130.24
    0.45%BF/FC1009.9310.25−3.22%4176113136.8744.54244.185.510.27
    4018.0918.54−2.49%4061783597.4844.54337.45.720.23
    8024.6524.550.41%3847554068.1544.54461.346.060.28
    Notes: Due to the testing accuracy and resolution limitations of the X-CT equipment, the smallest pore diameter recorded for the BFRFC specimens is 44.54 μm. However, it is expected that the actual minimum pore diameters of each specimen are likely to be less than 44.54 μm and vary between samples.
    下载: 导出CSV

    表  3  BFRFC各相材料属性

    Table  3.   Properties of Each Phase Material in BFRFC

    Material Density/(kg·m−3) Elastic modulus/GPa Poisson's ratio Thermal conductivity/ (W·(m·K)−1) Specific heat capacity/ (J·(kg·K)−1)
    Cement 3150 34 0.200 0.508 850
    BF 2800 65 0.227 0.035 700
    Air 1.208 0.023 1000
    下载: 导出CSV

    表  4  不同纤维掺量的BFRFC导热性能

    Table  4.   Thermal conductivity of BFRFC in different fiber contents

    Materials Fiber fraction /% Thermal conductivity/ (W·(m·K)−1) Error
    $E = \left( {\frac{{{\lambda _{\text{t}}} - {\lambda _{\text{s}}}}}{{{\lambda _{\text{t}}}}}} \right)$
    Test result λt Comsol simulation λs
    FC08 0 0.372 0.382 −2.69%
    0.15 0.382 0.370 3.14%
    0.30 0.399 0.379 5.01%
    0.45 0.394 0.373 5.33%
    FC10 0 0.433 0.440 −1.62%
    0.15 0.428 0.437 −2.10%
    0.30 0.414 0.401 3.14%
    0.45 0.415 0.391 5.78%
    下载: 导出CSV

    表  5  BFRFC各项因素与导热系数的灰关联度

    Table  5.   Grey correlation of BFRFC influence factors with thermal conductivity

    FactorsPorosityFreeze-thaw cycleFiber
    Grey correlation0.950.720.51
    下载: 导出CSV
  • [1] HEN J, CHEN B, CHEN X, et al. Study on pore structure of foamed cement paste by multi-approach synergetics[J]. Construction and Building Materials, 2023, 362: 129748. doi: 10.1016/j.conbuildmat.2022.129748
    [2] 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J/OL]. 复合材料学报: 1-11.

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Journal of Composite Materials, 2024, 41(02): 827-838. (in Chinese).
    [3] JIANG W, SHEN X, HONG S, et. al. Binding capacity and diffusivity of concrete subjected to freeze-thaw and chloride attack: A numerical study[J]. Ocean Engineering, 2019, 186: 106093. doi: 10.1016/j.oceaneng.2019.05.075
    [4] 童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2022, 39(11): 5181-5191.

    TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5181-5191(in Chinese).
    [5] 郭凌云, 陈波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J/OL]. 复合材料学报, 1-14

    2024-07-29 GUO Lingyun, CHEN Bo, GAO Zhihan, et. al. Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation[J]. Journal of Composite Materials: 1-14[: 2024-04-24]. (in Chinese).
    [6] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.

    WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Journal of Composite Materials, 2023, 40(3): 1569-1585(in Chinese).
    [7] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. doi: 10.11896/cldb.19010130

    WANG Jingwen, WANG Wei. Response surface based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports, 2019, 33(24): 4092-4097(in Chinese). doi: 10.11896/cldb.19010130
    [8] GENCEL O, NODEHI M, BAYRAKTAR O, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326.
    [9] 周程涛, 陈波, 张娟, 等. 玄武岩纤维泡沫混凝土的细观结构及损伤特性[J/OL]. 复合材料学报: 1-11.

    ZHOU Chengtao, CHEN Bo, ZHANG Juan, et al. Microstructure and damage characteristics of basalt fiber reinforced foam concrete[J]. Journal of Composite Materials: 1-11[2024-06-23]. (in Chinese).
    [10] 牛瀚仪, 陈波, 高志涵, 等. 冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征[J/OL]. 复合材料学报: 1-10

    2024-06-22]. NIU Hanyi, CHEN Bo, GAO Zhihan, et al. Damage-acoustic emission characterization of basalt fiber foam concrete under freeze-thaw environment[J]. Journal of Composite Materials: 1-10. [2024-06-22]. (in Chinese).
    [11] JG/T 266-2011, 泡沫混凝土 [S]. 北京: 中国建筑工业出版社, 2011.

    JG/T 266-2011, Foam Concrete [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese).
    [12] JGJ/T 341-2014, 泡沫混凝土技术应用规程 [S]. 北京: 中国建筑工业出版社, 2014.

    JGJ/T 341-2014, Technical Specification for Application of Foam Concrete [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese).
    [13] GB/T 10294-2008, 绝热材料稳态热阻及有关特性的测定 防护热板法 [S]. 北京: 中国标准出版社, 2008.

    GB/T 10294-2008, Determination of Steady-State Thermal Resistance and Relevant Properties of Thermal Insulating Materials—Guarded Hot Plate Method [S]. Beijing: Standards Press of China, 2008. (in Chinese).
    [14] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730. doi: 10.3969/j.issn.1007-9629.2023.07.004

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.004
    [15] EIK M, PUTTONEN J, HERRMANN H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibers[J]. Composite Structures, 2015, 121: 324-336. doi: 10.1016/j.compstruct.2014.11.018
    [16] KUMAR N, ARUNKUMAR C, SENTHIL S. Experimental study on mechanical and thermal behavior of foamed concrete[J]. Materials Today: Proceedings, 2018, 5(2): 8753-8760. doi: 10.1016/j.matpr.2017.12.302
    [17] 袁志颖, 陈波, 黄梓莘, 等. 基于细观数值模拟的泡沫混凝土热学性能研究[J]. 水电能源科学, 2022, 40(9): 167-171.

    YUAN Zhiying, CHEN Bo, HUANG Zishen, et al. Research on thermal performance of foamed concrete based on mesoscale numerical simulation.[J]. Water Resources and Power, 2022, 40(9): 167-171(in Chinese).
    [18] 周程涛, 陈波. 基于三维结构光扫描的泡沫混凝土冻融损伤演化特性[J]. 复合材料学报, 2025, 42: 1-11.

    ZHOU Chengtao, CHEN Bo. Freeze-thaw damage evolution characteristics of foamed concrete based on three-dimensional laser scanning[J]. Acta Materiae Compositae Sinica, 2025, 42: 1-11 (in Chinese).
    [19] SHI J, LIU Y, LIU B, et al. Temperature effect on the thermal conductivity of expanded polystyrene foamed concrete: Experimental investigation and model correction[J]. Advances in Materials Science and Engineering, 2019, (1): 8292379.
    [20] WEI S, YUNSHENG Z, JONES M R. Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete[J]. Construction & Building Materials, 2014, 50: 421-431.
    [21] MARKL D, WANG P, RIDGWAY C, et al. Characterization of the pore structure of functionalized calcium carbonate tablets by terahertz time-domain spectroscopy and X-Ray computed microtomography[J]. Journal of Pharmaceutical Sciences, 2017: 1586-1595.
    [22] SHI X, ZHENG K, YIN B. Numerical method for gas-liquid two-phase flow with phase change heat transfer considering compressibility using OpenFOAM[J]. International Journal of Thermal Sciences, 2023: 108195.
    [23] LI T, HUANG F, ZHU J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Construction and Building Materials, 2020, 231: 117197. doi: 10.1016/j.conbuildmat.2019.117197
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-08-11
  • 录用日期:  2024-08-29
  • 网络出版日期:  2024-09-07

目录

    /

    返回文章
    返回