留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低共熔溶剂预处理制备纳米纤维素与功能化应用的研究进展

吴新宇 袁杨 连海兰

吴新宇, 袁杨, 连海兰. 低共熔溶剂预处理制备纳米纤维素与功能化应用的研究进展[J]. 复合材料学报, 2023, 40(10): 5567-5576. doi: 10.13801/j.cnki.fhclxb.20230512.001
引用本文: 吴新宇, 袁杨, 连海兰. 低共熔溶剂预处理制备纳米纤维素与功能化应用的研究进展[J]. 复合材料学报, 2023, 40(10): 5567-5576. doi: 10.13801/j.cnki.fhclxb.20230512.001
WU Xinyu, YUAN Yang, LIAN Hailan. Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5567-5576. doi: 10.13801/j.cnki.fhclxb.20230512.001
Citation: WU Xinyu, YUAN Yang, LIAN Hailan. Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5567-5576. doi: 10.13801/j.cnki.fhclxb.20230512.001

低共熔溶剂预处理制备纳米纤维素与功能化应用的研究进展

doi: 10.13801/j.cnki.fhclxb.20230512.001
基金项目: 国家自然科学基金(32071703);江苏省自然科学基金(BK20221335)
详细信息
    通讯作者:

    连海兰,博士,教授,博士生导师,研究方向为生物质纳米复合材料的绿色制备及功能性应用 E-mail: lianhailan@njfu.edu.cn

  • 中图分类号: TS69;TB332

Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent

Funds: National Natural Science Foundation of China (32071703); Natural Science Foundation of Jiangsu Province (BK20221335)
  • 摘要: 近年来,环境友好型的绿色溶剂是发展绿色化学的重要研究方向。低共熔溶剂作为具有一定降解性、生物相容性良好的新型绿色溶剂,在纳米纤维素的制备及功能化应用中展现了强大的发展潜力。本文对低共熔溶剂的基本性质和形成机制进行了综述,并介绍了不同低共熔溶剂在纳米纤维素的制备及功能化应用,以实现纳米纤维素的高效制备和改性。未来通过实验与计算模拟技术的结合,可以充分发挥低共熔溶剂的可设计性,揭示其溶解、降解和制备纳米纤维素的规律,为低共熔溶剂预处理制备及改性纳米纤维素提供参考,推动其在生物质预处理中的规模化应用。

     

  • 图  1  (a) 纤维素的化学结构[35];(b) 从不同生物质中采用不同方法合成纳米纤维素示意图[35];(c) 纤维素纳米纤维(CNFs)和纤维素纳米晶体(CNCs)的结构[36];(d) 纤维素纤维结构示意图[37]

    Figure  1.  (a) Chemical structure of cellulose[35]; (b) Schematic representation for the synthesis of nanocellulose with different approaches from different biomass[35]; (c) Structures of cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs)[36]; (d) Schematics of the structure of cellulose nanofibers[37]

    图  2  (a) 用于低共熔溶剂(DES)合成的卤化物盐和氢键供体的典型结构[18];(b) 氯化胆碱-尿素与纤维素可能发生的反应[47];(c) 纤维素、氯离子和尿素分子的相互作用示意图[48]

    Figure  2.  (a) Typical structure of halide salts and hydrogen bond donors used for deep eutectic solution (DES) synthesis[18]; (b) Possible reactions of cholinine-urea chloride and cellulose[47]; (c) Schematic diagram of the interaction of cellulose, chloride ions and urea molecules[48]

    图  3  (a) 小麦、玉米和油菜籽原料;(b) 原料的化学组成[51];(c) 酸性DES (乳酸-氯化胆碱(5∶1))和碱性DES (甘油-K2CO3 (5∶1))预处理后的纳米悬浮液[51];(d) DES处理后纳米原纤维的FESEM图像[51];(e) 酯化反应方程式

    Figure  3.  (a) Wheat, corn and rapeseed raw materials; (b) Their compositions[51]; (c) Nanofibrillated samples after acidic-DES (Lactic acid-choline chloride (5∶1)) and alkali-DES (Glycerol-K2CO3 (5∶1)) pretreatments[51]; (d) FESEM images of nanofibrils after DES treatment[51]; (e) Reaction equation of esterification

    图  4  (a) 盐酸甜菜碱-甘油DES体系制备纳米纤维素的过程[54];(b) 纳米纤维素的SEM和TEM图像[54];(c) 初始DES和循环后的DES[57];(d) 机械解体后的纳米纤维素悬浮液[57];(e) 纳米纤维素的TEM图像[57]

    Figure  4.  (a) Preparation of nanocellulose by betaine hydrochloride-glycerol system[54]; (b) SEM and TEM images of nanocelluloses[54]; (c) Original DES, and recycled DES[57]; (d) Nanocellulose suspensions after mechanical disintegration[57]; (e) TEM images of nanocellulose[57]

    表  1  酰胺与氯化胆碱混合物(酰胺∶氯化胆碱摩尔比2∶1)的凝固点及纯酰胺的熔点[23]

    Table  1.   Freezing point of amide and choline chloride mixture (amide∶choline chloride mole ratio 2∶1) and the melting point of pure amide[23]

    Amide compoundFreezing point/℃Melting point/℃
    Urea 12 134
    Methyl urea 29 93
    1, 3-dimethyl urea 70 102
    1, 1-dimethyl urea 149 180
    Sulfur urea 69 175
    Acetamide 51 80
    Benzamide 92 129
    Tetramethyl urea a −1
    Note: a represents no homogeneous liquid was formed.
    下载: 导出CSV

    表  2  尿素类低共熔溶剂预处理制备纳米纤维素

    Table  2.   Preparation of nanocellulose by urea pretreatment with low eutectic solvent

    DESMole ratioRaw materialTreating temperature/
    time
    Types of nanocelluloseYield of nanocelluloseDiameter of nanocellulose/
    nm
    CrystallinityRef.
    Choline
    chloride-urea
    1∶2Birch100℃/2 hCNF90%2-200 nm[38]
    Choline
    chloride-urea
    1∶2Microcrystalline cellulose110℃/48 hCNC80-120 nm79%-85%[39]
    Choline
    chloride-urea
    1∶4Cork dissolved cellulose150℃/30 minCNF(4.4±1.6) nm[40]
    Choline
    chloride-urea
    1∶2Bleached birch pulp100℃/2 hCNF(17±21) nm66%[41]
    Sulfamic
    acid-urea
    1∶2Spruce cellulose pulp150℃/30 minCNF[42]
    Urea-ammonium
    thiocyanate
    2∶1Bleached birch kraft paper100℃/2 hCNF87%13-19 nm[43]
    Urea-guanidine
    hydrochloride
    2∶1Bleached birch kraft paper100℃/2 hCNF90%13-15 nm[43]
    Urea-lithium
    chloride
    5∶1Cork dissolved pulp90℃/6 hCNF[44]
    Choline
    chloride-urea
    1∶2Recycled pulp100℃/2 hCNF1-6 μm[45]
    Sulfamic acid-urea-choline chloride1∶3∶1Fiber pulp100℃/2 hCNF0.52 mm[46]
    下载: 导出CSV
  • [1] BIAN H, GAO Y, LUO J, et al. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials[J]. Waste Management,2019,91:1-8. doi: 10.1016/j.wasman.2019.04.052
    [2] CHEN H, NAIR S S, CHAUHAN P, et al. Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces[J]. Chemical Engineering Journal,2019,360:393-401. doi: 10.1016/j.cej.2018.11.222
    [3] ESPINO-PÉREZ E, DOMENEK S, BELGACEM N, et al. Green process for chemical functionalization of nanocellulose with carboxylic acids[J]. Biomacromolecules,2014,15(12):4551-4560. doi: 10.1021/bm5013458
    [4] PHIRI R, SANJAY M R, SIENGCHIN S, et al. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review[J/OL]. Advanced Industrial and Engineering Polymer Research, 2023[2023-04-29].
    [5] 叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006, 57(8):1782-1791. doi: 10.3321/j.issn:0438-1157.2006.08.010

    YE Daiyong, HUANG Hong, FU Heqing, et al. Research progress in cellulose chemistry[J]. Journal of Chemical Engineering,2006,57(8):1782-1791(in Chinese). doi: 10.3321/j.issn:0438-1157.2006.08.010
    [6] FU H, GAO W, WANG B, et al. Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils[J]. Cellulose,2019,27(3):1327-1340.
    [7] HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1519-1542. doi: 10.1039/C3CS60204D
    [8] JIANG J, CARRILLO-ENRÍQUEZ N C, OGUZLU H, et al. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):7182-7191.
    [9] ÖSTERBERG M, SIPPONEN M H, MATTOS B D, et al. Spherical lignin particles: A review on their sustainability and applications[J]. Green Chemistry,2020,22(9):2712-2733. doi: 10.1039/D0GC00096E
    [10] DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: Example of fiberboard[J]. Cellulose,2017,24(7):3037-3050. doi: 10.1007/s10570-017-1320-z
    [11] 禚晓. 纳米纤维素纸基生物传感器设计[D]. 泰安: 山东农业大学, 2018.

    ZHUO Xiao. Design of paper based nanocellulose biosensor[D]. Taian: Shandong Agricultural University, 2018(in Chinese).
    [12] 王阳, 赵国华, 肖丽, 等. 源于食品加工副产物纳米纤维素晶体的制备及其在食品中的应用[J]. 食品与机械, 2017, 33(2):1-5. doi: 10.13652/j.issn.1003-5788.2017.02.001

    WANG Yang, ZHAO Guohua, XIAO Li, et al. Preparation and application of nanocellulose crystals from food processing by-products[J]. Food & Machinery,2017,33(2):1-5(in Chinese). doi: 10.13652/j.issn.1003-5788.2017.02.001
    [13] SAI Y W, LEE K M. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches[J]. Cellulose,2019,26(18):9517-9528. doi: 10.1007/s10570-019-02770-w
    [14] SOLALA I, IGLESIAS M C, PERESIN M S. On the potential of lignin-containing cellulose nanofibrils (LCNFs): A review on properties and applications[J]. Cellulose,2019,27(4):1853-1877.
    [15] LOOW Y, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose,2017,24(9):3591-3618. doi: 10.1007/s10570-017-1358-y
    [16] 胡丽华, 陈砺, 方泳华, 等. 低共熔溶剂的分子结构及物性估算的研究进展[J]. 化学试剂, 2017, 39(9):937-941. doi: 10.13822/j.cnki.hxsj.2017.09.008

    HU Lihua, CHEN Li, FANG Yonghua, et al. Research progress in estimating molecular structure and physical properties of eutectic solvents[J]. Chemical Reagents,2017,39(9):937-941(in Chinese). doi: 10.13822/j.cnki.hxsj.2017.09.008
    [17] WAGLE D V, DEAKYNE C A, BAKER G A. Quantum chemical insight into the interactions and thermodynamics present in choline chloride based deep eutectic solvents[J]. The Journal of Physical Chemistry B,2016,120(27):6739-6746. doi: 10.1021/acs.jpcb.6b04750
    [18] THI S, LEE K M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes[J]. Bioresource Technology,2019,282:525-529. doi: 10.1016/j.biortech.2019.03.065
    [19] ZHANG Q, DE OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: Syntheses, properties and applications[J]. Chemical Society Reviews,2012,41(21):7108-7146. doi: 10.1039/c2cs35178a
    [20] ZHANG Y, HE H, DONG K, et al. A DFT study on lignin dissolution in imidazolium-based ionic liquids[J]. RSC Advances,2017,7(21):12670-12681. doi: 10.1039/C6RA27059J
    [21] XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry,2018,20(12):2711-2721. doi: 10.1039/C8GC00900G
    [22] PERNA F M, VITALE P, CAPRIATI V. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:27-33. doi: 10.1016/j.cogsc.2019.09.004
    [23] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications,2003(1):70-71. doi: 10.1039/b210714g
    [24] LOU R, MA R, LIN K, et al. Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles[J]. ACS Sustainable Chemistry & Engineering,2019,7(12):10248-10256.
    [25] LI W, XIAO W, YANG Y, et al. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization[J]. Industrial Crops and Products,2021,170:113692. doi: 10.1016/j.indcrop.2021.113692
    [26] KIM K H, DUTTA T, SUN J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry,2018,20(4):809-815. doi: 10.1039/C7GC03029K
    [27] HOU X D, LI A L, LIN K P, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology,2018,249:261-267. doi: 10.1016/j.biortech.2017.10.019
    [28] YUAN Y, HONG S, LIAN H, et al. Comparison of acidic deep eutectic solvents in production of chitin nanocrystals[J]. Carbohydrate Polymers,2020,236:116095. doi: 10.1016/j.carbpol.2020.116095
    [29] 金永香, 刘天勤, 顾忠基, 等. 氯化胆碱/丙三醇低共熔溶剂改性木质素磺酸钠及其在环氧树脂乳液中的应用[J]. 林业工程学报, 2017, 2(4):96-102.

    JIN Yongxiang, LIU Tianqin, GU Zhongji, et al. Modification of sodium Lignosulfonate with low eutectic solvent of choline chloride/glycerol and its application in epoxy resin emulsion[J]. Journal of Forest Engineering,2017,2(4):96-102(in Chinese).
    [30] ABBOTT A P, CAPPER G, GRAY S. Design of improved deep eutectic solvents using hole theory[J]. ChemPhysChem,2006,7(4):803-806. doi: 10.1002/cphc.200500489
    [31] FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents[J]. Angewandte Chemie,2013,52(11):3074-3085. doi: 10.1002/anie.201207548
    [32] 谢宜彤, 郭鑫, 吕艳娜, 等. 低共熔溶剂在木质纤维原料溶解及其组分分离中的研究进展[J]. 林产化学与工业, 2019, 39(5):11-18. doi: 10.3969/j.issn.0253-2417.2019.05.002

    XIE Yitong, GUO Xin, LYU Yanna, et al. Research progress of low eutectic solvents in the dissolution and separation of wood fiber raw materials[J]. Chemistry and Industry of Forest Products,2019,39(5):11-18(in Chinese). doi: 10.3969/j.issn.0253-2417.2019.05.002
    [33] SOARES B, TAVARES D J P, AMARAL J L, et al. Enhanced solubility of lignin monomeric model compounds and technical lignins in aqueous solutions of deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering,2017,5(5):4056-4065.
    [34] MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids,2018,263:193-199. doi: 10.1016/j.molliq.2018.05.001
    [35] PATIL T V, PATEL D K, DUTTA S D, et al. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications[J]. Bioactive Materials,2022,9:566-589. doi: 10.1016/j.bioactmat.2021.07.006
    [36] SHAK K P Y, PANG Y L, MAH S K. Nanocellulose: Recent advances and its prospects in environmental remediation[J]. Beilstein Journal of Nanotechnology,2018,9:2479-2498. doi: 10.3762/bjnano.9.232
    [37] NG H, SIN L T, TEE T, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers[J]. Composites Part B: Engineering,2015,75:176-200. doi: 10.1016/j.compositesb.2015.01.008
    [38] SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry,2015,17(6):3401-3406. doi: 10.1039/C5GC00398A
    [39] SIPPONEN M H, SMYTH M, LESKINEN T, et al. All-lignin approach to prepare cationic colloidal lignin particles: Stabilization of durable Pickering emulsions[J]. Green Chemistry,2017,19(24):5831-5840. doi: 10.1039/C7GC02900D
    [40] SIRVIÖ J, UKKOLA J, LIIMATAINEN H. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers[J]. Cellulose,2019,26(4):2303-2316. doi: 10.1007/s10570-019-02257-8
    [41] SIRVIÖ J A, HYYPIÖ K, ASAADI S, et al. High-strength cellulose nanofibers produced via swelling pretreatment based on a choline chloride-imidazole deep eutectic solvent[J]. Green Chemistry,2020,22(5):1763-1775. doi: 10.1039/C9GC04119B
    [42] SIRVIÖ J A, VISANKO M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water[J]. Journal of Hazardous Materials,2020,383:121174. doi: 10.1016/j.jhazmat.2019.121174
    [43] LI P, SIRVIÖ J A, HAAPALA A, et al. Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments[J]. ACS Applied Materials & Interfaces,2017,9(3):2846-2855.
    [44] SELKÄLÄ T, SUOPAJÄRVI T, SIRVIÖ J A, et al. Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: The importance of pH and colloidal stability in the interaction with ionizable pollutants[J]. Chemical Engineering Journal,2018,350:378-385. doi: 10.1016/j.cej.2018.05.163
    [45] LAITINEN O, SUOPAJÄRVI T, LIIMATAINEN H. Enhancing packaging board properties using micro- and nanofibers prepared from recycled board[J]. Cellulose,2020,27(12):7215-7225. doi: 10.1007/s10570-020-03264-w
    [46] MA G, ZHANG Z, CHEN J, et al. Facile sulfation of cellulose via recyclable ternary deep eutectic solvents for low-cost cellulose nanofibril preparation[J]. Nanoscale Advances,2023,5(2):356-360. doi: 10.1039/D2NA00769J
    [47] PAN M, ZHAO G, DING C, et al. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea[J]. Carbohydrate Polymers,2017,176:307-314. doi: 10.1016/j.carbpol.2017.08.088
    [48] SMIRNOV M A, SOKOLOVA M P, TOLMACHEV D A, et al. Green method for preparation of cellulose nanocrystals using deep eutectic solvent[J]. Cellulose,2020,27(8):4305-4317. doi: 10.1007/s10570-020-03100-1
    [49] SUOPAJÄRVI T, SIRVIÖ J A, LIIMATAINEN H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps[J]. Carbohydrate Polymers,2017,169:167-175. doi: 10.1016/j.carbpol.2017.04.009
    [50] LI T, LYU G, LIU Y, et al. Deep eutectic solvents (DESs) for the isolation of willow lignin[J]. International Journal of Molecular Sciences,2017,18(11):2266. doi: 10.3390/ijms18112266
    [51] SUOPAJÄRVI T, RICCI P, KARVONEN V, et al. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues[J]. Industrial Crops and Products,2020,145:111956. doi: 10.1016/j.indcrop.2019.111956
    [52] LIU C, LI M C, CHEN W, et al. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement[J]. Carbohydrate Polymers,2020,246:116548. doi: 10.1016/j.carbpol.2020.116548
    [53] SIRVIÖ J A, VISANKO M. Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification[J]. Journal of Materials Chemistry A,2017,5(41):21828-21835. doi: 10.1039/C7TA05668K
    [54] HONG S, YUAN Y, LI P, et al. Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent[J]. Industrial Crops and Products,2020,154:112677. doi: 10.1016/j.indcrop.2020.112677
    [55] WU X, YUAN Y, HONG S, et al. Controllable preparation of nano-cellulose via natural deep eutectic solvents prepared with lactate and choline chloride[J]. Industrial crops and products,2023,194:116259. doi: 10.1016/j.indcrop.2023.116259
    [56] SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production[J]. Biomacromolecules,2016,17(9):3025-3032. doi: 10.1021/acs.biomac.6b00910
    [57] LI P, SIRVIÖ J A, ASANTE B, et al. Recyclable deep eutectic solvent for the production of cationic nanocelluloses[J]. Carbohydrate Polymers,2018,199:219-227. doi: 10.1016/j.carbpol.2018.07.024
    [58] WANG Y, FU S, LUCIA L A, et al. A cellulose-based self-healing composite eutectogel with reversibility and recyclability for multi-sensing[J]. Composites Science and Technology,2022,229:109696. doi: 10.1016/j.compscitech.2022.109696
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  212
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-04-15
  • 录用日期:  2023-05-04
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回