Experimental research on the mechanical properties of fiber-reinforced autoclaved aerated concrete under cyclic loading
-
摘要: 为研究纤维增强蒸压加气混凝土(FAAC)循环受压力学行为,共设计11组棱柱体试件进行单调及循环受压试验,分析纤维种类(玄武岩纤维,BF;碳纤维,CF)和纤维掺量对FAAC破坏形态、应力-应变全曲线特征、塑性应变、刚度退化率、应力退化率等力学性能指标的影响规律。研究结果表明:循环荷载作用下FAAC的破坏模式主要为剪切破坏和竖向劈裂破坏,随纤维掺量增加,试件破坏模式由剪切破坏转向竖向劈裂破坏;纤维掺量为0.4%时,FAAC的峰值应力增幅最大,BF/AAC的单调加载曲线和循环加载曲线峰值应力分别增加了24.29%、29.16%,CF/AAC的单调加载曲线和循环加载曲线峰值应力则分别增加了31.45%、37.81%;纤维掺量为0.5%时,FAAC的峰值应变增幅最大,BF/AAC的单调加载曲线和循环加载曲线峰值应变分别增加了28.12%、28.77%,CF/AAC的单调加载曲线和循环加载曲线峰值应变则分别增加了37.17%、41.50%;两种纤维均小幅度增加了AAC的累积塑性应变,但纤维掺量与卸载刚度及应力退化率之间未表现出明显的规律。基于试验结果,采用幂函数对FAAC标准化塑性应变与卸载点之间的关系进行拟合;提出应力退化率及加、卸载曲线双折线简化模型;最后,建立了循环荷载作用下FAAC的应力-应变曲线计算方程。Abstract: In order to investigate the compressive mechanical properties of fiber-reinforced autoclaved aerated concrete (FAAC) under cyclic loading, a total of 11 sets of prismatic specimens were designed for uniaxial monotonic and cyclic compression tests. The effects of fiber types (basalt fiber, BF, carbon fiber, CF) and fiber content on the mechanical performance indicators of FAAC such as failure mode, stress-strain curve characteristics, plastic strain, stiffness degradation rate, and stress degradation rate, were analyzed. The research results indicate that the failure mode of FAAC under cyclic loading contains oblique shear failure and vertical splitting failure, and with the fiber content increasing, the failure mode of FAAC turns from shear failure to splitting failure. When the fiber content is 0.4%, the peak stresses of FAAC reach their maximum values, the peak stresses of BF/AAC under monotonic and cyclic loading increase 24.29% and 29.16%, respectively, while that of CF/AAC increase 31.45% and 37.81%, respectively. When the fiber content is 0.5%, the peak strains of FAAC reach their maximum values, the peak strains of BF/AAC under monotonic and cyclic loading increase 28.12% and 28.77%, respectively, while that of CF/AAC increase 37.17% and 41.50%, respectively. Both BF and CF slightly improve the cumulative plastic strain of AAC, but there is no significant relationship between fiber content, unloading stiffness, and stress degradation rate. Based on the experimental results, a power function is used to fit the relationship between the standardized plastic stain and unloading strain. Simplified double line models for stress degradation rate, unloading and reloading curves are proposed. Finally, the stress-strain curve calculation equation for FAAC under cyclic loading is established.
-
Key words:
- autoclaved aerated concrete /
- fiber /
- cyclic loading /
- stress-strain curve /
- plastic strain /
- calculation equation
-
图 3 循环荷载作用下FAAC破坏过程
Figure 3. Failure process of FAAC under cyclic loading
$ {\varepsilon }_{\mathrm{c}} $, $ {\sigma }_{\mathrm{c}} $, and $ {\varepsilon }_{\mathrm{p}} $ are the peak strain, peak stress, and plastic strain of the curve, respectively; $ {\varepsilon }_{\mathrm{u}\mathrm{n}-1} $ and $ {\sigma }_{\mathrm{u}\mathrm{n}-1} $ are the unloading strain and unloading stress of the previous level unloading curve, respectively; $ {\varepsilon }_{\mathrm{u}\mathrm{n}} $ and $ {\sigma }_{\mathrm{u}\mathrm{n}} $ are the unloading strain and unloading stress of the next level unloading curve
表 1 纤维基本物理力学性能
Table 1. Basic physical and mechanical properties of fiber
Fiber Density/(g·cm−3) Length/mm Diameter/μm Tensile strength/MPa Melt point/℃ Elastic modulus/GPa CF 1.75 3 7 4900 800-900 230 BF 2.63-2.65 3 7-15 3000-4800 1050 91-110 Notes: CF—Carbon fiber; BF—Basalt fiber. 表 2 试件配合比
Table 2. Mix proportion of AAC
Tailing sand/wt% Lime/ wt% Cement/wt% Gypsum/wt% Aluminum powder/wt% Water/solid materials 58.3 12.9 25.8 3 0.08 0.50 表 3 试件参数
Table 3. Specimen design parameters of AAC
No. Fiber Fiber content/wt% No. Fiber Fiber content/wt% AAC - - AAC - - BF/AAC-0.1 BF 0.1% CF/AAC-0.1 CF 0.1% BF/AAC-0.2 0.2% CF/AAC-0.2 0.2% BF/AAC-0.3 0.3% CF/AAC-0.3 0.3% BF/AAC-0.4 0.4% CF/AAC-0.4 0.4% BF/AAC-0.5 0.5% CF/AAC-0.5 0.5% Notes: AAC—Autoclaved aerated concreter; BF/AAC-n—Basalt fiber reinforced autoclaved aerated concrete with fiber content of n%, n varies from 0.1 to 0.5; CF/AAC—Carbon fiber reinforced autoclaved aerated concrete with fiber content of n%, n varies from 0.1 to 0.5. 表 4 单调及循环荷载作用下FAAC试件的峰值应力及峰值应变
Table 4. Peak stress and peak strain of FAAC under monotonic and cyclic loading
No. Monotonic loading Cyclic loading No. Monotonic loading Cyclic loading $ {\varepsilon }_{\mathrm{c}} $/×10−3 $ {\sigma }_{\mathrm{c}} $/MPa $ {\varepsilon }_{\mathrm{c}} $/×10−3 $ {\sigma }_{\mathrm{c}} $/MPa $ {\varepsilon }_{\mathrm{c}} $/×10−3 $ {\sigma }_{\mathrm{c}} $/MPa $ {\varepsilon }_{\mathrm{c}} $/×10−3 $ {\sigma }_{\mathrm{c}} $/MPa AAC 3.958 1.968 3.945 1.883 AAC 3.958 1.968 3.945 1.883 BF/AAC-0.1 4.268 2.056 4.293 2.015 CF/AAC-0.1 4.327 2.194 4.418 2.152 BF/AAC-0.2 4.385 2.178 4.477 2.170 CF/AAC-0.2 4.545 2.341 4.490 2.246 BF/AAC-0.3 4.773 2.310 4.840 2.347 CF/AAC-0.3 5.089 2.518 5.020 2.454 BF/AAC-0.4 4.805 2.446 4.831 2.432 CF/AAC-0.4 5.343 2.587 5.496 2.595 BF/AAC-0.5 5.071 2.357 5.080 2.282 CF/AAC-0.5 5.429 2.444 5.582 2.399 Notes: $ {\varepsilon }_{\mathrm{c}} $—Peak strain of the curve; $ {\sigma }_{\mathrm{c}} $—Peak stress of the curve. -
[1] WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016, 104: 109-115. doi: 10.1016/j.conbuildmat.2015.12.041 [2] 陈潇, 张浩宇, 薛鑫, 等. 固体废弃物在蒸压加气混凝土中的应用现状综述[J]. 硅酸盐通报, 2023, 42(2): 541-553. doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302018CHEN X, ZHANG H Y, XUE X, et al. Review on Application of Solid Wastes in Autoclaved Aerated Concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 541-553(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302018 [3] Pehlivanli Zuhtu Onur, Ibrahim Uzun. Effect of polypropylene fiber length on mechanical and thermal properties of autoclaved aerated concrete[J]. Construction and Building Materials, 2022, 322: 126506. doi: 10.1016/j.conbuildmat.2022.126506 [4] 黄炜, 张敏, 江永涛, 等. 装配式混凝土墙抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 88-95.HUANG W, ZHANG M, JIANG Y T, et al. Experimental study on seismic behavior of precast concrete walls[J]. Journal of Building Structures, 2015, 36(10): 88-95(in Chinese). [5] MIAO X W, HUANG W, FAN Z H, et al. Mechanical property test and numerical analysis of a novel precast shear wall[J]. Engineering Structures, 2024, 300: 117236. doi: 10.1016/j.engstruct.2023.117236 [6] HUANG W, AN Y J N, MIAO X W, et al. Research on seismic behavior and shear strength of precast composite walls with different reinforced concrete braces[J]. Structures, 2024, 61: 106067. doi: 10.1016/j.istruc.2024.106067 [7] 陈国新, 黄炜, 张荫. 内填不同材料填充砌块生态复合墙体抗震性能对比[J]. 中南大学学报(自然科学版), 2012, 43(11): 4491-4500.CHEN G X, HUANG W, ZHANG Y. Comparison on seismic behavior of ecological composite walls filled with different materials block[J]. Journal of Central South University (Science and Technology), 2012, 43(11): 4491-4500(in Chinese). [8] A. Bonakdar, F. Babbitt, B. Mobasher. Physical and mechanical characterization of fiber-reinforced aerated concrete (FRAC)[J]. Cement and Concrete Composites, 2013, 38, 82-91. [9] Laukaitis A, Keriene J, Mikulskis D, et al. Influence of fibrous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products[J]. Construction & Building Materials, 2009, 23(9): 3034-3042. [10] QUAN W L, HUANG W, AN Y J N, et al. The effect of natural bamboo fiber and basalt fiber on the properties of autoclaved aerated concrete[J]. Construction and Building Materials, 2023, 377: 131153. doi: 10.1016/j.conbuildmat.2023.131153 [11] XU R S, HE T S, DA Y Q, et al. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete[J]. Construction and Building Materials, 2019, 208: 242-249. doi: 10.1016/j.conbuildmat.2019.03.030 [12] 张杰, 黄斐, 刘文地, 等. 改性竹纤维加气混凝土的制备与界面特性[J]. 建筑材料学报, 2022, 25(7): 686-692. doi: 10.3969/j.issn.1007-9629.2022.07.005ZHANG J, HUANG F, LIU W D, et al. Preparation and interfacial characteristics of modified bamboo fibers reinforced autoclaved aerated concrete[J]. Journal of Building Materials, 2022, 25(7): 686-692(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.07.005 [13] HUANG F, ZHANG J, ZHENG X Y, et al. Preparation and performance of autoclaved aerated concrete reinforced by dopamine-modified polyethylene terephthalate waste fibers[J]. Construction and Building Materials, 2022, 348: 128649. doi: 10.1016/j.conbuildmat.2022.128649 [14] 彭军芝, 彭小芹, 桂苗苗, 等. 蒸压加气混凝土孔结构表征的图像分析方法[J]. 材料导报, 2011, 25(2): 125-129.PENG J Z, PENG X Q, GUI M M, et al. Pore Structure Characterization of Autoclaved Aerated Concrete Using Image Analysis Method[J]. Materials reports, 2011, 25(2): 125-129(in Chinese). [15] CHEN G L, LI F L, GENG J Y, et al. Identification, generation of autoclaved aerated concrete pore structure and simulation of its influence on thermal conductivity[J]. Construction and Building Materials, 2021, 294: 123572. doi: 10.1016/j.conbuildmat.2021.123572 [16] 孟宏睿. 生态轻质水泥基墙体材料性能及密肋复合墙体弹塑性分析模型研究[D]. 西安: 西安建筑科技大学, 2007.MENG H R. Research on performance of ecological lightweight cement-based wall materials & elasto-plastic analysis model of multi-ribbed wall[D]. Xi’an: Xian University of Architecture & Technology, 2007(in Chinese). [17] 熊耀清, 姚谦峰. 轻质多孔混凝土受压应力—应变全曲线试验研究[J]. 四川建筑科学研究, 2010, 36(2): 228-232. doi: 10.3969/j.issn.1008-1933.2010.02.059XIONG Y Q, YAO Q F. Experimental study on the total stress-strain curve of porous lightweight concrete[J]. Sichuan Building Science, 2010, 36(2): 228-232(in Chinese). doi: 10.3969/j.issn.1008-1933.2010.02.059 [18] 陈国新. 内填不同材料生态复合墙体基于统一强度理论的非线性损伤分析[D]. 西安: 西安建筑科技大学, 2010.CHEN G X. Analysis on nonlinear damage of ecological composite walls filled with different materials based on the twin shear unified strength theory[D]. Xi’an: Xian University of Architecture & Technology, 2010(in Chinese). [19] 中国国家标准化管理委员会. 蒸压加气混凝土性能试验方法: GB/T 11969-2020[S]. 北京: 中国标准出版社, 2020.China National Standardization Administration Test method for performance of autoclaved aerated concrete: GB/T 11969-2020[S]. Beijing: China Standard Publishing House, 2020(in Chinese). [20] 陈宇良, 李浩, 叶培欢, 等. 循环荷载作用下钢纤维再生混凝土力学性能试验[J]. 复合材料学报, 2022, 39(11): 5574-5585.CHEN Y L, LI H, YE P H, et al. Experimental study on mechanical behavior of steel fiber recycled concrete under cyclic compression[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5574-5585(in Chinese). [21] 徐礼华, 黄彪, 李彪, 等. 循环荷载作用下聚丙烯纤维混凝土受压应力-应变关系研究[J]. 土木工程学报, 2019, 52(4): 1-12.XU L H, HUANG B, LI B, et al. Study on the stress-strain relation of polypropylene fiber reinforced concrete under cyclic compression[J]. China Civil Engineering Journal, 2019, 52(4): 1-12(in Chinese). [22] 徐礼华, 李长宁, 李彪, 等. 循环受压状态下钢纤维混凝土一维弹塑性损伤本构模型研究[J]. 土木工程学报, 2018, 51(11): 77-87.XU L H, LI C N, LI B, et al. Investigation on 1D elasto-plastic constitutive model of steel fiber reinforced concrete under uniaxial cyclic compression[J]. China Civil Engineering Journal, 2018, 51(11): 77-87(in Chinese). [23] 陈宗平, 覃钦泉, 梁莹, 等. 聚丙烯纤维珊瑚海水混凝土循环受压试验及应力-应变本构关系[J]. 复合材料学报, 2024, 42: 1-13.CHEN Z P, QIN Q Q, LIANG Y, et al. Cyclic compression test and stress concrete[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-13(in Chinese). [24] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982, 3(1): 1-12.GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982, 3(1): 1-12(in Chinese). [25] 徐子豪, 胡晓斌, 张文良, 等. 重复加载下再生混凝土单轴受压应力应变关系[J]. 工业建筑, 2018, 48(7): 115-121.XU Z H, HU X B, ZHANG W L, et al. The uniaxial compressive stress-strain relation of recycled concrete under cyclic loading[J]. Industrial Construction, 2018, 48(7): 115-12(in Chinese).
计量
- 文章访问数: 130
- HTML全文浏览量: 72
- 被引次数: 0