Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent
-
摘要:
目的 纤维素是由葡萄糖分子通过β-1,4-糖苷键连接而形成的大分子多糖。以生物质为原料制备纳米纤维素需经过预处理,以有效去除木质素和半纤维素等组分。低共熔溶剂可以做为溶剂,在温和的环境下制备纳米纤维素。本文介绍了低共熔溶剂的形成机理及主要性能特征,综述了近年来低共熔溶剂在纳米纤维素的制备及功能化改性中的应用,以求为实现稳定可控的纳米纤维素制备提供参考,并推动纳米纤维素的规模化生产及其在医药、复合材料、乳化剂等领域的应用。 方法 低共熔溶剂是由氢键供体和氢键受体组成的混合物。以生物质为原料制备纳米纤维素需经过预处理,以有效去除木质素和半纤维素等组分。在通过低共熔溶剂预处理制备纳米纤维素时,需考虑原材料的种类对实验的影响,现有的研究选择的原料范围涵盖了农业和林业废弃物、工业副产品和藻类等。研究表明,低共熔溶剂预处理制备纤维素纳米材料的性能和效率取决于低共熔溶剂对生物质结构中碳碳键和芳基醚键的解离能力。低共熔溶剂的氢键受体主要为季铵盐、季鏻盐等有机盐,以氯化胆碱居多,典型的氢键供体以羧酸、酰胺、多元醇类等有机物为主。常用的预处理制备纳米纤维素的低共熔溶剂为有机盐类和氢键供体组成的第III类低共熔溶剂,其中常用的氢键供体包含酰胺、羧酸和多元醇等。 结果 通过调整低共熔溶剂中的氢键供体和受体的组成、配比及反应条件,可以在绿色温和的环境中制备纳米纤维素并进行功能化应用。酰胺类低共熔溶剂在对纤维素预处理时会与纤维素表面的羟基反应,形成新的氨基甲酸酯基团,但基本不会改变纤维素的聚合度。羧酸类低共熔溶剂在预处理过程中主要涉及到对纤维素的水解作用,使纤维素表面接枝羧基或使得酯基带上负电荷,造成纤维素的降解。多元醇类低共熔溶剂可在一定条件下对纤维素进行阳离子改性,对纤维原料起到润胀作用。羧酸类低共熔溶剂的预处理效果优于多元醇类低共熔溶剂。 结论 在使用低共熔溶剂处理纳米纤维素时,需要考虑不同低共熔溶剂各组分的化学基团及相互作用对纳米纤维素的影响。将低共熔溶剂预处理方法与其他机械方法进行组合可以发挥出协同作用,实现最优的预处理效果。由于低共熔溶剂的可回收性,对纤维素进行预处理后低共熔溶剂体系的循环利用也是未来需要研究的重要方向。目前已设计并用于预处理制备和改性纳米纤维素的低共熔溶剂体系仅为低共熔溶剂的小部分,大量的低共熔溶剂体系并未被得以系统研究和应用。而计算机模拟技术可以从热力学和分子动力学的角度对低共熔溶剂的结构和功能进行可控设计,从而研究低共熔溶剂对木质素、纤维素溶解、降解和功能化的规律,以实现纳米纤维素的高效制备和改性。未来纳米纤维素的研究方向是在纳米尺度范围内实现纤维素分子的自组装和多功能化,制备出一系列具有优异性能的纳米纤维素及其复合物。 Abstract: In recent years, environmentally friendly green solvents have become an important research direction in green chemistry. As a new type of green solvent with certain degradability, good biocompatibility and relatively environmental protection, the deep eutectic solvent has preliminarily shown its strong development potential in the preparation and functional modification of nanocellulose. This paper mainly reviews the basic properties and formation mechanism of the deep eutectic solvent, and introduces the application of different deep eutectic solvent in the preparation and functional modification of nanocellulose, so as to achieve efficient preparation and modification of nanocellulose. In the future, the designability of the deep eutectic solvent can be brought into full play through the combination of experiment and computational simulation technology and reveal the law of its dissolution, degradation and functionalization in the preparation of nanocellulose, so as to provide references for the preparation and modification of the pretreatment of the deep eutectic solvent and promote its large-scale application in biomass pretreatment.-
Key words:
- deep eutectic solvents /
- biomass /
- nanocellulose /
- urea /
- choline chloride /
- green solvents
-
图 1 纤维素的化学结构及提取方法 (a) 纤维素的化学结构[35] (b) 从不同生物质中采用不同方法合成纳米纤维素示意图[35] (c) 纤维素纳米纤维和纤维素纳米晶体的结构[36];(d) 纤维素纤维结构示意图[37]
Figure 1. Chemical structure and extraction method of cellulose (a) chemical structure of cellulose[35] (b) schematic representation for the synthesis of nanocellulose with different approaches from different biomass[36] (c) the structures of cellulose nanofibers and cellulose nanocrystals[36]; (d) schematics of the structure of cellulose nanofibers [37]
图 2 (a) 用于低共熔溶剂(DES)合成的卤化物盐和氢键供体的典型结构[18];(b) 氯化胆碱-尿素与纤维素可能发生的反应[49]; (c) 纤维素、氯离子和尿素分子的相互作用示意图[47]
Figure 2. (a) typical structure of halide salts and hydrogen bond donors used for deep eutectic solution (DES) synthesis[18];(b) possible reactions of cholinine-urea chloride and cellulose[49]; (c) Schematic diagram of the interaction of cellulose, chloride ions and urea molecules[47]
图 3 (a) 小麦、玉米和油菜籽原料; (b) 原料的化学组成[51]; (c) 酸性DES(乳酸-氯化胆碱(5∶1))和碱性DES(甘油-K2CO3(5∶1))预处理后的纳米悬浮液[51]; (d) DES处理后纳米原纤维的FESEM图[51]; (e)酯化反应方程式
Figure 3. (a) Wheat, corn, and rapeseed raw materials[51]; (b) their compositions;[51] (c) nanofibrillated samples after acidic-DES (lactic acid–choline chloride (5∶1)) and alkali-DES (Glycerol–K2CO3 (5∶1)) pretreatments[51]; (d) FESEM images of nanofibrils after DES treatment at 100℃ for 16 h[51]; (e)the reaction equation of esterification
图 4 (a) 盐酸甜菜碱-甘油DES体系制备纳米纤维素的过程[54]; (b) 纳米纤维素的SEM和TEM图[54]; (c)初始DES和循环后的DES[57]; (d) 机械解体后的纳米纤维素悬浮液[57]; (e) 纳米纤维素的TEM图[57]
Figure 4. (a) Preparation of nanocellulose by betaine hydrochloride-glycerol system[54]; (b) SEM and TEM images of nanocelluloses[54]; (c) the original AhG DES, and recycled DES[57]; (d) nanocellulose suspensions aftermechanical disintegration[57]; (e) TEM images of nanocellulose[57]
表 1 酰胺与氯化胆碱混合物(酰胺∶氯化胆碱=2∶1)的凝固点以及纯酰胺的熔点[23]
Table 1. The freezing point of amide and choline chloride mixture (amide∶choline chloride =2∶1) and the melting point of pure amide[23]
Amide compound Freezing point/℃ Melting point/℃ Urea 12 134 Methyl urea 29 93 1, 3-dimethyl urea 70 102 1, 1-dimethyl urea 149 180 Sulfur urea 69 175 Acetamide 51 80 Benzamide 92 129 Tetramethyl urea a −1 Notes: a No homogeneous liquid was formed. 表 2 尿素类低共熔溶剂预处理制备纳米纤维素
Table 2. Preparation of nanocellulose by urea pretreatment with low eutectic solvent
DES Mole ratio Raw material Treating temperature/
timeTypes of nanocellulose Yield of nanocellulose Diameter of Nanocellulose/
nmCrystallinity References Choline
chloride-Urea1∶2 Birch 100℃/2 h CNF 90% 2-200 nm / [38] Choline
chloride-Urea1∶2 Microcrystalline cellulose 110℃/48 h CNC / 80-120 nm 79-85% [39] Choline
chloride-Urea1∶4 Cork dissolved cellulose 150℃/30 min CNF / 4.4± 1.6 nm / [40] Choline
chloride-Urea1∶2 Bleached birch pulp 100℃/2 h CNF / 17± 21 nm 66% [41] Sulfamic
acid-Urea1∶2 Spruce cellulose pulp 150℃/30 min CNF / / / [42] Urea-Ammonium
thiocyanate2∶1 Bleached birch kraft paper 100℃/2 h CNF 87% 13-19 nm / [43] Urea-Guanidine
hydrochloride2∶1 Bleached birch kraft paper 100℃/2 h CNF 90% 13-15 nm / [43] Urea-Lithium
chloride5∶1 Cork dissolved pulp 90℃/6 h CNF / / / [44] Choline
chloride-Urea1∶2 Recycled pulp 100℃/2 h CNF / 1-6 μm / [45] Sulfamic acid-Urea-Choline chloride 1∶3∶1 Fiber pulp 100℃/2 h CNF / 0.52 mm / [46] -
[1] BIAN H, GAO Y, LUO J, et al. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials[J]. Waste Management,2019,91:1-8. doi: 10.1016/j.wasman.2019.04.052 [2] CHEN H, NAIR S S, CHAUHAN P, et al. Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces[J]. Chemical Engineering Journal,2019,360:393-401. doi: 10.1016/j.cej.2018.11.222 [3] ESPINO-PEREZ E, DOMENEK S, BELGACEM N, et al. Green process for chemical functionalization of nanocellulose with carboxylic acids[J]. Biomacromolecules,2014,15(12):4551-4560. doi: 10.1021/bm5013458 [4] PHIRI R, SANJAY M R, SIENGCHIN S, et al. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A Review[J]. Advanced Industrial and Engineering Polymer Research, 2023. [5] 叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006(8):1782-1791. doi: 10.3321/j.issn:0438-1157.2006.08.010YE Daiyong, HUANG Hong, FU Heqing, et al. Research progress in cellulose chemistry[J]. Journal of Chemical Engineering,2006(8):1782-1791(in Chinese). doi: 10.3321/j.issn:0438-1157.2006.08.010 [6] FU H, GAO W, WANG B, et al. Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils[J]. Cellulose,2019,27(3):1327-1340. [7] HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1519-1542. doi: 10.1039/C3CS60204D [8] JIANG J, CARRILLO-ENRÍQUEZ N C, OGUZLU H, et al. High Production Yield and More Thermally Stable Lignin-Containing Cellulose Nanocrystals Isolated Using a Ternary Acidic Deep Eutectic Solvent[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):7182-7191. [9] ÖSTERBERG M, SIPPONEN M H, MATTOS B D, et al. Spherical lignin particles: a review on their sustainability and applications[J]. Green Chemistry,2020,22(9):2712-2733. doi: 10.1039/D0GC00096E [10] DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard[J]. Cellulose,2017,24(7):3037-3050. doi: 10.1007/s10570-017-1320-z [11] 禚晓. 纳米纤维素纸基生物传感器设计[D]. 山东农业大学, 2018.ZHUO Xiao. Design of paper based Nanocellulose Biosensor [D]. Shandong Agricultural University, 2018 (in Chinese). [12] 王阳, 赵国华, 肖丽, 等. 源于食品加工副产物纳米纤维素晶体的制备及其在食品中的应用[J]. 食品与机械, 2017, 33(2):1-5. doi: 10.13652/j.issn.1003-5788.2017.02.001WANG Yang, ZHAO Guohua, XIAO Li, et al. Preparation and application of nanocellulose crystals from food processing by-products[J]. Food & Machinery,2017,33(2):1-5(in Chinese). doi: 10.13652/j.issn.1003-5788.2017.02.001 [13] SAI Y W, LEE K M. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches[J]. Cellulose,2019,26(18):9517-9528. doi: 10.1007/s10570-019-02770-w [14] SOLALA, I, IGLESIAS M C, PERESIN M S. On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications[J]. Cellulose,2019,27(4):1853-1877. [15] LOOW Y, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose,2017,24(9):3591-3618. doi: 10.1007/s10570-017-1358-y [16] 胡丽华, 陈砺, 方泳华, 等. 低共熔溶剂的分子结构及物性估算的研究进展[J]. 化学试剂, 2017, 39(9):937-941. doi: 10.13822/j.cnki.hxsj.2017.09.008HU Lihua, CHEN Li, FANG Yonghua, et al. Research progress in estimating molecular structure and physical properties of eutectic solvents[J]. Chemical Reagents,2017,39(9):937-941(in Chinese). doi: 10.13822/j.cnki.hxsj.2017.09.008 [17] WAGLE D V, DEAKYNE C A, BAKER G A. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents[J]. The Journal of Physical Chemistry B,2016,120(27):6739-6746. doi: 10.1021/acs.jpcb.6b04750 [18] THI S, LEE K M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes[J]. Bioresource Technology,2019,282:525-529. doi: 10.1016/j.biortech.2019.03.065 [19] ZHANG Q, De OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews,2012,41(21):7108-7146. doi: 10.1039/c2cs35178a [20] ZHANG Y, HE H, DONG K, et al. A DFT study on lignin dissolution in imidazolium-based ionic liquids[J]. RSC Advances,2017,7(21):12670-12681. doi: 10.1039/C6RA27059J [21] XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry,2018,20(12):2711-2721. doi: 10.1039/C8GC00900G [22] PERNA F M, VITALE P, CAPRIATI V. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:27-33. doi: 10.1016/j.cogsc.2019.09.004 [23] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical communications,2003(1):70-71. doi: 10.1039/b210714g [24] LOU R, MA R, LIN K, et al. Facile Extraction of Wheat Straw by Deep Eutectic Solvent (DES) to Produce Lignin Nanoparticles[J]. ACS sustainable chemistry & engineering,2019,7(12):10248-10256. [25] LI W, XIAO W, YANG Y, et al. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization[J]. Industrial Crops and Products,2021,170:113692. doi: 10.1016/j.indcrop.2021.113692 [26] KIM K H, DUTTA T, SUN J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green chemistry,2018,20(4):809-815. doi: 10.1039/C7GC03029K [27] HOU X D, LI A L, LIN K P, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresour Technol,2018,249:261-267. doi: 10.1016/j.biortech.2017.10.019 [28] YUAN Y, HONG S, LIAN H, et al. Comparison of acidic deep eutectic solvents in production of chitin nanocrystals[J]. Carbohydrate Polymers,2020,236:116095. doi: 10.1016/j.carbpol.2020.116095 [29] 金永香, 刘天勤, 顾忠基, 等. 氯化胆碱/丙三醇低共熔溶剂改性木质素磺酸钠及其在环氧树脂乳液中的应用[J]. 林业工程学报, 2017, 2(4):96-102.JIN Yongxiang, LIU Tianqin, GU Zhongji, et al. Modification of sodium Lignosulfonate with low eutectic solvent of choline chloride/glycerol and its application in epoxy resin emulsion[J]. Journal of Forest Engineering,2017,2(4):96-102(in Chinese). [30] ABBOTT A P, CAPPER G, GRAY S. Design of improved deep eutectic solvents using hole theory[J]. Chemphyschem,2006,7(4):803-806. doi: 10.1002/cphc.200500489 [31] FRANCISCO M, van den BRUINHORST A, KROON M C. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angewandte Chemie,2013,52(11):3074-3085. doi: 10.1002/anie.201207548 [32] 谢宜彤, 郭鑫, 吕艳娜, 等. 低共熔溶剂在木质纤维原料溶解及其组分分离中的研究进展[J]. 林产化学与工业, 2019, 39(5):11-18. doi: 10.3969/j.issn.0253-2417.2019.05.002XIE Yitong, GUO Xin, LV Yana, et al. Research progress of low eutectic solvents in the dissolution and separation of wood fiber raw materials[J]. Chemistry and Industry of Forest Products,2019,39(5):11-18(in Chinese). doi: 10.3969/j.issn.0253-2417.2019.05.002 [33] SOARES B, TAVARES D J P, AMARAL J L, et al. Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents[J]. ACS Sustainable Chemistry & Engineering,2017,5(5):4056-4065. [34] MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids,2018,263:193-199. doi: 10.1016/j.molliq.2018.05.001 [35] PATIL T V, PATEL D K, DUTTA S D, et al. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications[J]. Bioactive Materials,2022,9:566-589. doi: 10.1016/j.bioactmat.2021.07.006 [36] SHAK K P Y, PANG Y L, MAH S K. Nanocellulose: Recent advances and its prospects in environmental remediation[J]. Beilstein Journal of Nanotechnology,2018,9:2479-2498. doi: 10.3762/bjnano.9.232 [37] NG H, SIN L T, TEE T, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers[J]. Composites Part B:Engineering,2015,75:176-200. doi: 10.1016/j.compositesb.2015.01.008 [38] SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry,2015,17(6):3401-3406. doi: 10.1039/C5GC00398A [39] SIPPONEN M H, SMYTH M, LESKINEN T, et al. All-lignin approach to prepare cationic colloidal lignin particles: stabilization of durable Pickering emulsions[J]. Green Chemistry,2017,19(24):5831-5840. doi: 10.1039/C7GC02900D [40] SIRVIÖ J, UKKOLA J, LIIMATAINEN H. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers[J]. Cellulose,2019,26(4):2303-2316. doi: 10.1007/s10570-019-02257-8 [41] SIRVIÖ J A, HYYPIÖ K, ASAADI S, et al. High-strength cellulose nanofibers produced via swelling pretreatment based on a choline chloride–imidazole deep eutectic solvent[J]. Green Chemistry,2020,22(5):1763-1775. doi: 10.1039/C9GC04119B [42] SIRVIO J A, VISANKO M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water[J]. Journal of Hazardous Materials,2020,383:121174. doi: 10.1016/j.jhazmat.2019.121174 [43] LI P, SIRVIO J A, HAAPALA A, et al. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments[J]. Acs Applied Materials & Interfaces,2017,9(3):2846-2855. [44] SELKALA T, SUOPAJARVI T, SIRVIO J A, et al. Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: The impo, rtance of pH and colloidal stability in the interaction with ionizable pollutants[J]. Chemical Engineering Journal,2018,350:378-385. doi: 10.1016/j.cej.2018.05.163 [45] LAITINEN O, SUOPAJARVI T, LIIMATAINEN H. Enhancing packaging board properties using micro- and nanofibers prepared from recycled board[J]. Cellulose,2020,27(12):7215-7225. doi: 10.1007/s10570-020-03264-w [46] MA G, ZHANG Z, CHEN J, et al. Facile sulfation of cellulose via recyclable ternary deep eutectic solvents for low-cost cellulose nanofibril preparation[J]. Nanoscale Advances,2023,5(2):356-360. doi: 10.1039/D2NA00769J [47] SMIRNOV M A, SOKOLOVA M P, TOLMACHEV D A, et al. Green method for preparation of cellulose nanocrystals using deep eutectic solvent[J]. Cellulose,2020,27(8):4305-4317. doi: 10.1007/s10570-020-03100-1 [48] SUOPAJARVI T, SIRVIO J A, LIIMATAINEN H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps[J]. Carbohydrate Polymers,2017,169:167-175. doi: 10.1016/j.carbpol.2017.04.009 [49] PAN M, ZHAO G, DING C, et al. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea[J]. Carbohydrate Polymers,2017,176:307-314. doi: 10.1016/j.carbpol.2017.08.088 [50] LI T, LYU G, LIU Y, et al. Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin[J]. International Journal of Molecular Sciences,2017,18(11):2266. doi: 10.3390/ijms18112266 [51] SUOPAJÄRVI T, RICCI P, KARVONEN V, et al. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues[J]. Industrial Crops and Products,2020,145:111956. doi: 10.1016/j.indcrop.2019.111956 [52] LIU C, LI M C, CHEN W, et al. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement[J]. Carbohydrate Polymers,2020,246:116548. doi: 10.1016/j.carbpol.2020.116548 [53] SIRVIÖ J A, VISANKO M. Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification[J]. Journal of Materials Chemistry A,2017,5(41):21828-21835. doi: 10.1039/C7TA05668K [54] HONG S, YUAN Y, LI P, et al. Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent[J]. Industrial Crops and Products,2020,154:112677. doi: 10.1016/j.indcrop.2020.112677 [55] WU X, YUAN Y, HONG S, et al. Controllable preparation of nano-cellulose via natural deep eutectic solvents prepared with lactate and choline chloride[J]. Industrial crops and products,2023,194:116259. doi: 10.1016/j.indcrop.2023.116259 [56] SIRVIO J A, VISANKO M, LIIMATAINEN H. Acidic Deep Eutectic Solvents As Hydrolytic Media for Cellulose Nanocrystal Production[J]. Biomacromolecules,2016,17(9):3025-3032. doi: 10.1021/acs.biomac.6b00910 [57] LI P, SIRVIO J A, ASANTE B, et al. Recyclable deep eutectic solvent for the production of cationic nanocelluloses[J]. Carbohydrate Polymers,2018,199:219-227. doi: 10.1016/j.carbpol.2018.07.024 [58] WANG Y, FU S, LUCIA L A, et al. A cellulose-based self-healing composite eutectogel with reversibility and recyclability for multi-sensing[J]. Composites Science and Technology,2022,229:109696. doi: 10.1016/j.compscitech.2022.109696 -

计量
- 文章访问数: 33
- HTML全文浏览量: 27
- 被引次数: 0