留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环荷载作用下纤维增强蒸压加气混凝土力学性能试验

权文立 黄炜 毛文桢 苗欣蔚 侯莉娜 郝利军

权文立, 黄炜, 毛文桢, 等. 循环荷载作用下纤维增强蒸压加气混凝土力学性能试验[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 权文立, 黄炜, 毛文桢, 等. 循环荷载作用下纤维增强蒸压加气混凝土力学性能试验[J]. 复合材料学报, 2024, 42(0): 1-12.
QUAN Wenli, HUANG Wei, MAO Wenzhen, et al. Experimental research on the mechanical properties of fiber-reinforced autoclaved aerated concrete under cyclic loading[J]. Acta Materiae Compositae Sinica.
Citation: QUAN Wenli, HUANG Wei, MAO Wenzhen, et al. Experimental research on the mechanical properties of fiber-reinforced autoclaved aerated concrete under cyclic loading[J]. Acta Materiae Compositae Sinica.

循环荷载作用下纤维增强蒸压加气混凝土力学性能试验

基金项目: 国家自然科学基金(52378193);国家自然科学基金青年项目(52308203);西安建筑科技大学优秀博士学位论文培育基金(2023XYBPY0010); 陕西省杰出青年科学基金项目(2018JC-025); 陕西省科技计划项目(2021JM-435)
详细信息
    通讯作者:

    黄炜,博士,教授,博士生导师,研究方向为绿色装配式结构抗震性能 E-mail: qqhuangwei2005@126.com

  • 中图分类号: TU528

Experimental research on the mechanical properties of fiber-reinforced autoclaved aerated concrete under cyclic loading

Funds: National Natural Science Foundation of China (52378193); National Natural Science Foundation Youth Program (52308203); Excellent Doctoral Dissertation Cultivation Foundation of Xi’an University of Architecture & Technology (2023XYBPY0010); Shaanxi Science Fund for Distinguished Young Scholars (2018JC-025); Natural Science Foundation of Shaanxi Province (2021JM-435)
  • 摘要: 为研究纤维增强蒸压加气混凝土(FAAC)循环受压力学行为,共设计11组棱柱体试件进行单调及循环受压试验,分析纤维种类(玄武岩纤维,BF;碳纤维,CF)和纤维掺量对FAAC破坏形态、应力-应变全曲线特征、塑性应变、刚度退化率、应力退化率等力学性能指标的影响规律。研究结果表明:循环荷载作用下FAAC的破坏模式主要为剪切破坏和竖向劈裂破坏,随纤维掺量增加,试件破坏模式由剪切破坏转向竖向劈裂破坏;纤维掺量为0.4%时,FAAC的峰值应力增幅最大,BF/AAC的单调加载曲线和循环加载曲线峰值应力分别增加了24.29%、29.16%,CF/AAC的单调加载曲线和循环加载曲线峰值应力则分别增加了31.45%、37.81%;纤维掺量为0.5%时,FAAC的峰值应变增幅最大,BF/AAC的单调加载曲线和循环加载曲线峰值应变分别增加了28.12%、28.77%,CF/AAC的单调加载曲线和循环加载曲线峰值应变则分别增加了37.17%、41.50%;两种纤维均小幅度增加了AAC的累积塑性应变,但纤维掺量与卸载刚度及应力退化率之间未表现出明显的规律。基于试验结果,采用幂函数对FAAC标准化塑性应变与卸载点之间的关系进行拟合;提出应力退化率及加、卸载曲线双折线简化模型;最后,建立了循环荷载作用下FAAC的应力-应变曲线计算方程。

     

  • 图  1  试件生产过程

    Figure  1.  Process of specimen production

    图  2  加载制度示意图

    Figure  2.  Schematic diagram of cyclic loading procedure

    图  3  循环荷载作用下FAAC破坏过程

    Figure  3.  Failure process of FAAC under cyclic loading

    $ {\varepsilon }_{\mathrm{c}} $, $ {\sigma }_{\mathrm{c}} $, and $ {\varepsilon }_{\mathrm{p}} $ are the peak strain, peak stress, and plastic strain of the curve, respectively; $ {\varepsilon }_{\mathrm{u}\mathrm{n}-1} $ and $ {\sigma }_{\mathrm{u}\mathrm{n}-1} $ are the unloading strain and unloading stress of the previous level unloading curve, respectively; $ {\varepsilon }_{\mathrm{u}\mathrm{n}} $ and $ {\sigma }_{\mathrm{u}\mathrm{n}} $ are the unloading strain and unloading stress of the next level unloading curve

    图  4  循环荷载作用下FAAC破坏现象F

    Figure  4.  ig.4 Failure phenomenon of FAAC under cyclic loading

    图  5  循环荷载作用下FAAC最终的破坏现象

    Figure  5.  Final failure phenomenon of FAAC under cyclic loading

    图  6  单调及循环荷载作用下FAAC应力-应变曲线

    Figure  6.  Stress-strain curves of fiber-reinforced AAC under monotonic and cyclic loading

    图  7  FAAC塑性应变与卸载点应变关系

    Figure  7.  Relationship between plain strain and unloading strain

    图  8  FAAC刚度退化图

    Figure  8.  Stiffness degradation of FAAC

    图  9  FAAC应力退化率图

    Figure  9.  Stress degradation of FAAC

    图  10  单调荷载作用下FAAC的归一化应力-应变曲线

    Figure  10.  Normalized stress-strain curve of FAAC under monotonic loading

    图  11  纤维掺量与单调加载曲线拟合参数之间的关系

    Figure  11.  Relationship between fiber content and fitting parameters of stress-strain curve under monotonic loading

    图  12  卸载、再加载曲线简化模型

    Figure  12.  Simplified model for unloading and reloading curves

    $ {\sigma }_{\mathrm{u}\mathrm{n},\mathrm{r}} $—Stress of the point on reloading curve whose strain is equal to that of unloading strain of previous unloading curve

    图  13  FAAC试验曲线与简化计算方程对比图

    Figure  13.  Comparison between test curve and calculation equation

    表  1  纤维基本物理力学性能

    Table  1.   Basic physical and mechanical properties of fiber

    Fiber Density/(g·cm−3) Length/mm Diameter/μm Tensile strength/MPa Melt point/℃ Elastic modulus/GPa
    CF 1.75 3 7 4900 800-900 230
    BF 2.63-2.65 3 7-15 3000-4800 1050 91-110
    Notes: CF—Carbon fiber; BF—Basalt fiber.
    下载: 导出CSV

    表  2  试件配合比

    Table  2.   Mix proportion of AAC

    Tailing sand/wt%Lime/ wt%Cement/wt%Gypsum/wt%Aluminum powder/wt%Water/solid materials
    58.312.925.830.080.50
    下载: 导出CSV

    表  3  试件参数

    Table  3.   Specimen design parameters of AAC

    No.FiberFiber content/wt%No.FiberFiber content/wt%
    AAC--AAC--
    BF/AAC-0.1BF0.1%CF/AAC-0.1CF0.1%
    BF/AAC-0.20.2%CF/AAC-0.20.2%
    BF/AAC-0.30.3%CF/AAC-0.30.3%
    BF/AAC-0.40.4%CF/AAC-0.40.4%
    BF/AAC-0.50.5%CF/AAC-0.50.5%
    Notes: AAC—Autoclaved aerated concreter; BF/AAC-n—Basalt fiber reinforced autoclaved aerated concrete with fiber content of n%, n varies from 0.1 to 0.5; CF/AAC—Carbon fiber reinforced autoclaved aerated concrete with fiber content of n%, n varies from 0.1 to 0.5.
    下载: 导出CSV

    表  4  单调及循环荷载作用下FAAC试件的峰值应力及峰值应变

    Table  4.   Peak stress and peak strain of FAAC under monotonic and cyclic loading

    No.Monotonic loadingCyclic loadingNo.Monotonic loadingCyclic loading
    $ {\varepsilon }_{\mathrm{c}} $/×10−3$ {\sigma }_{\mathrm{c}} $/MPa$ {\varepsilon }_{\mathrm{c}} $/×10−3$ {\sigma }_{\mathrm{c}} $/MPa$ {\varepsilon }_{\mathrm{c}} $/×10−3$ {\sigma }_{\mathrm{c}} $/MPa$ {\varepsilon }_{\mathrm{c}} $/×10−3$ {\sigma }_{\mathrm{c}} $/MPa
    AAC3.9581.9683.9451.883AAC3.9581.9683.9451.883
    BF/AAC-0.14.2682.0564.2932.015CF/AAC-0.14.3272.1944.4182.152
    BF/AAC-0.24.3852.1784.4772.170CF/AAC-0.24.5452.3414.4902.246
    BF/AAC-0.34.7732.3104.8402.347CF/AAC-0.35.0892.5185.0202.454
    BF/AAC-0.44.8052.4464.8312.432CF/AAC-0.45.3432.5875.4962.595
    BF/AAC-0.55.0712.3575.0802.282CF/AAC-0.55.4292.4445.5822.399
    Notes: $ {\varepsilon }_{\mathrm{c}} $—Peak strain of the curve; $ {\sigma }_{\mathrm{c}} $—Peak stress of the curve.
    下载: 导出CSV
  • [1] WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016, 104: 109-115. doi: 10.1016/j.conbuildmat.2015.12.041
    [2] 陈潇, 张浩宇, 薛鑫, 等. 固体废弃物在蒸压加气混凝土中的应用现状综述[J]. 硅酸盐通报, 2023, 42(2): 541-553. doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302018

    CHEN X, ZHANG H Y, XUE X, et al. Review on Application of Solid Wastes in Autoclaved Aerated Concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 541-553(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302018
    [3] Pehlivanli Zuhtu Onur, Ibrahim Uzun. Effect of polypropylene fiber length on mechanical and thermal properties of autoclaved aerated concrete[J]. Construction and Building Materials, 2022, 322: 126506. doi: 10.1016/j.conbuildmat.2022.126506
    [4] 黄炜, 张敏, 江永涛, 等. 装配式混凝土墙抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 88-95.

    HUANG W, ZHANG M, JIANG Y T, et al. Experimental study on seismic behavior of precast concrete walls[J]. Journal of Building Structures, 2015, 36(10): 88-95(in Chinese).
    [5] MIAO X W, HUANG W, FAN Z H, et al. Mechanical property test and numerical analysis of a novel precast shear wall[J]. Engineering Structures, 2024, 300: 117236. doi: 10.1016/j.engstruct.2023.117236
    [6] HUANG W, AN Y J N, MIAO X W, et al. Research on seismic behavior and shear strength of precast composite walls with different reinforced concrete braces[J]. Structures, 2024, 61: 106067. doi: 10.1016/j.istruc.2024.106067
    [7] 陈国新, 黄炜, 张荫. 内填不同材料填充砌块生态复合墙体抗震性能对比[J]. 中南大学学报(自然科学版), 2012, 43(11): 4491-4500.

    CHEN G X, HUANG W, ZHANG Y. Comparison on seismic behavior of ecological composite walls filled with different materials block[J]. Journal of Central South University (Science and Technology), 2012, 43(11): 4491-4500(in Chinese).
    [8] A. Bonakdar, F. Babbitt, B. Mobasher. Physical and mechanical characterization of fiber-reinforced aerated concrete (FRAC)[J]. Cement and Concrete Composites, 2013, 38, 82-91.
    [9] Laukaitis A, Keriene J, Mikulskis D, et al. Influence of fibrous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products[J]. Construction & Building Materials, 2009, 23(9): 3034-3042.
    [10] QUAN W L, HUANG W, AN Y J N, et al. The effect of natural bamboo fiber and basalt fiber on the properties of autoclaved aerated concrete[J]. Construction and Building Materials, 2023, 377: 131153. doi: 10.1016/j.conbuildmat.2023.131153
    [11] XU R S, HE T S, DA Y Q, et al. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete[J]. Construction and Building Materials, 2019, 208: 242-249. doi: 10.1016/j.conbuildmat.2019.03.030
    [12] 张杰, 黄斐, 刘文地, 等. 改性竹纤维加气混凝土的制备与界面特性[J]. 建筑材料学报, 2022, 25(7): 686-692. doi: 10.3969/j.issn.1007-9629.2022.07.005

    ZHANG J, HUANG F, LIU W D, et al. Preparation and interfacial characteristics of modified bamboo fibers reinforced autoclaved aerated concrete[J]. Journal of Building Materials, 2022, 25(7): 686-692(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.07.005
    [13] HUANG F, ZHANG J, ZHENG X Y, et al. Preparation and performance of autoclaved aerated concrete reinforced by dopamine-modified polyethylene terephthalate waste fibers[J]. Construction and Building Materials, 2022, 348: 128649. doi: 10.1016/j.conbuildmat.2022.128649
    [14] 彭军芝, 彭小芹, 桂苗苗, 等. 蒸压加气混凝土孔结构表征的图像分析方法[J]. 材料导报, 2011, 25(2): 125-129.

    PENG J Z, PENG X Q, GUI M M, et al. Pore Structure Characterization of Autoclaved Aerated Concrete Using Image Analysis Method[J]. Materials reports, 2011, 25(2): 125-129(in Chinese).
    [15] CHEN G L, LI F L, GENG J Y, et al. Identification, generation of autoclaved aerated concrete pore structure and simulation of its influence on thermal conductivity[J]. Construction and Building Materials, 2021, 294: 123572. doi: 10.1016/j.conbuildmat.2021.123572
    [16] 孟宏睿. 生态轻质水泥基墙体材料性能及密肋复合墙体弹塑性分析模型研究[D]. 西安: 西安建筑科技大学, 2007.

    MENG H R. Research on performance of ecological lightweight cement-based wall materials & elasto-plastic analysis model of multi-ribbed wall[D]. Xi’an: Xian University of Architecture & Technology, 2007(in Chinese).
    [17] 熊耀清, 姚谦峰. 轻质多孔混凝土受压应力—应变全曲线试验研究[J]. 四川建筑科学研究, 2010, 36(2): 228-232. doi: 10.3969/j.issn.1008-1933.2010.02.059

    XIONG Y Q, YAO Q F. Experimental study on the total stress-strain curve of porous lightweight concrete[J]. Sichuan Building Science, 2010, 36(2): 228-232(in Chinese). doi: 10.3969/j.issn.1008-1933.2010.02.059
    [18] 陈国新. 内填不同材料生态复合墙体基于统一强度理论的非线性损伤分析[D]. 西安: 西安建筑科技大学, 2010.

    CHEN G X. Analysis on nonlinear damage of ecological composite walls filled with different materials based on the twin shear unified strength theory[D]. Xi’an: Xian University of Architecture & Technology, 2010(in Chinese).
    [19] 中国国家标准化管理委员会. 蒸压加气混凝土性能试验方法: GB/T 11969-2020[S]. 北京: 中国标准出版社, 2020.

    China National Standardization Administration Test method for performance of autoclaved aerated concrete: GB/T 11969-2020[S]. Beijing: China Standard Publishing House, 2020(in Chinese).
    [20] 陈宇良, 李浩, 叶培欢, 等. 循环荷载作用下钢纤维再生混凝土力学性能试验[J]. 复合材料学报, 2022, 39(11): 5574-5585.

    CHEN Y L, LI H, YE P H, et al. Experimental study on mechanical behavior of steel fiber recycled concrete under cyclic compression[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5574-5585(in Chinese).
    [21] 徐礼华, 黄彪, 李彪, 等. 循环荷载作用下聚丙烯纤维混凝土受压应力-应变关系研究[J]. 土木工程学报, 2019, 52(4): 1-12.

    XU L H, HUANG B, LI B, et al. Study on the stress-strain relation of polypropylene fiber reinforced concrete under cyclic compression[J]. China Civil Engineering Journal, 2019, 52(4): 1-12(in Chinese).
    [22] 徐礼华, 李长宁, 李彪, 等. 循环受压状态下钢纤维混凝土一维弹塑性损伤本构模型研究[J]. 土木工程学报, 2018, 51(11): 77-87.

    XU L H, LI C N, LI B, et al. Investigation on 1D elasto-plastic constitutive model of steel fiber reinforced concrete under uniaxial cyclic compression[J]. China Civil Engineering Journal, 2018, 51(11): 77-87(in Chinese).
    [23] 陈宗平, 覃钦泉, 梁莹, 等. 聚丙烯纤维珊瑚海水混凝土循环受压试验及应力-应变本构关系[J]. 复合材料学报, 2024, 42: 1-13.

    CHEN Z P, QIN Q Q, LIANG Y, et al. Cyclic compression test and stress concrete[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-13(in Chinese).
    [24] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982, 3(1): 1-12.

    GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982, 3(1): 1-12(in Chinese).
    [25] 徐子豪, 胡晓斌, 张文良, 等. 重复加载下再生混凝土单轴受压应力应变关系[J]. 工业建筑, 2018, 48(7): 115-121.

    XU Z H, HU X B, ZHANG W L, et al. The uniaxial compressive stress-strain relation of recycled concrete under cyclic loading[J]. Industrial Construction, 2018, 48(7): 115-12(in Chinese).
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-04
  • 录用日期:  2024-04-30
  • 网络出版日期:  2024-06-03

目录

    /

    返回文章
    返回