留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浆体流变特性对大掺量粉煤灰混凝土早龄期拉伸徐变的影响

倪彤元 姚水丰 陈卫忠 杨杨 刘金涛 聂海波

倪彤元, 姚水丰, 陈卫忠, 等. 浆体流变特性对大掺量粉煤灰混凝土早龄期拉伸徐变的影响[J]. 复合材料学报, 2024, 41(11): 6111-6121. doi: 10.13801/j.cnki.fhclxb.20240131.002
引用本文: 倪彤元, 姚水丰, 陈卫忠, 等. 浆体流变特性对大掺量粉煤灰混凝土早龄期拉伸徐变的影响[J]. 复合材料学报, 2024, 41(11): 6111-6121. doi: 10.13801/j.cnki.fhclxb.20240131.002
NI Tongyuan, YAO Shuifeng, CHEN Weizhong, et al. Influence of the rheological properties of paste on the early-age tensile creep of high-volume fly ash concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6111-6121. doi: 10.13801/j.cnki.fhclxb.20240131.002
Citation: NI Tongyuan, YAO Shuifeng, CHEN Weizhong, et al. Influence of the rheological properties of paste on the early-age tensile creep of high-volume fly ash concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6111-6121. doi: 10.13801/j.cnki.fhclxb.20240131.002

浆体流变特性对大掺量粉煤灰混凝土早龄期拉伸徐变的影响

doi: 10.13801/j.cnki.fhclxb.20240131.002
基金项目: 国家自然科学基金面上项目 (51778583;52379136);浙江省重点研发计划项目(2021C01060)
详细信息
    通讯作者:

    倪彤元,博士,高级工程师,硕士生导师,研究方向为高性能混凝土材料与结构 E-mail: hznity@zjut.edu.cn

  • 中图分类号: TB332

Influence of the rheological properties of paste on the early-age tensile creep of high-volume fly ash concrete

Funds: National Natural Science Foundation of China (51778583; 52379136); Zhejiang Province Key R&D Program (2021C01060)
  • 摘要: 混凝土中浆体的流变特性是影响其拉伸徐变的重要因素之一。通过纳米压痕技术分析大掺量粉煤灰水泥基浆体(掺量为60wt%)微观力学性能、微观徐变等流变特性;同时实验研究相同水泥基浆体的大掺量粉煤灰混凝土(HVFAC)拉伸徐变时变规律,提出考虑浆体流变特性的HVFAC拉伸徐变ZC模型预测表达式。结果表明:水泥基浆体在相同测试龄期时,粉煤灰对其微观徐变的发展有促进作用;而等质量粉煤灰替代时,微观徐变随着测试龄期的后延更快趋于收敛;粉煤灰、加载龄期对徐变发展的影响与其不含骨料水泥基浆体的微观徐变影响规律具有一致性。在 0 d~28 d龄期内某一龄期时的混凝土弹模与ZC模型中的Maxwell体、Kelvin弹簧组合体最终比徐变的乘积(Et,28 d/(EV+EH)、Et,28 d/χφ)、混凝土黏性系数(φ)与相对抗压强度(fc(t0)/fc,28 d)、浆体微观徐变模量(C)、特征时间(τ)与测试龄期相关性分析表明这些参数与函数y=axb有较好的吻合度。水泥基浆体流变特性参数与ZC拉伸徐变模型参数相结合建立考虑水泥浆体流变特性的HVFAC拉伸徐变发展的预测表达式能反映模型单元体结构。

     

  • 图  1  基于纳米压痕技术表征浆体微观徐变行为

    Figure  1.  Characterization of paste microscopic creep behavior based on nanoindentation technique

    hmax—Maximum indentation depth; hf—Residual indentation depth after complete unloading; hc—Indentation contact depth; S—Contact stiffness; CH—Ca(OH)2; C-S-H—Calcium silicate hydrate; h—Cumulative depth of indentation; c—Cohesion of the microparticles in the paste; d—Microparticle diameter in the paste; D—Nanoindentation affects the diameter of the projected area; dP—Unit load force; dh—Unit the indentation contact depth; A—Comhead contact projection area

    图  2  ZC模型单元体徐变机制及混凝土中浆体微观徐变

    Figure  2.  Creep mechanism of ZC model the paste micro creep of concrete

    EM(t), EV(t)—Elastic coefficient of elastic element Maxwell and Kelvin, respectively; ηM(t), ηV(t)—Viscous coefficients of viscous element Maxwell and Kelvin respectively; EH(t)—Elasticity coefficient in Hooke's element; σ—Tensile stress imposed on the cell body; εd—Stress of element Maxwell; εv—Stress of element Kelvin; ηir(t)—Time-varying function of the (cuckoo) paste viscosity; η0—Initial viscosity of the (cuckoo) paste; L(0)—Initial contact creep compliance; L(t)—Contact creep compliance at time t; τ—Characteristic time; C—Microscopic creep modulus of paste; k—Growth coefficient of the (cuckoo) paste's viscosity; εe—Elastic strain

    图  3  持荷阶段的HVFAC拉伸徐变实验场景

    Figure  3.  Experimental scene of tensile creep specimens of HVFAC during load holding stage

    图  4  P0、P60试样微观力学性能的平均值变化

    Figure  4.  Mean changes in micromechanical properties of P0 and P60 specimens

    图  5  不同粉煤灰掺量下的微观徐变经时变化

    R2—Variance

    Figure  5.  Variation of microscopic creep through time for different fly ash dosages

    图  6  FA0、FA60拉伸徐变实验值与ZC模型预测值

    Figure  6.  Tensile creep experimental values and ZC model predictions of FA0 and FA60

    图  7  FA0、FA60模型参数与相对抗压强度的相关性

    Et,28 d/(EV+EH), Et,28 d/χφ is the products of concrete elastic modulus at some age (0-28 d) and the final specific creep of Maxwell body and Kelvin spring body in the ZC model respectively; fc(t0)/fc,28 d is the ratio of concrete rupture strength at age of t0 to at age of 28 d

    Figure  7.  Fitted relationships between the parameters in the model and relative compressive strength for FA0 and FA60

    图  8  P0、P60的Cτ与龄期的关系

    Figure  8.  Relationship between C, τ and age for P0 and P60

    表  1  水泥和粉煤灰的化学成分

    Table  1.   Chemical compositions of fly ash and cement

    Material Content/wt%
    CaO SiO2 Al2O3 MgO Fe2O3 SO3 K2O Na2O Other
    Cement 62.04 22.07 4.23 4.01 3.04 2.710 0.762 0.392 0.746
    Fly ash 4.43 51.63 33.98 1.16 4.40 0.260 0.905 0.888 2.347
    下载: 导出CSV

    表  2  净浆配合比

    Table  2.   Proportions of paste

    W/(C+FA) FA/% C/%
    P0 0.4 0 100
    P60 60 40
    Notes: W—Water; C—Cement; FA—Fly ash; P0—Paste group without fly ash; P60—Paste group with 60% of fly ash replacing cement by equal mass.
    下载: 导出CSV

    表  3  大掺量粉煤灰混凝土(HVFAC)的配合比(kg/m3)

    Table  3.   Proportions of high volume fly ash concrete (HVFAC) (kg/m3)

    W/(C+FA) Cement Fly ash Water Fine aggregate Coarse aggregate Superplasticizer
    FA0 0.4 450 0 180 654 1113 0.720
    FA60 180 270 180 654 1113 0.855
    Notes: FA0—Group of concrete without fly ash; FA60—Group of concrete with 60% of fly ash replacing cement by equal mass.
    下载: 导出CSV

    表  4  HVFAC的基本力学性能

    Table  4.   Basic mechanical properties of HVFAC

    Age of testing/d Compressive strength/MPa Splitting tensile strength/MPa Tensile elastic modulus/GPa
    FA0 346.244.0037.36
    756.024.8037.80
    2867.755.7940.43
    FA60 311.561.5124.30
    716.831.7126.28
    2824.482.7428.28
    下载: 导出CSV

    表  5  P0、P60的微观徐变参数

    Table  5.   Microscopic creep parameters for P0, P60

    Age of testing/d C/GPa τ/s
    P0 3 97.1 6.0
    7 106.5 8.1
    28 110.4 9.3
    P60 3 89.0 2.6
    7 99.5 3.1
    28 108.9 4.7
    下载: 导出CSV

    表  6  FA0、FA60的ZC模型参数

    Table  6.   ZC model parameters for FA0, FA60

    Loading age/d φ (χφ)−1/
    (10−6 MPa−1)
    (EV+EH)−1/
    (10−6 MPa−1)
    FA0 30.19124.6011.50
    70.15916.39 8.89
    280.148 6.04 3.98
    FA60 30.21856.4719.65
    70.20429.3914.93
    280.16517.82 5.01
    Notes: φ—Coefficient affecting the growth rate of the coefficient of viscosity; The parameter of 1/χφ and 1/(EV+EH) is the final specific creep of the spring assemblies Maxwell and Kelvin, respectively.
    下载: 导出CSV
  • [1] 花素珍, 张家广, 高沛, 等. 增强再生骨料固载混菌的混凝土裂缝自修复性能[J]. 复合材料学报, 2023, 40(11): 6299-6310.

    HUA Suzhen, ZHANG Jiaguang, GAO Pei, et al. Self-healing of concrete cracks by immobilizing non-axenic bacteria with enhanced recycled aggregates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6299-6310(in Chinese).
    [2] 阚黎黎, 王飞, 邬海江, 等. 不同养护条件下混杂钢纤维超高性能混凝土的早龄期力学性能及开裂特性[J]. 硅酸盐学报, 2022, 50(2): 429-437.

    KAN Lili, WANG Fei, WU Haijiang, et al. Mechanical properties and cracking characteristics of UHPC with hybrid steel fibers at early age under different curing conditions[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 429-437(in Chinese).
    [3] BRIFFAUT M, BENBOUDJEMA F, TORRENTI J M, et al. Concrete early age basic creep: Experiments and test of rheological modelling approaches[J]. Construction and Building Materials, 2012, 36: 373-380. doi: 10.1016/j.conbuildmat.2012.04.101
    [4] NGUYEN D H, DAO V T N, LURA P. Tensile properties of concrete at very early ages[J]. Construction and Building Materials, 2017, 134: 563-573. doi: 10.1016/j.conbuildmat.2016.12.169
    [5] 张霓. GFRP管空心钢筋混凝土构件试验研究与理论分析 [D]. 沈阳: 东北大学, 2019.

    ZHANG Ni. Experimental research and theoretica analysis on GFRP tube filled with reinforced hollow concrete members [D]. Shenyang: Northeastern University, 2019(in Chinese).
    [6] CHARPIN L, LE PAPE Y, COUSTABEAU É, et al. A 12 year EDF study of concrete creep under uniaxial and biaxial loading[J]. Cement and Concrete Research, 2018, 103: 140-159. doi: 10.1016/j.cemconres.2017.10.009
    [7] HUYNH T P, HWANG C L, LIMONGAN A H. The long-term creep and shrinkage behaviors of green concrete designed for bridge girder using a densified mixture design algorithm[J]. Cement and Concrete Composites, 2018, 87: 79-88. doi: 10.1016/j.cemconcomp.2017.12.004
    [8] ZHAO Z F, WANG K J, LANGE D A, et al. Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age[J]. Cement and Concrete Composites, 2019, 99: 191-202. doi: 10.1016/j.cemconcomp.2019.02.018
    [9] PARK B, CHOI Y C. Hydration and pore-structure characteristics of high-volume fly ash cement pastes[J]. Construction and Building Materials, 2021, 278: 122390. doi: 10.1016/j.conbuildmat.2021.122390
    [10] WYRZYKOWSKI M, SCRIVENER K, LURA P. Basic creep of cement paste at early age−The role of cement hydration[J]. Cement and Concrete Research, 2019, 116: 191-201. doi: 10.1016/j.cemconres.2018.11.013
    [11] KRISTIAWAN S A, NUGROHO A P. Creep behaviour of self-compacting concrete incorporating high volume fly ash and its effect on the long-term deflection of reinforced concrete beam[J]. Procedia Engineering, 2017, 171: 715-724. doi: 10.1016/j.proeng.2017.01.416
    [12] LIANG S M, WEI Y. Effects of water-to-cement ratio and curing age on microscopic creep and creep recovery of hardened cement pastes by microindentation[J]. Cement and Concrete Composites, 2020, 113: 103619. doi: 10.1016/j.cemconcomp.2020.103619
    [13] SUWANMANEECHOT P, AILI A, MARUYAMA I. Creep behavior of C-S-H under different drying relative humidities: Interpretation of microindentation tests and sorption measurements by multi-scale analysis[J]. Cement and Concrete Research, 2020, 132: 106036. doi: 10.1016/j.cemconres.2020.106036
    [14] MALLICK S, ANOOP M B, RAO K B. Creep of cement paste containing fly ash-An investigation using microindentation technique[J]. Cement and Concrete Research, 2019, 121: 21-36. doi: 10.1016/j.cemconres.2019.04.006
    [15] YAO J K, YAO S F, HUANG S L, et al. The influence of fly ash on the tensile creep prediction of high-strength concrete at early ages[J]. Materials, 2023, 16(4): 1337.
    [16] 倪彤元. 掺合料高强混凝土早龄期拉伸徐变特性及其评价[D]. 杭州: 浙江工业大学, 2020.

    NI Tongyuan. Tensile creep characteristics and its evaluation of high strength concrete containing mineral admixtures at early ages[D]. Hangzhou: Zhejiang University of Technology, 2020(in Chinese).
    [17] 周伟玲, 孙伟, 陈翠翠, 等. 应用纳米压痕技术表征水泥基材料微观力学性能[J]. 东南大学学报(自然科学版), 2011, 41(2): 370-375. doi: 10.3969/j.issn.1001-0505.2011.02.030

    ZHOU Weiling, SUN Wei, CHEN Cuicui, et al. Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(2): 370-375(in Chinese). doi: 10.3969/j.issn.1001-0505.2011.02.030
    [18] CHEN S K, WU C L, YAN D M. Binder-scale creep behavior of metakaolin-based geopolymer[J]. Cement and Concrete Research, 2019, 124: 105810. doi: 10.1016/j.cemconres.2019.105810
    [19] LAVERGNE F, BARTHÉLÉMY J F. Confronting a refined multiscale estimate for the aging basic creep of concrete with a comprehensive experimental database[J]. Cement and Concrete Research, 2020, 136: 106163. doi: 10.1016/j.cemconres.2020.106163
    [20] 刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能[J]. 复合材料学报, 2020, 37(4): 952-961.

    LIU Qiaoling, LI Hancai, PENG Yujiao, et al. Nanomechanical properties of multi-wall carbon nanotubes/cementitious composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 952-961(in Chinese).
    [21] 梁思明, 魏亚. 硬化水泥净浆微观结构对微观徐变及力学性能的影响[J]. 硅酸盐学报, 2016, 44(2): 181-188.

    LIANG Siming, WEI Ya. Influence of microstructure on micro creep and mechanical properties of hardened cement paste[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 181-188(in Chinese).
    [22] 张璇, 刘娟红. 纳米压痕技术在水泥基材料中的研究进展[J]. 电子显微学报, 2015, 34(6): 530-539. doi: 10.3969/j.issn.1000-6281.2015.06.014

    ZHANG Xuan, LIU Juanhong. Research progress of the application of nano-indentation to cement-based materials[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(6): 530-539(in Chinese). doi: 10.3969/j.issn.1000-6281.2015.06.014
    [23] 曹丰泽, 阎培渝. 氧化镁膨胀剂对混凝土长期体积变化的影响[J]. 硅酸盐学报, 2018, 46(8): 1126-1132.

    CAO Fengze, YAN Peiyu. Effects of reactivity and dosage of magnesium oxide expansive agents on long-term volume variation of concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1126-1132(in Chinese).
    [24] OLIVER W, PHARR G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 2011, 7(6): 1564-1583.
    [25] VANDAMME M, TWEEDIE C A, CONSTANTINIDES G, et al. Quantifying plasticity-independent creep compliance and relaxation of visco-elasto-plastic materials under contact loading[J]. Journal of Materials Research, 2012, 27(1): 302-312. doi: 10.1557/jmr.2011.302
    [26] SORELLI L, CONSTANTINIDES G, ULM F J, et al. The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques[J]. Cement and Concrete Research, 2008, 38(12): 1447-1456. doi: 10.1016/j.cemconres.2008.09.002
    [27] 楼晓天. 基于ZC模型的掺合料高强混凝土早龄期拉伸徐变评价 [D]. 杭州: 浙江工业大学, 2017.

    LOU Xiaotian. Evaluation of tensile creep of high strength concrete containing mineral admixtures at early ages based on ZC model [D]. Hangzhou: Zhejiang University of Technology, 2017(in Chinese).
    [28] GU C P, WANG Y C, GAO F, et al. Early age tensile creep of high performance concrete containing mineral admixtures: Experiments and modeling[J]. Construction and Building Materials, 2019, 197: 766-777. doi: 10.1016/j.conbuildmat.2018.11.218
    [29] 杨杨, 许四法, 叶德艳, 等. 早龄期高强混凝土拉伸徐变特性[J]. 硅酸盐学报, 2009, 37(7): 1124-1129. doi: 10.3321/j.issn:0454-5648.2009.07.011

    YANG Yang, XU Sifa, YE Deyan, et al. Tensile creep behavior of high strength concrete at early ages[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1124-1129(in Chinese). doi: 10.3321/j.issn:0454-5648.2009.07.011
    [30] 阎培渝, 陈志城. 不同水胶比的粉煤灰混凝土的自收缩[J]. 硅酸盐学报, 2014, 42(5): 585-589. doi: 10.7521/j.issn.0454-5648.2014.05.05

    YAN Peiyu, CHEN Zhicheng. Autogenous shrinkage of fly ash concrete with different water-binder ratios[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 585-589(in Chinese). doi: 10.7521/j.issn.0454-5648.2014.05.05
    [31] 沙东, 王宝民, 潘宝峰, 等. 地质聚合物强化增韧方法研究综述[J]. 复合材料学报, 2024, 41(3): 1215-1225.

    SHA Dong, WANG Baomin, PAN Baofeng, et al. A review on reinforcing and toughening methods of geopolymers[J]. Acta Materiae Compositae Sinica, 2024, 41(3):1215-1225(in Chinese).
    [32] 马成畅, 徐斐熙, 杨杨, 等. 大掺量粉煤灰混凝土早龄期拉伸徐变特性研究[J]. 浙江工业大学学报, 2023, 51(2): 131-138. doi: 10.3969/j.issn.1006-4303.2023.02.003

    MA Chengchang, XU Feixi, YANG Yang, et al. Study on tensile creep characteristics of high volume fly ash concrete at early ages[J]. Journal of Zhejiang University of Technology, 2023, 51(2): 131-138(in Chinese). doi: 10.3969/j.issn.1006-4303.2023.02.003
    [33] HASHMI A F, SHARIQ M, BAQI A. An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction[J]. Construction and Building Materials, 2021, 283: 122772. doi: 10.1016/j.conbuildmat.2021.122772
    [34] LI L, DABARERA A G P, DAO V. Basic tensile creep of concrete with and without superabsorbent polymers at early ages[J]. Construction and Building Materials, 2022, 320: 126180. doi: 10.1016/j.conbuildmat.2021.126180
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  128
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-01-12
  • 录用日期:  2024-01-20
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回