Influence of poly aryl ether ketone resin matrix properties on interfacial properties and interlayer properties of composites
-
摘要:
碳纤维增强聚芳醚酮(CF/PAEK)高性能热塑性复合材料,因其优异的韧性、耐老化性能及耐疲劳性能,使CF/PAEK热塑性复合材料得以替代部分传统热固性复合材料,在航空、航天等领域取得成功应用。相比于国外的成熟应用,受限于国内连续碳纤维增强PAEK热塑性复合材料预浸料的生产技术水平,针对CF/PAEK热塑性复合材料研究和应用依然较少,多数研究集中于采用纳米粒子填充、纤维表面修饰、上浆剂改性等手段优化复合材料的界面性能,采用优化成型工艺条件、树脂基体改性等手段优化复合材料的层间性能,而针对树脂基体特性对复合材料界面性能和层间性能的影响研究较少。本文采用了两种不同特性的国产高性能聚芳醚酮树脂(PAEK-L、PAEK-H)及国产T300级碳纤维(SCF35),制备了碳纤维增强聚芳醚酮(SCF35/PAEK)热塑性复合材料,研究了树脂基体对复合材料的界面剪切性能、90°拉伸性能、短梁剪切性能、Ⅰ型断裂韧性、Ⅱ型断裂韧性的影响。结果显示SCF35/PAEK复合材料的界面性能受到树脂基体流动性的影响,流动性较高的PAEK-H树脂能够与纤维之间形成较好的界面结合及较高的界面强度,SCF35/PAEK-H复合材料中,树脂与纤维的接触角为~34.4 °,界面剪切强度为~79 MPa,复合材料90°拉伸强度为~76 MPa,模量为~9.7 GPa,短梁剪切强度为~92 MPa;而流动性较低的PAEK-L树脂与SCF35碳纤维复合材料中,树脂与纤维的接触角为~35.8 °,界面剪切强度为~64 MPa,复合材料90°拉伸强度为~55 MPa,模量约为~8.6 GPa,短梁剪切强度为~86 MPa。SCF35/PAEK复合材料的层间性能受到树脂基体塑性变形能力的影响,基体塑性变形能力较强的PAEK-L较PAEK-H,其复合材料具有较高的断裂韧性,SCF35/PAEK-L的Ⅰ型断裂韧性为~938 J/m2,Ⅱ型断裂韧性为~2232 J/m2,SCF35/PAEK-H的Ⅰ型断裂韧性为~638 J/m2,Ⅱ型断裂韧性为~1702 J/m2。 SCF35/PAEK微球脱黏的截面形貌:(a)SCF35/PAEK-L:(b)SCF35/PAEK-HCross-sectional morphology of SCF35/PAEK microsphere debonding:(a)SCF35/PAEK-L:(b)SCF35/PAEK-H Abstract: The interfacial strength between PAEK resin matrix and domestic T300 grade carbon fiber (SCF35) carbon fiber was studied by microsphere debonding method for domestic high performance poly aryl ether ketone (PAEK-L, PAEK-H) resins with different characteristics; the composites were prepared by using domestic carbon fiber reinforced poly aryl ether ketone (SCF35/PAEK) thermoplastic prepreg, and the effects of resin matrix on 90° tensile properties, short beam shear properties, type I fracture toughness and type II fracture toughness of the composites were studied. The results show that the interfacial properties of SCF35/PAEK composites are influenced by the fluidity of the resin matrix, and PAEK-H resin with higher fluidity can form a better interfacial bond with the fibers and higher interfacial strength. In the SCF35/PAEK-H composite, the resin-fiber contact angle is ~34.4°, the interfacial shear strength is ~79 MPa, the 90° tensile strength of the composite is ~76 MPa, the modulus is ~9.7 GPa, and the short-beam shear strength is ~92 MPa; while in the lower-fluidity PAEK-L resin and SCF35 carbon fiber composite, the resin-fiber contact angle of ~35.8°, interfacial shear strength of ~64 MPa, composite 90° tensile strength of ~55 MPa, modulus of ~8.6 GPa, and short-beam shear strength of ~86 MPa. The interlaminar properties of SCF35/PAEK composites are influenced by the plastic deformation ability of the resin matrix. PAEK-L, which has a stronger plastic deformation ability of the matrix, has a higher fracture toughness than PAEK-H. The type I fracture toughness of SCF35/PAEK-L is ~938 J/m2 and the type II fracture toughness is ~2232 J/m2, and the type I fracture toughness of SCF35/PAEK-H is ~638 J/m2 and the type II fracture toughness is ~1702 J/m2. -
图 5 SCF35/PAEK微球脱黏的表面形貌:(a) SCF35/PAEK-L,(1)整体形貌,(2)微球脱黏的示意图,(3)微球脱黏的前端形貌,(4)微球脱黏的后端形貌;(b) SCF35/PAEK-H,(1)整体形貌,(2)微球脱黏的示意图,(3)微球脱黏的前端形貌,(4)微球脱黏的后端形貌
Figure 5. Surface morphology of SCF35/PAEK microsphere debonding: (a) SCF35/PAEK-L, (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding; (b) SCF35/PAEK-H, (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding
图 13 SCF35/PAEK断裂形貌:(a) SCF35/PAEK-L Ⅰ型断裂形貌;(b) SCF35/PAEK-L Ⅱ型断裂形貌;(c) SCF35/PAEK-H Ⅰ型断裂形貌;(d) SCF35/PAEK-H Ⅱ型断裂形貌
Figure 13. Fracture morphology of SCF35/PAEK: (a) Type I fracture morphology of SCF35/PAEK-L; (b) Type Ⅱ fracture morphology of SCF35/PAEK-L; (c) Type I fracture morphology of SCF35/PAEK-H; (d) Type Ⅱ fracture morphology of SCF35/PAEK-H
图 14 PAEK树脂试样断裂形貌:(a) PAEK-L冲击断面形貌;(b) PAEK-L拉伸断面形貌;(c) PAEK-H冲击断面形貌;(d) PAEK-H拉伸断面形貌
Figure 14. Fracture morphology of PAEK resin specimens: (a) Impact section morphology of PAEK-L; (b) Tensile section morphology of PAEK-L; (c) Impact section morphology of PAEK-H; (d) Tensile section morphology of PAEK-H
表 1 聚芳醚酮(PAEK)树脂基体的性能
Table 1. Properties of poly aryl ether ketone (PAEK) resin matrix
Property PAEK-L PAEK-H Tensile strength/ MPa 96±0.5 95±0.5 Tensile modulus/ GPa 4.0±0.2 3.9±0.2 Elongation/ % 109±7.2 101±4.4 Notched Impact Strength/ (kJ∙m-2) 5.7±0.2 5.7±0.2 Apparent viscosity (360℃)/ (Pa·s) 1139 399 表 2 SCF35碳纤维的性能
Table 2. Properties of SCF35 carbon fiber
Fibre Specifications Tensile strength
/MPaTensile modulus
/GPaElongation
/%Bulk density
/(g∙cm−3)Linear density
/(g∙m−1)SCF35 12 K 4300 230 1.85 1.8 0.8 表 3 SCF35/PAEK复合材料的界面性能
Table 3. Interfacial properties of SCF35/PAEK composites
System Interfacial shear
strength/ MPaContact angle/
(°)90° Tensile
Strength/ MPa90° Tensile
Modulus/ GPaShort beam shear
strength/ MPaSCF35/PAEK-L 64±3.4 35.8±1.0 55±2.9 8.6±0.1 86±1.9 SCF35/PAEK-H 79±6.0 34.4±3.0 76±5.4 9.7±0.4 92±1.4 表 4 SCF35/PAEK复合材料的断裂韧性
Table 4. Fracture toughness of SCF35/PAEK composites
System GⅠC/ (J∙m−2) GⅡC/ (J∙m−2) SCF35/PAEK-L 938±38 2232±208 SCF35/PAEK-H 638±38 1702±46 Notes:GⅠC is the type I fracture toughness of SCF35/PAEK composites; GⅡC is the type Ⅱ fracture toughness of SCF35/PAEK composites. -
[1] NISHIDA H, CARVELLI V, FUJII T, et al. Thermoplastic vs[J]. thermoset epoxy carbon textile composites[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing,2018,406(1):012043. [2] YAO S S, JIN F L, Rhee K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B:Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007 [3] GABRION X, PLACET V, TRIVAUDEY F, et al. About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite[J]. Composites Part B:Engineering,2016,95:386-394. doi: 10.1016/j.compositesb.2016.03.068 [4] MATHIJSEN D. Leading the way in thermoplastic composites[J]. Reinforced Plastics,2016,60(6):405-407. doi: 10.1016/j.repl.2015.08.067 [5] MANTELL S C, SPRINGER G S. Manufacturing process models for thermoplastic composites[J]. Journal of Composite Materials,1992,26(16):2348-2377. doi: 10.1177/002199839202601602 [6] 叶鼎铨. 国外纤维增强热塑性塑料发展概况[J]. 国外塑料, 2012, 30(5):34-40. doi: 10.3969/j.issn.1002-5219.2012.05.010YE Dingquan. Developments of fiber reinforced thermoplastics outside China[J]. World Plastics,2012,30(5):34-40(in Chinese). doi: 10.3969/j.issn.1002-5219.2012.05.010 [7] 郭云竹. 热塑性复合材料研究及其在航空领域中的应用[J]. 纤维复合材料, 2016, 33(3):4. doi: 10.3969/j.issn.1003-6423.2016.03.005GUO Yunzhu. Research on thermoplastic composites and its application in the field of aviation[J]. Fiber Composites,2016,33(3):4(in Chinese). doi: 10.3969/j.issn.1003-6423.2016.03.005 [8] 王兴刚, 于洋, 李树茂, 王明寅. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 28(2):44-47. doi: 10.3969/j.issn.1003-6423.2011.02.011WANG Xinggang, YU Yang, LI Shumao, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites,2011,28(2):44-47(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.011 [9] ZAHLAN N. Mechanical properties of the carbon fiber/PEEK composite APC-2/AS-4 for structural applications[J]. Advances in thermoplastic matrix composite materials,1989,1044:199. [10] JOGUR G, NAWAZ KHAN A, DAS A, et al. Impact properties of thermoplastic composites[J]. Textile Progress,2018,50(3):109-183. doi: 10.1080/00405167.2018.1563369 [11] TAN W, NAYA F, YANG L, et al. The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling[J]. Composites Part B:Engineering,2018,138:206-221. doi: 10.1016/j.compositesb.2017.11.043 [12] LU C, WANG J, LU X, et al. Wettability and interfacial properties of carbon fiber and poly (ether ether ketone) fiber hybrid composite[J]. ACS applied materials & interfaces,2019,11(34):31520-31531. [13] SU Y, ZHANG S, ZHANG X, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly (ether ether ketone) multiscale composites[J]. Composites Part A:Applied Science and Manufacturing,2018,108:89-98. doi: 10.1016/j.compositesa.2018.02.030 [14] YAN T, YAN F, LI S, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites Part B:Engineering,2020,199:108258. doi: 10.1016/j.compositesb.2020.108258 [15] WU D, MIAO Q, DAI Z, et al. Effect of voids and crystallinity on the interlaminar shear strength of in-situ manufactured CF/PEEK laminates using repass treatment[J]. Composites Science and Technology,2022:109448. [16] 史如静, 吴举, 周剑锋, 等. 模压成型工艺参数对CF/PEEK复合材料Ⅰ型层间断裂韧性的影响[J]. 高科技纤维与应用, 2020, 45(1):7. doi: 10.3969/j.issn.1007-9815.2020.01.004SHI Rujing, WU Ju, ZHOU Jianfeng, et al. Influence of hot-press molding parameters for processing CF/PEEK composites on type Ⅰ interlaminar fracture toughness[J]. Hi-Tech Fiber and Application,2020,45(1):7(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.01.004 [17] CHEN J, WANG K, DONG A, et al. A comprehensive study on controlling the porosity of CCF 300/PEEK composites by optimizing the impregnation parameters[J]. Polymer Composites,2018,39(10):3765-3779. doi: 10.1002/pc.24407 [18] ASTM D3039/D3039 M-14. Standard test method for tensile properties of polymer matrix composite materials[S]. West Conshohocken: ASTM International, 2014. [19] ASTM D2344/D2344 M-16. Standard test method for short-beam strength of polymer matrix composite materials and their laminates[S]. West Conshohocken: ASTM International, 2016. [20] ASTM D5528/D5528 M-21. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2021. [21] ASTM D7905/D7905 M-19. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2019. [22] YEAGER M, SIMACEK P, ADVANI S G. Role of fiber distribution and air evacuation time on capillary driven flow into fiber tows[J]. Composites Part A:Applied Science and Manufacturing,2017,93:144-152. doi: 10.1016/j.compositesa.2016.11.016 [23] BAI T, WANG D, YAN J, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites[J]. Composites Science and Technology,2021,213:108951. doi: 10.1016/j.compscitech.2021.108951 [24] XU P, YU Y, GUO Z, et al. Evaluation of composite interfacial properties based on carbon fiber surface chemistry and topography: Nanometer-scale wetting analysis using molecular dynamics simulation[J]. Composites Science and Technology,2019,171:252-260. doi: 10.1016/j.compscitech.2018.12.028 [25] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday society,1944,40:546-551. doi: 10.1039/tf9444000546 [26] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994. [27] TAN W, NAYA F, YANG L, et al. The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling[J]. Composites Part B:Engineering,2018,138:206-221. doi: 10.1016/j.compositesb.2017.11.043 [28] GAO S L, KIM J K. Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness[J]. Composites Part A:Applied science and manufacturing,2001,32(6):763-774. doi: 10.1016/S1359-835X(00)00188-3 [29] Davallo M. Factors affecting fracture behaviour of composite materials[J]. International Journal of ChemTech Research,2010,2(4):2125-2130. -