Processing math: 47%

基于力学性能和结晶行为探究不同成核剂对聚乳酸性能影响

吕超, 罗书品, 郭文静

吕超, 罗书品, 郭文静. 基于力学性能和结晶行为探究不同成核剂对聚乳酸性能影响[J]. 复合材料学报, 2024, 41(6): 3168-3181. DOI: 10.13801/j.cnki.fhclxb.20231008.002
引用本文: 吕超, 罗书品, 郭文静. 基于力学性能和结晶行为探究不同成核剂对聚乳酸性能影响[J]. 复合材料学报, 2024, 41(6): 3168-3181. DOI: 10.13801/j.cnki.fhclxb.20231008.002
LYU Chao, LUO Shupin, GUO Wenjing. Effect of various nucleating agents on mechanical properties and crystallizationbehavior of poly(lactic acid)[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3168-3181. DOI: 10.13801/j.cnki.fhclxb.20231008.002
Citation: LYU Chao, LUO Shupin, GUO Wenjing. Effect of various nucleating agents on mechanical properties and crystallizationbehavior of poly(lactic acid)[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3168-3181. DOI: 10.13801/j.cnki.fhclxb.20231008.002

基于力学性能和结晶行为探究不同成核剂对聚乳酸性能影响

基金项目: 国家自然科学基金青年项目(31901250)
详细信息
    通讯作者:

    郭文静,博士,研究员,博士生导师,研究方向为轻质高强木质复合材料  E-mail: guowj@caf.ac.cn

  • 中图分类号: TB332

Effect of various nucleating agents on mechanical properties and crystallizationbehavior of poly(lactic acid)

Funds: National Natural Science Foundation of China for Young Scholars (31901250)
  • 摘要: 探究杨木纤维作为一种生物基成核剂对聚乳酸(PLA)力学和结晶性能的影响,并与常用的成核剂滑石粉和酰肼化合物对比。分别将杨木纤维(WF) (0.5wt%、1wt%、2wt%、4wt%)、滑石粉(Talc) (1wt%、2wt%、4wt%、8wt%)和酰肼化合物(TMC-300) (0.3wt%、0.5wt%、1wt%、2wt%)在不同含量条件下与PLA进行熔融共混挤出、模压制备复合材料,基于力学性能确定每种成核剂在PLA中的较优添加量,并进一步在较优添加量条件下研究3种成核剂对PLA结晶性能的影响,包括结晶行为、晶体形貌和结构。3种成核剂均能提高PLA的缺口冲击强度,与成核剂Talc和TMC-300相比,添加WF对PLA的拉伸性能和弯曲性能改善效果更为显著,在WF较优添加量条件下(1wt%),复合材料的断裂伸长率、拉伸强度和弯曲强度与纯PLA相比分别提高了27%、17%和18%。采用差示扫描量热法比较3种成核剂对PLA的结晶行为影响,结果表明添加1wt% WF提高了PLA非等温结晶的结晶度,但低于添加1wt% Talc和0.5wt% TMC-300的复合材料结晶度。根据等温结晶动力学分析,WF可以缩短PLA在等温结晶过程的半结晶时间,加快PLA的结晶速率,添加1wt% WF、1wt% Talc和0.5wt% TMC-300后PLA在110℃等温结晶的半结晶时间从23.6 min分别降低至7.2、2.7和1.4 min。热台-偏光显微镜观察结果表明,不同成核剂诱导PLA在110℃等温结晶时的晶体形貌不同,WF、Talc为PLA结晶提供了大量成核位点,促进PLA晶粒微细化,而TMC-300诱导PLA产生纤维束状晶体且结晶速率明显加快,这与等温结晶动力学分析结果一致。蚀刻后的冲击断面形貌也表明,不同形貌的晶体堆积是复合材料的力学性能存在差异的原因之一。X射线衍射结果表明,3种成核剂均能促进PLA产生有序的α晶,其中添加WF时α(110)/(200)晶的衍射峰强度最高,同时WF能显著降低PLA的晶粒尺寸。杨木纤维可以作为PLA的一种生物基成核剂,具有增强和成核的双重作用。本文为进一步优化WF对PLA的成核作用提供基础,也为促进木塑复合材料的绿色发展提供借鉴。

     

    Abstract: The aim of this study was to investigate the effect of poplar wood fiber as a bio-nucleating agent on the mechanical properties and crystallization behaviors of poly(lactic acid) (PLA), and compare with common nucleating agents talc powder and hydrazide compounds. Poplar wood fiber (WF) (0.5wt%, 1wt%, 2wt%, 4wt%), talc powder (Talc) (1wt%, 2wt%, 4wt%, 8wt%) and hydrazide compounds (TMC-300) (0.3wt%, 0.5wt%, 1wt%, 2wt%) were blended with PLA to prepare composite at various contents by extrusion and molding process, respectively. The optimal content of each nucleating agent was determined based on mechanical properties of composites. The effect of WF, Talc and TMC-300 under optimal content on the crystallization properties including crystallization behaviors, crystal morphology and structure of PLA-based composites was compared. All the three types of nucleating agents can improve the notched impact strength of PLA. Compared with Talc and TMC-300, the addition of WF results in more significant improvement in tensile and flexural properties of PLA-based composite. Under the optimal addition content (1wt%) of WF, the elongation at break, tensile and flexural strength increase by 27%, 17% and 18% in comparison with neat PLA, respectively. The effect of WF, Talc and TMC-300 on the crystallization behaviors of PLA was studied through differential scanning calorimetry. Results show that adding 1wt% WF can improve the crystallinity of PLA in the non-isothermal crystallization, but it is much lower than that of composite with 1wt% Talc and 0.5wt% TMC-300. According to the isothermal crystallization kinetic analysis, WF can also reduce the half-crystallization time of PLA matrix, and improve the crystallization rate. The half-crystallization time under isothermal crystallization at 110℃ is reduced from 23.6 min (neat PLA) to 7.2, 2.7 and 1.4 min when adding 1wt% WF, 1wt% Talc and 0.5wt% TMC-300, respectively. Hot-stage polarized light microscope observation shows that the crystal morphology of PLA induced by various nucleating agents is different during 110℃ isothermal crystallization. WF and Talc provide a large number of nucleation sites for PLA crystallization, which promotes the grain refinement of PLA. TMC-300 induces PLA to form fibrous bundle-like crystals accompanied with higher crystallization rate, which is consistent with isothermal crystallization kinetic analysis results. The SEM observation of impact facture morphology after etching treatment indicates that the accumulation of crystals with different morphologies is one reason for the difference of mechanical properties. Wide angle X-diffraction analysis shows that all the three types of nucleating agents can promote the generation of orderly α-crystal. The diffraction peak intensity of α(110)/(200) crystals is highest when adding WF. Besides, WF can significantly decrease the crystal size of PLA. This study demonstrates that poplar wood fiber can be used as a bio-nucleating agent for PLA, which plays dual effect of reinforcement and nucleation. This study provides a basis for optimizing the nucleation ability of WF for PLA, and also provides references for further promoting the green development of wood-plastic composite.

     

  • 高性能水泥基材料(High-performance cement-based composite,HPCC)是近年水泥基材料的研究热点之一[1-2]。相比于普通水泥基材料,HPCC的抗裂性、韧性、抗冲击及耐久性能等均有提高。有研究表明钢纤维含量直接影响HPCC性能,但也有研究认为其对水泥基材料的弹性模量、抗折强度等无明显影响[3-4]。钢纤维有序与无序排列的HPCC的双轴抗压能力也不相同[5]。而钢纤维掺量、不同种类钢纤维的掺入比例等因素会影响HPCC的工作性能和增韧效果[6]。因此钢纤维掺量对HPCC性能的影响仍需要进一步研究。

    因其力学性能优异,HPCC已经成为最具有应用前景的建筑材料。各国学者对HPCC的动静态单轴力学性能进行了大量试验研究[7-10],发现加入钢纤维能提高强度,抑制裂缝发展[11-13]。但有研究指出HPCC与普通混凝土的双轴拉压强度包络图有明显不同[14]

    实际工程结构经常处于双轴或多轴受力状态。不同水泥基材料的压剪性能受到了很多关注[15-18],而由于HPCC强度较高,目前涉及其压剪复合受力的报道较少。因此需要进一步研究不同纤维含量的HPCC的压剪性能和破坏准则。

    本文对不同钢纤维掺量的HPCC进行了单轴抗压、劈裂抗拉及双轴压剪性能试验。通过试验结果分析了不同钢纤维掺量对HPCC力学性能的影响。采用SEM对HPCC进行形貌分析,从微观机制角度研究钢纤维对水泥基体的影响。利用试验数据和文献试验数据提出了基于Ottosen模型的破坏准则,并给出了适用于HPCC的模型参数,结果与试验数据吻合良好。

    HPCC试件水泥采用PII 52.5硅酸盐水泥,细集料采用天然河砂,另加入苏博特新材料有限公司生产的SBT-HDC(V)[19]超细矿物掺合料和减水剂,其中SBT-HDC(V)超细矿物掺合料是一种以粉煤灰和超细矿粉为主要原料的具有一定细度和活性的矿物掺合料,减水剂也是苏博特公司生产的PCA-I系列聚羧酸高性能减水剂,其物理性能符合国家标准GB/T 18736—2017[20],拌合水采用城市自来水。本文考虑了4种不同钢纤维掺入量的配合比,体积分数ρf分别为0vol%、0.5vol%、1.0vol%、2.0vol%,分别记为C、0.5%SF/C、1%SF/C和2%SF/C,详细配合比如表1所示。试验采用的微直钢纤维长度为13 mm,直径为0.2 mm,抗拉强度2800 MPa,纤维如图1所示。

    HPCC试件的浇筑方法为先按照不同的配合比加入水泥、砂、SBT-HDC掺料,搅拌2 min,再加入水和减水剂和钢纤维搅拌4~6 min。搅拌均匀后入模浇筑,由于此配合比的HPCC为自密实型,流动性非常好,无需振捣即可自行密实,之后覆膜养护,在室温(20±2)℃且相对湿度>90%的条件下养护24 h后脱模,再放入水中养护3天,然后在自然室内环境中再养护28天后取出进行相关试验。

    表  1  不同高性能水泥基材料(HPCC)配合比
    Table  1.  Various mix proportions of high-performance cement-based composites (HPCC) kg/m3
    SpecimenCementHDC(V)WaterWater reducing agentSandSteel fiber
    C80036018017.0930.0
    0.5%SF/C80036018017.0925.439
    1%SF/C80036018017.0920.778
    2%SF/C80036018017.0911.4156
    Notes: SF—Steel fiber; C—Concrete; HDC(V) is a mineral blending material with a certain fineness and activity with fly ash and ultrafine mineral powder as the main raw materials.
    下载: 导出CSV 
    | 显示表格
    图  1  试验采用的钢纤维
    Figure  1.  Steel fibers adopted in the experiments

    HPCC力学试验包括抗压强度试验、劈裂抗拉试验、压剪复合受力试验3项。预制试块的尺寸为100 mm×100 mm×100 mm。为保证试验结果的可靠性,每次试验采用3个试件。采用不同轴压比进行压剪试验,考虑到试件强度和双向试验机能力,采用的轴向压力分别为15 kN、25 kN、35 kN和45 kN。在2%SF/C试块试验时发现,在轴向压力为15 kN时无法完成试验,因此2%SF/C试件只包含25、35、45 kN这3组压剪结果。具体试验工况见表2

    表  2  HPCC试验工况
    Table  2.  Designed experimental cases of HPCC
    ItemLoad profileAxial load/kNNumber of load cases
    ρf-C-compUniaxial compression1
    ρf-SF/C-comp3
    ρf-C-splitSplit tension1
    ρf-SF/C-split3
    ρf-C-X4
    ρf-SF/C-XCombined compression-shear15, 25, 35, 4511
    Notes: ρf=0vol%, 0.5vol%, 1vol%, 2vol%, is the volume fraction of steel fibers; X=15, 25, 35, 45 kN, is the axial pressure in the composite compression-shear tests.
    下载: 导出CSV 
    | 显示表格

    HPCC单轴劈裂试验采用瑞格尔仪器有限公司生产的RE-8060型电液伺服万能试验机完成,抗压强度试验采用美特斯公司生产的YAW-4306型微机控制电液伺服万能试验机完成。单轴抗压和劈裂试验采用应力控制加载方式,按照GB/T 50081—2002[21]的要求完成。HPCC压剪试验采用长春试验机研究所生产的CSS-283型材料试验机,用直剪方式得到极限剪切荷载。

    HPCC压剪复合试验采用定侧向加载方式,首先竖直轴以0.5 kN/min加载速率加载至设定竖向压力,并保持1 min,然后水平轴上预加载0.5 kN,保持2 min,最后采用位移控制方式施加横向剪切荷载至6.5 mm。横向位移在2 mm以下时加载速率为0.1 mm/min,2 mm以上时为0.3 mm/min。压剪试验过程中主要记录水平荷载和位移。图2为HPCC试件的压剪加载图片、加载框架和试件剪切面示意图。

    图  2  加载设备和剪切面示意图
    σ—Compression stress; τ—Shear stress
    Figure  2.  Loading equipment and sketchy shear surface

    采用材料压剪试验机进行不同轴向压力作用下HPCC试件的压剪试验,得到不同HPCC试件的横向剪切荷载-位移曲线,图3(a)~3(d)所示分别为C、0.5%SF/C、1%SF/C和2%SF/C试件的压剪荷载-位移曲线。可以看出,曲线大致可分为上升段、下降段和渐变段(含钢纤维),首先是上升段,随着荷载的增加,剪切位移几乎线性上升,在第一阶段最后HPCC抗剪强度达到峰值,开始出现裂缝;其次为下降段,随着加载位移逐渐增加,试件裂缝进一步扩展,HPCC的抗剪强度迅速下降,其中C试件在第二阶段末尾被完全剪坏,失去抗剪能力;最后为渐变段,此时C试件失去抗剪能力,残余荷载由轴向压力作用下的摩擦力提供,此荷载大小几乎保持不变,而含钢纤维的SF/C试件在第三阶段除摩擦力外,钢纤维也提供了抗剪能力,随着加载的进行钢纤维被拔出,其提供的抗剪能力逐渐下降,因此在荷载-位移曲线上可以看出荷载逐渐下降,直至最后剪切面上的钢纤维被全部拔出,荷载才趋于稳定。

    图  3  HPCC的压剪试验荷载-位移曲线
    Figure  3.  Compression-shear load versus displacement curves of HPCC specimens

    根据试验结果将不同配合比的HPCC抗压、劈裂抗拉强度整理成表3。可见,本文HPCC单轴抗压强度均在110 MPa以上,含纤维HPCC的劈裂抗拉强度均大于12 MPa。

    表  3  不同配合比HPCC的单轴抗压和劈裂抗拉强度
    Table  3.  Uniaxial compression and splitting tensile strength of various HPCC
    SpecimenCompressive strength/MPaSplitting tensile strength/MPa
    Test 1Test 2Test 3AverageStandard
    deviation
    Test 1Test 2Test 3AverageStandard
    deviation
    C 113.72 115.73 118.34 115.93 1.89 7.37 7.97 6.82 7.39 0.47
    0.5%SF/C 135.14 121.65 121.56 126.12 6.38 12.29 12.61 13.21 12.70 0.38
    1%SF/C 144.96 147.81 135.68 142.83 5.18 13.63 14.03 13.53 13.73 0.22
    2%SF/C 137.61 120.19 127.58 128.46 7.14 14.44 13.41 14.00 13.95 0.42
    下载: 导出CSV 
    | 显示表格

    根据试验结果可以获得试件的压剪复合作用下的应力-应变曲线,提取出不同轴向力作用下HPCC试件的压剪峰值应力τfc和峰值应变ε1。将试验结果整理汇总于表4

    表  4  不同配合比HPCC试件压剪复合试验特征值
    Table  4.  Characteristic values of compression-shear composite experiments for HPCC specimens with different mix proportions
    SpecimenPeak load/kNτfc/MPaε1/103
    C-1590.179.024.51
    C-25126.1712.624.64
    C-35148.2714.835.93
    C-45169.4016.948.42
    0.5%SF/C-15129.6012.964.36
    0.5%SF/C-25162.3316.235.97
    0.5%SF/C-35174.3017.436.27
    0.5%SF/C-45212.4321.247.48
    1%SF/C-15152.2115.227.52
    1%SF/C-25211.8021.189.85
    1%SF/C-35217.6721.779.83
    1%SF/C-45251.7325.1711.67
    2%SF/C-25199.9319.999.29
    2%SF/C-35237.7723.787.74
    2%SF/C-45252.2725.239.94
    Notes: τfc—Peak shear stress; ε1—Strain of HPCC when the shear stress reaches peak.
    下载: 导出CSV 
    | 显示表格

    已有文献[15-17, 22]研究表明,在轴向压力较小的情况下,水泥基材料的压剪复合强度与轴向压力呈线性关系,即不同轴向压力作用下的剪切强度和轴向应力可以用下式表达:

    τfc=μσ+c (1)

    式中:τfcσ为压剪峰值应力和轴向应力;μc为摩擦系数和黏聚力。

    利用表4数据可以获得不同HPCC试件的μc,如表5所示。将试验值和拟合曲线绘制在图4中。

    表  5  HPCC剪切摩擦系数μ和黏聚力c
    Table  5.  Friction coefficient μ and cohesive stress c of HPCC
    Specimenμ(Error)cR2
    C2.8054(−2.68%)5.12750.9726
    0.5%SF/C2.7558(−4.40%)8.33050.9441
    1%SF/C3.1280(8.51%)11.10740.9694
    2%SF/C2.8411(−1.44%)13.07050.9504
    Average2.8826
    Note: R2—Coefficient of determination.
    下载: 导出CSV 
    | 显示表格
    图  4  HPCC压剪强度与轴向应力关系
    Figure  4.  Relationships of compression-shear strength and axial stress of HPCC

    表5可以看出,不同配合比试件的μ 略有差别,与平均值的差异在−1.44%~8.51%之间,可以认为不同HPCC试件的摩擦系数一致。但是ρf对HPCC的黏聚力有比较明显的影响,可以用下式表示:

    c=fτ(1+a1ρf+a2ρ2f)=5.064(1+1.544ρf0.337ρ2f) (2)

    其中:fτ为无轴向压力作用时无钢纤维HPCC的剪切强度;a1a2为钢纤维影响系数。

    将不同纤维掺量HPCC的压剪摩擦系数和黏聚力的实测值和拟合值一起作图,如图5图6所示。可见,HPCC压剪强度和黏聚力的拟合效果与实测数据吻合较好。

    图  5  HPCC摩擦系数与钢纤维含量关系
    Figure  5.  Friction coefficient versus steel fiber content of HPCC
    图  6  HPCC黏聚力与钢纤维含量关系
    Figure  6.  Cohesive stress versus steel fiber content of HPCC

    压剪峰值位移也是HPCC压剪复合受力形态的重要指标。但是由于水泥基材料的离散特点及加载设备本身固有的间隙,测试获得的剪切位移值一般精确程度不高,但是其变化的规律性还是比较明显的。提取表4中的位移数据,可以获得HPCC试件的压剪位移值,将其绘制在图7中。可以看出,随着轴向荷载的增加,HPCC的峰值剪切位移总体上呈现增加趋势,说明轴向荷载对剪切位移有一定的提高作用。在相同的轴向荷载作用下,在轴向力较小时,无钢纤维试件的剪切位移峰值通常小于含钢纤维试件,而在所有试件中1%SF/C的剪切位移最大,说明一定含量的钢纤维对HPCC的峰值剪切位移有比较明显的提高作用,但是2%SF/C试件的峰值剪切位移反而降低,表明ρf过大反而使峰值剪切位移减小。这是由于适量的钢纤维掺入可以降低水泥基材料的总孔隙率,改善孔隙结构。而钢纤维含量超过一个临界值以后,水泥基材料内的纤维将进一步造成孔隙结构分布不均匀,使内部缺陷增多,总孔隙率增大。因此,由于内部潜在缺陷的增加,导致2%SF/C钢纤维含量下的剪切峰值位移比1%SF/C钢纤维含量的试件反而更小。

    图  7  HPCC峰值轴向荷载与剪切位移峰值关系
    Figure  7.  Relationships between axial force and peak shear displacement of HPCC

    提取压剪试验中试件破坏界面的HPCC试样,采用SEM对其进行形貌分析。图8(a)~8(d)分别为C、0.5%SF/C、1%SF/C和2%SF/C的微观形貌图像。

    图8(a)中试件基体表面附着了大量未反应的胶凝材料,通过对比可以看出,随着钢纤维含量的增加,水泥基体表面的胶凝材料逐渐变少,基体表面更加平整规则,说明水泥基材料的水化程度有所提高,一方面这是由于钢纤维分布在水泥基体中有良好的导热作用,可以促进水化反应[23]。另外一方面,图8(b)图8(c)中可以看到钢纤维被拔出后在基体上留下的纤维槽,纤维槽附近有很多孔隙,多余的孔隙也会增加基体内部表面积,促进水化反应。但是,纤维与基体界面较薄弱,在加载过程中会首先开裂,接着钢纤维发挥桥联作用,逐渐被拔出。从图8(c)中可以看到钢纤维被拔出时,纤维槽处的水泥基体会产生裂缝,验证了该区域基体较薄弱。图8(d)为2%SF/C中一根残留的钢纤维,2%SF/C水化程度较高,因此纤维表面没有附着很多胶凝材料,可以观察到钢纤维附近的水泥基体已经开裂,有一小部分基体已经剥落,表明过多的纤维掺量会降低钢纤维和水泥基体之间的黏聚力,导致2.4节所述的宏观上压剪位移的减小。

    图  8  HPCC的微观形貌SEM图像
    Figure  8.  Micro morphology SEM images of HPCC

    1977年Ottosen[24]通过薄膜比拟法来模拟混凝土破坏包括面形状的变化,提出了一种适用应力范围较广的四参数破坏准则。以Ottosen模型为基础建立HPCC的破坏准则具有一定的理论和实践价值。

    以Ottosen模型为基础的破坏准则的表达式如下:

    F(I1,J2,cos3θ)=AJ2f2c+λJ2fc+BI1fc1=0λ=k1cos[13arccos(k2cos3θ)](0 (3)

    其中: A、B、{k}_{1}、{k}_{2} 为拟合材料参数;fc 为混凝土轴向抗压强度;{I_1}{J_2}分别是应力不变量;\theta 为罗德角。

    参考文献[2, 5, 25-29]的研究成果,结合本文HPCC试验值,根据式(3)进行数学拟合分析,得到了适用于HPCC的破坏准则,四参数拟合结果如表6所示。

    把本文HPCC计算所得曲线与Ottosen关于普通混凝土的破坏准则曲线[24]一同绘制在图9,可见根据Ottosen破坏准则获得的曲线光滑外凸,能够比较好地描述HPCC的破坏包络面。与普通混凝土相比,HPCC破坏子午面有一定的偏转。在相同的静水压力下,相同八面体正应力σoct条件下,HPCC的八面体剪应力τoct大于普通混凝土,说明HPCC与普通混凝土相比,其破坏强度特性有明显差异。通过计算应力矢量在破坏偏平面上的投影,将不同静水压力下偏平面上的包络线绘制在图10中,可见用Ottosen准则仍然能够比较准确的描述HPCC破坏特征。

    表  6  Ottosen破坏准则的拟合参数
    Table  6.  Fitting parameters of Ottosen failure criterion
    AB{k_1}{k_2}
    1.324.0112.680.98
    Note: A, B, k1, k2—Fitting parameters in Ottosen criterion.
    下载: 导出CSV 
    | 显示表格
    图  9  普通混凝土与HPCC的Ottosen破坏准则曲线比较
    τoct—Octohedral shear stress; fc—Axial compressive strength; σoct—Octohedral normal stress; θ—Rode angle
    Figure  9.  Comparison of Ottosen failure criterion curves between ordinary concrete and HPCC
    图  10  HPCC偏平面上的破坏包络线
    Figure  10.  Ultimate strength envelope in the deviatoric plane of HPCC

    (1) 压剪复合受力状态下,高性能水泥基复合材料(HPCC)试件的压剪强度随轴向压力的增加而增加。其中摩擦力部分主要受轴向力的影响,钢纤维掺量的影响不显著,不同纤维掺量下的摩擦系数基本不变,其平均值为 2.8826 ,不同纤维掺入量的HPCC的摩擦系数与均值相比的差异在–1.44%~8.51%之间;而黏聚力部分受钢纤维掺量的影响时显著,呈现先增加后减小的抛物线变化规律。

    (2) HPCC剪切峰值位移随轴向压力的增加而增加,钢纤维含量对剪切峰值位移有明显影响。试验结果表明,1vol%的纤维掺量对剪切位移的提高作用明显,而2vol%纤维掺量反而降低剪切峰值位移。

    (3) 通过对HPCC破坏界面的微观形貌进行分析可知,钢纤维的加入可促进水泥基体的水化,提高基体水化程度。同时钢纤维会让水泥基体中的孔隙增多,而钢纤维与附近基体的黏结强度较低,使钢纤维附近的基体更易破坏,从而宏观上可能导致单轴强度和剪切位移的降低。

    (4) 综合采用相关文献[2, 5, 24-27, 29]中不同类型高性能水泥基材料的实验数据与本文试验数据进行了拟合分析,确定了基于Ottosen模型的HPCC破坏准则及其参数,试验数据和拟合结果的吻合程度较高,可以用于HPCC破坏阶段的计算。

  • 图  1   不同成核剂的微观形貌和粒径分布:杨木纤维(WF) ((a), (d), (e))、滑石粉(Talc) ((b), (f) )、酰肼化合物(TMC-300) ((c), (f))

    Figure  1.   Microscopic morphology and particle size distribution of various nucleating agents: Poplar wood fiber (WF) ((a), (d), (e)), talc powder (Talc) ((b), (f)), hydrazide compounds (TMC-300) ((c), (f))

    图  2   成核剂在较优添加量条件下制备的PLA基复合材料的密度及力学性能:(a)缺口冲击强度;(b)密度及断裂伸长率;(c)拉伸性能;(d)弯曲性能

    Figure  2.   Density and mechanical properties of PLA-based composites at optimal nucleating agent content: (a) Notched impact strength; (b) Density and elongation at break; (c) Tensile properties; (d) Flexural properties

    Samples with the same alphabetical designation are not significantly different using Tukey paired t-tests (P >0.05); Same letter indicates no significant difference between groups

    图  3   添加不同成核剂的PLA基复合材料的DSC二次升温曲线

    Figure  3.   DSC 2nd heating curves of PLA-based composites with various nucleating agents

    Tg—Glass transition temperature; Tm—Melting temperature of double melting peaks; Tcc—Temperature of cold crystallization

    图  4   添加不同成核剂的PLA基复合材料在100℃、110℃、120℃等温结晶过程的热流-时间曲线

    Figure  4.   Heat flow-time curve of PLA-based composites with various nucleating agents under isothermal crystallization at 100℃, 110℃, 120℃

    图  5   添加不同成核剂的PLA基复合材料在100℃、110℃、120℃等温结晶过程的相对结晶度-时间(Xt-t)变化曲线

    Figure  5.   Variation of relative crystallinity versus time (Xt-t) for PLA-based composites with various nucleating agents under isothermal crystallization at 100℃, 110℃, 120℃

    图  6   添加不同成核剂的PLA基复合材料在100℃、110℃、120℃等温结晶的半结晶时间

    Figure  6.   Half-crystallization time of PLA-based composites with various nucleating agents under isothermal crystallization at 100℃, 110℃, 120℃

    图  7   添加不同成核剂的PLA基复合材料在110℃等温结晶时晶体形貌变化:(a) PLA;(b) 1WF/PLA;(c) 1Talc/PLA;(d) 0.5TMC/PLA

    Figure  7.   Crystal morphology evolution of PLA-based composites with various nucleating agents under isothermal crystallization at 110℃: (a) PLA; (b)1WF/PLA; (c) 1Talc/PLA; (d) 0.5TMC/PLA

    图  8   添加不同成核剂的PLA基复合材料经蚀刻处理后的冲击断面SEM图像:(a) PLA;(b) 1WF/PLA;(c) 1Talc/PLA;(d) 0.5TMC/PLA

    Figure  8.   SEM images of the impact factures of PLA-based composite with various nucleating agents by etching treatment: (a) PLA; (b) 1WF/PLA; (c) 1Talc/PLA; (d) 0.5TMC/PLA

    图  9   添加不同成核剂的PLA基复合材料的WAXD图谱

    Figure  9.   WAXD patterns of PLA-based composites with various nucleating agents

    表  1   添加不同含量WF、Talc和TMC-300制备的聚乳酸(PLA)基复合材料的密度及力学性能

    Table  1   Density and mechanical properties of poly(lactide acid) (PLA)-based composites with various contents of WF, Talc and TMC-300

    Sample Density/
    (g·cm−3)
    Notched impact strength/(kJ·m−2) Tensile strength/MPa Tensile modulus/MPa Elongation at break/% Flexural strength/MPa Flexural modulus/MPa
    PLA 1.15±0.01 1.49±0.06 43.9±3.1 2985±188 1.63±0.20 71.6±3.4 2788±297
    0.5WF/PLA 1.16±0.01 1.74±0.19 52.2±0.2 3405±78 2.63±0.25 84.5±3.1 2723±223
    1WF/PLA 1.16±0.01 1.69±0.12 51.4±0.1 3398±55 2.07±0.03 84.7±1.7 2988±180
    2WF/PLA 1.17±0.00 1.70±0.10 49.7±0.3 3517±22 1.93±0.05 84.0±2.6 3000±126
    4WF/PLA 1.17±0.01 1.79±0.13 48.4±1.4 3465±111 1.66±0.12 79.4±4.8 3134±75
    1Talc/PLA 1.15±0.01 1.97±0.11 50.7±0.7 3057±105 1.82±0.08 75.4±10.0 2242±197
    2Talc/PLA 1.13±0.03 2.01±0.14 44.3±1.9 3074±135 1.58±0.13 60.6±10.2 2468±178
    4Talc/PLA 1.15±0.02 1.84±0.11 43.0±3.0 3100±194 1.53±0.17 68.2±2.5 2635±260
    8Talc/PLA 1.16±0.02 1.87±0.11 36.7±1.8 3373±169 1.29±0.11 63.5±6.6 2908±227
    0.3TMC/PLA 1.17±0.01 2.14±0.05 48.9±0.9 2938±188 1.87±0.13 79.0±2.9 2399±142
    0.5TMC/PLA 1.14±0.01 2.07±0.32 51.7±1.1 2948±137 1.95±0.07 76.2±7.3 2495±183
    1TMC/PLA 1.15±0.01 1.77±0.12 49.4±2.8 3039±100 1.82±0.19 78.1±7.1 2475±172
    2TMC/PLA 1.14±0.05 1.90±0.07 46.5±1.9 3056±93 1.61±0.07 66.4±6.1 2694±33
    下载: 导出CSV

    表  2   添加不同成核剂的PLA基复合材料的非等温结晶参数

    Table  2   Non-isothermal crystallization parameters of PLA-based composites with various nucleating agents

    Sample Tg/℃ Tm1/℃ Tm2/℃ ΔHm/(J·g−1) Tcc/℃ ΔHcc/(J·g−1) Xc(noniso)/%
    PLA 63.3 155.1 21.2 126.2 18.8 2.6
    1WF/PLA 63.3 154.9 20.7 126.9 14.5 6.7
    1Talc/PLA 63.3 150.9 157.7 24.1 108.3 14.0 10.9
    0.5TMC/PLA 62.7 150.9 156.7 25.0 104.0 4.7 21.8
    Notes: Tm1, Tm2, ΔHm—Melting temperature and melting enthalpy of double melting peaks, respectively; ΔHcc—Enthalpy of cold crystallization; Xc(noniso)—Crystallinity of PLA-based composite during non-isothermal crystallization.
    下载: 导出CSV

    表  3   添加不同成核剂的PLA基复合材料的等温结晶Avrami参数

    Table  3   Avrami parameters of PLA-based composites with various nucleating agents under isothermal crystallization

    Sample Tc/℃ n k/minn t1/2/min ΔHm/(J·g−1) Xc(iso)/%
    PLA 100 2.0 1.5×10−3 22.8 28.6 30.6
    110 2.1 8.9×10−4 23.6 29.7 31.8
    120 1.8 1.7×10−3 27.1 13.7 14.6
    1WF/PLA 100 2.5 4.0×10−3 8.1 27.9 30.1
    110 2.4 5.9×10−3 7.2 29.7 32.1
    120 2.0 1.1×10−3 24.4 29.7 32.1
    1Talc/PLA 100 1.9 1.3×10−1 2.4 25.4 27.4
    110 2.7 4.6×10−2 2.7 27.0 29.1
    120 2.5 5.0×10−3 6.9 27.6 29.8
    0.5TMC/PLA 100 2.3 1.2×10−1 2.1 26.6 28.6
    110 2.4 3.0×10−1 1.4 24.9 26.7
    120 2.6 1.2×10−1 2.0 25.4 27.3
    Notes: Tc—Crystallization temperature; n—Avrami exponent; k—Overall crystallization rate constant; t1/2—Half-crystallization time; Xc(iso)—Crystallinity of PLA-based composite during isothermal crystallization.
    下载: 导出CSV

    表  4   添加不同成核剂的PLA基复合材料的晶粒尺寸和结晶度

    Table  4   Crystallite sizes and crystallinity of PLA-based composites with various nucleating agents

    Sample 2θ/(°) β D/nm Xc(110)/(200)/%
    PLA 18.75 0.10 14.33 0.1
    0.5TMC/PLA 16.84 0.35 3.92 0.7
    1Talc/PLA 16.75 0.26 5.27 0.3
    1WF/PLA 16.79 0.36 3.86 3.8
    Notes: 2θ—Scattering angle; \beta —Full width at half maximum at (110)/(200) reflection in radians; D—Crystal size; Xc(110)/(200)—Crystallinity at (110)/(200) reflection for PLA-based composites.
    下载: 导出CSV
  • [1] 郭文静, 王正, 鲍甫成, 等. 天然植物纤维/可生物降解塑料生物质复合材料研究现状与发展趋势[J]. 林业科学, 2008, 44(1): 157-163. DOI: 10.3321/j.issn:1001-7488.2008.01.025

    GUO Wenjing, WANG Zheng, BAO Fucheng, et al. The status and trend of natural fiber/biodegradable plastic bio-composites[J]. Scientia Silvae Sinicae, 2008, 44(1): 157-163(in Chinese). DOI: 10.3321/j.issn:1001-7488.2008.01.025

    [2] 杨学通, 郭文静, 高黎. 木塑复合材料阻燃技术研究现状和趋势[J]. 世界林业研究, 2014, 27(3): 46-50.

    YANG Xuetong, GUO Wenjing, GAO Li. Research status and development trend of fire-retardant technology for wood plastic composites[J]. World Forestry Research, 2014, 27(3): 46-50(in Chinese).

    [3] 孙晓婷, 常亮, 唐启恒, 等. 等温结晶对杨木纤维/聚乳酸复合材料性能的影响[J]. 林业科学, 2018, 54(3): 97-107.

    SUN Xiaoting, CHANG Liang, TANG Qiheng, et al. Effects of isothermal crystallization on the properties of wood fiber/PLA composites[J]. Scientia Silvae Sinicae, 2018, 54(3): 97-107(in Chinese).

    [4]

    BUZAROVSKA A, BOGOEVA-GACEVA G, FAJGAR R. Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly(lactic acid) composites[J]. Journal of Polymer Engineering, 2016, 36(2): 181-188. DOI: 10.1515/polyeng-2015-0014

    [5]

    BAI H W, ZHANG W Y, DENG H, et al. Control of crystal morphology in poly(L-lactide) by adding nucleating agent[J]. Macromolecules, 2011, 44(6): 1233-1237. DOI: 10.1021/ma102439t

    [6]

    NASSERI R, MORESOLI C, YU A P, et al. Effect of interphase properties on isothermal and non-isothermal crystallization behavior of poly(lactic acid)/acetylated starch blends[J]. ACS Omega, 2022, 7(32): 27851-27863. DOI: 10.1021/acsomega.2c00360

    [7]

    SONG Y N, TASHIRO K, XU D G, et al. Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite[J]. Polymer, 2013, 54(13): 3417-3425. DOI: 10.1016/j.polymer.2013.04.054

    [8]

    KOVALCIK A, PÉREZ-CAMARGO R A, FÜRST C, et al. Nucleating efficiency and thermal stability of industrial non-purified lignins and ultrafine talc in poly(lactic acid) (PLA)[J]. Polymer Degradation and Stability, 2017, 142: 244-254. DOI: 10.1016/j.polymdegradstab.2017.07.009

    [9]

    DEETUAM C, SAMTHONG C, CHOKSRIWICHIT S, et al. Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: Effects of talc, calcium carbonate, cassava starch and silane coupling agents[J]. Iranian Polymer Journal, 2020, 29(2): 103-116. DOI: 10.1007/s13726-019-00778-4

    [10]

    SOHN J S, CHA S W. Effect of chemical modification on mechanical properties of wood-plastic composite injection-molded parts[J]. Polymers, 2018, 10(12): 1391. DOI: 10.3390/polym10121391

    [11] 王海刚, 张京发, 王伟宏, 等. 纤维增强木塑复合材料研究进展[J]. 林业科学, 2016, 52(6): 130-139.

    WANG Haigang, ZHANG Jingfa, WANG Weihong, et al. Research of fiber reinforced wood-plastic composites: A review[J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139(in Chinese).

    [12] 欧荣贤, 姚开泰, 孙理超, 等. 木塑复合材料蠕变特性及预测方法的研究进展[J]. 复合材料学报, 2021, 38(6): 1734-1753. DOI: 10.13801/j.cnki.fhclxb.20210302.005

    OU Rongxian, YAO Kaitai, SUN Lichao, et al. State-of-the-art of the creep characteristics of wood-plastic composite and its prediction methods[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1734-1753(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210302.005

    [13]

    OLAKANMI E O, OGUNESAN E A, VUNAIN E, et al. Mechanism of fiber/matrix bond and properties of wood polymer composites produced from alkaline-treated Daniella oliveri wood flour[J]. Polymer Composites, 2016, 37(9): 2657-2672. DOI: 10.1002/pc.23460

    [14]

    CHEN G W, GUPTA A, MEKONNEN T H. Silane-modified wood fiber filled EPDM bio-composites with improved thermomechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107029.

    [15]

    BEN HAMOU K, KADDAMI H, ELISABETE F, et al. Synergistic association of wood /hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites[J]. Industrial Crops and Products, 2023, 192: 116052.

    [16]

    LYU C, LUO S P, GUO W J. Dual effect of wood fiber as bio-nucleating agent and reinforcement material in wood fiber/poly(lactic acid) composites[J]. Express Polymer Letters, 2023, 17(4): 434-448. DOI: 10.3144/expresspolymlett.2023.31

    [17]

    WANG B W, QI Z Y, CHEN X J, et al. Preparation and mechanism of lightweight wood fiber/poly(lactic acid) composites[J]. International Journal of Biological Macromolecules, 2022, 217: 792-802. DOI: 10.1016/j.ijbiomac.2022.07.101

    [18]

    JHU Y S, HUNG K C, XU J W, et al. Transcrystallization of the acetylated bamboo fiber/polypropylene composite under isothermal crystallization[J]. Wood Science and Technology, 2021, 55(3): 797-810. DOI: 10.1007/s00226-021-01279-5

    [19]

    GREGOROVA A, HRABALOVA M, KOVALCIK R, et al. Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites[J]. Polymer Engineering & Science, 2011, 51(1): 143-150.

    [20]

    SHAKOOR A, THOMAS N L. Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites[J]. Polymer Engineering & Science, 2014, 54(1): 64-70.

    [21]

    LIU S, HE Y, QU J P. Manufacturing high-performance polylactide by constructing 3D network crystalline structure with adding self-assembly nucleator[J]. Industrial & Engineering Chemistry Research, 2022, 61(13): 4567-4578.

    [22] 中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).

    [23] 中国国家标准化管理委员会. 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).

    [24] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件: GB/T 1040.2—2022[S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2022[S]. Beijing: China Standards Press, 2022(in Chinese).

    [25]

    REN Q, WU M H, WANG L, et al. Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability[J]. Carbohydrate Polymers, 2022, 286: 119320. DOI: 10.1016/j.carbpol.2022.119320

    [26]

    PÉREZ-FONSECA A A, RAMÍREZ-HERRERA V O, FUENTES-TALAVERA F J, et al. Crystallinity and impact strength improvement of wood-polylactic acid biocomposites produced by rotational and compression molding[J]. Maderas: Ciencia y Tecnología, 2021, 23: 1-16.

    [27] 王方方. 聚乳酸结晶性能的调控及其机理的研究 [D]. 镇江: 江苏科技大学, 2017.

    WANG Fangfang. Study on the regulation of crystallization properties of poly (lactic acid) and its mechanism [D]. Zhenjiang: Jiangsu University of Science and Technology, 2017(in Chinese).

    [28] 杨兆哲. 杨木粉/PLA复合材料的研究及其在3D打印中的应用 [D]. 哈尔滨: 东北林业大学, 2018.

    YANG Zhaozhe. Study of poplar/PLA composites and its application in 3D printing [D]. Harbin: Northeast Forestry University, 2018(in Chinese).

    [29]

    ZHANG X, YANG B, FAN B M, et al. Enhanced nonisothermal crystallization and heat resistance of poly(L-lactic acid) by d-sorbitol as a homogeneous nucleating agent[J]. ACS Macro Letters, 2021, 10(1): 154-160. DOI: 10.1021/acsmacrolett.0c00830

    [30]

    WANG S M, WEN B Y. Effect of functional filler morphology on the crystallization behavior and thermal conductivity of PET resin: A comparative study of three different shapes of BN as heterogeneous nucleating agents[J]. Composites Science and Technology, 2022, 222: 109346.

    [31] 丁正. 一种聚乳酸基的聚酯酰胺的制备及结晶性能研究 [D]. 武汉: 湖北工业大学, 2017.

    DING Zheng. Preparation and study on crystallization properties of a polyesteramide based on poly (L-lactic acid) [D]. Wuhan: Hubei University of Technology, 2017(in Chinese).

    [32] 张予东, 崔新盼, 邹易谙, 等. 聚乳酸/可分散性纳米二氧化硅复合材料等温结晶行为研究[J]. 化学研究, 2018, 29(6): 614-620. DOI: 10.14002/j.hxya.2018.06.012

    ZHANG Yudong, CUI Xinpan, ZOU Yian, et al. Isothermal crystallization behavior of PLA/dispersible nano-SiO2 composites[J]. Chemical Research, 2018, 29(6): 614-620(in Chinese). DOI: 10.14002/j.hxya.2018.06.012

    [33]

    PHETWAROTAI W, AHT-ONG D. Nucleated polylactide blend films with nanoprecipitated calcium carbonate and talc[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 2367-2381.

    [34]

    NASCIMENTO H M, GRANZOTTO D C T, RADOVANOVIC E, et al. Obtention and characterization of polypropylene composites reinforced with new natural fibers from Yucca aloifolia L[J]. Composites Part B: Engineering, 2021, 227: 109414. DOI: 10.1016/j.compositesb.2021.109414

  • 期刊类型引用(1)

    1. 孟敏. 基于混凝土新材料的高性能建筑结构设计与优化策略探讨. 房地产世界. 2023(14): 49-51 . 百度学术

    其他类型引用(2)

  • 聚乳酸(PLA)因其良好的力学性能和天然可降解特性,被用于包装、医药、餐饮等领域,但其脆性大、结晶慢、成本高等缺点,限制了在其他应用领域的进一步扩展。生物质纤维作为一种来源丰富可再生的天然纤维,因其良好的物理力学性能和热稳定性被广泛应用。将生物质纤维作为增强材料加入到高分子基体中,不仅可以改善木塑复合材料的性能,还能降低成本扩展应用。而传统木塑复合材料因较高木纤维的添加量存在木纤维与PLA界面相容性差问题,导致力学性能较低,本文将生物质纤维作为PLA的一种生物基成核剂,发现添加1wt%的杨木纤维(WF)可以提高PLA的力学性能,高于PLA的两种常用的成核剂滑石粉(Talc)和酰肼成核剂(TMC-300)的增强效果,但是WF的结晶促进作用较低。本研究选取80-100目的杨木纤维与PLA复合,通过干混、熔融、挤出、模压等工艺,制备PLA基复合材料,同时将Talc和TMC-300分别与PLA复合,对比三者对PLA增强与成核作用。通过研究发现,三种成核剂对PLA的冲击强度均有提高,其中1wt% WF 使PLA基复合材料断裂伸长率提高了27%,拉伸强度和弯曲强度分别提高了17%和18%,增强效果优于Talc和TMC-300。但Talc和TMC-300显示出了对PLA的良好的结晶促进作用,特别是添加0.5wt% TMC-300,PLA基复合材料的半结晶时间降低至1.4 min,但WF使PLA的结晶更充分。不同成核剂诱导不同形貌晶体在复合材料中的生长堆积,进一步揭示其力学性能差异。WAXD结果显示少量WF的加入促进了α(110)/(200)晶形成,晶粒尺寸减小,α(110)/(200)晶结晶度提高。未来可通过改性WF提高对PLA增强和结晶的双重促进作用,为生物质纤维的高效利用提供基础,促进PLA应用的绿色可持续发展。

    The tensile properties of PLA-based composite with various nucleating agents.

    SEM images of the impact factures of PLA-based composite with various nucleating agents by etching treatment: (a1-a2) PLA; (b1-b2) 1WF/PLA; (c1-c2) 1Talc/PLA; (d1-d2) 0.5TMC/PLA

图(9)  /  表(4)
计量
  • 文章访问数:  625
  • HTML全文浏览量:  465
  • PDF下载量:  53
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2023-09-14
  • 录用日期:  2023-09-15
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2024-05-31

目录

/

返回文章
返回