Influence of poly aryl ether ketone resin matrix properties on interfacial properties and interlayer properties of composites
-
摘要: 针对不同特性的国产高性能聚芳醚酮(PAEK-L、PAEK-H)树脂,采用微球脱黏的方法研究了PAEK树脂基体与国产T300级碳纤维(SCF35)碳纤维间的界面强度;采用国产碳纤维增强聚芳醚酮(SCF35/PAEK)热塑性预浸料制备复合材料,研究了树脂基体对复合材料的90°拉伸性能、短梁剪切性能、I型断裂韧性、II型断裂韧性的影响。结果表明:SCF35/PAEK复合材料的界面性能受树脂基体的流动性影响,流动性较高的PAEK-H树脂能够与纤维之间形成较好的界面结合及较高的界面强度,SCF35/PAEK-H复合材料中,树脂与纤维的接触角约为34.4°,界面剪切强度约为79 MPa,复合材料90°拉伸强度约为76 MPa,模量约为9.7 GPa,短梁剪切强度约为92 MPa;而流动性较低的PAEK-L树脂与SCF35碳纤维复合材料中,树脂与纤维的接触角约为35.8°,界面剪切强度约为64 MPa,复合材料90°拉伸强度约为55 MPa,模量约为8.6 GPa,短梁剪切强度约为86 MPa。SCF35/PAEK复合材料的层间性能受到树脂基体塑性变形能力的影响,基体塑性变形能力较强的PAEK-L较PAEK-H而言,其复合材料具有较高的断裂韧性,SCF35/PAEK-L的I型断裂韧性约为938 J/m2,II型断裂韧性约为2232 J/m2,SCF35/PAEK-H的I型断裂韧性约为638 J/m2,II型断裂韧性约为1702 J/m2。Abstract: The interfacial strength between PAEK resin matrix and domestic T300 grade carbon fiber (SCF35) carbon fiber was studied by microsphere debonding method for domestic high performance poly aryl ether ketone (PAEK-L, PAEK-H) resins with different characteristics. The composites were prepared by using domestic carbon fiber reinforced poly aryl ether ketone (SCF35/PAEK) thermoplastic prepreg, and the effects of resin matrix on 90° tensile properties, short beam shear properties, type I fracture toughness and type II fracture toughness of the composites were studied. The results show that the interfacial properties of SCF35/PAEK composites are influenced by the fluidity of the resin matrix, and PAEK-H resin with higher fluidity can form a better interfacial bond with the fibers and higher interfacial strength. In the SCF35/PAEK-H composite, the resin-fiber contact angle is ~34.4°, the interfacial shear strength is ~79 MPa, the 90° tensile strength of the composite is ~76 MPa, the modulus is ~9.7 GPa, and the short-beam shear strength is ~92 MPa. While in the lower-fluidity PAEK-L resin and SCF35 carbon fiber composite, the resin-fiber contact angle of ~35.8°, interfacial shear strength of ~64 MPa, composite 90° tensile strength of ~55 MPa, modulus of ~8.6 GPa, and short-beam shear strength of ~86 MPa. The interlaminar properties of SCF35/PAEK composites are influenced by the plastic deformation ability of the resin matrix. PAEK-L, which has a stronger plastic deformation ability of the matrix, has a higher fracture toughness than PAEK-H. The type I fracture toughness of SCF35/PAEK-L is ~938 J/m2 and the type II fracture toughness is ~2232 J/m2, and the type I fracture toughness of SCF35/PAEK-H is ~638 J/m2 and the type II fracture toughness is ~1702 J/m2.
-
图 5 SCF35/PAEK微球脱粘的表面形貌:(a) SCF35/PAEK-L:(1) 整体形貌、(2) 微球脱粘的示意图、(3) 微球脱粘的前端形貌、(4) 微球脱粘的后端形貌;(b) SCF35/PAEK-H:(1) 整体形貌、(2) 微球脱粘的示意图、(3) 微球脱粘的前端形貌、(4) 微球脱粘的后端形貌
Figure 5. Surface morphologies of SCF35/PAEK microsphere debonding: (a) SCF35/PAEK-L: (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding; (b) SCF35/PAEK-H: (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding
图 13 SCF35/PAEK断裂形貌:(a) SCF35/PAEK-L Ⅰ型断裂形貌;(b) SCF35/PAEK-L Ⅱ型断裂形貌;(c) SCF35/PAEK-H Ⅰ型断裂形貌;(d) SCF35/PAEK-H Ⅱ型断裂形貌
Figure 13. Fracture morphology of SCF35/PAEK: (a) Type I fracture morphology of SCF35/PAEK-L; (b) Type Ⅱ fracture morphology of SCF35/PAEK-L; (c) Type I fracture morphology of SCF35/PAEK-H; (d) Type Ⅱ fracture morphology of SCF35/PAEK-H
图 14 PAEK树脂试样断裂形貌:(a) PAEK-L冲击断面形貌;(b) PAEK-L拉伸断面形貌;(c) PAEK-H冲击断面形貌;(d) PAEK-H拉伸断面形貌
Figure 14. Fracture morphology of PAEK resin specimens: (a) Impact section morphology of PAEK-L; (b) Tensile section morphology of PAEK-L; (c) Impact section morphology of PAEK-H; (d) Tensile section morphology of PAEK-H
表 1 聚芳醚酮(PAEK)树脂基体的性能
Table 1. Properties of poly aryl ether ketone (PAEK) resin matrix
Property Tensile
strength/MPaTensile
modulus/GPaElongation/% Notched impact
strength/(kJ∙m–2)Apparent viscosity
(360℃)/(Pa·s)PAEK-L 96±0.5 4.0±0.2 109±7.2 5.7±0.2 1139 PAEK-H 95±0.5 3.9±0.2 101±4.4 5.7±0.2 399 Notes: PAEK-L—Low flow poly aryl ether ketone resin matrix; PAEK-H—High flow poly aryl ether ketone resin matrix. 表 2 国产T300级碳纤维(SCF35)的性能
Table 2. Properties of domestic T300 grade carbon fiber (SCF35)
Fibre Specification Tensile strength
/MPaTensile modulus
/GPaElongation
/%Bulk density
/(g∙cm−3)Linear density
/(g∙m−1)SCF35 12 K 4300 230 1.85 1.8 0.8 表 3 SCF35/PAEK复合材料的界面性能
Table 3. Interfacial properties of SCF35/PAEK composites
System Interfacial shear
strength/MPaContact angle/
(°)90° tensile
strength/MPa90° tensile
modulus/GPaShort beam shear
strength/MPaSCF35/PAEK-L 64±3.4 35.8±1.0 55±2.9 8.6±0.1 86±1.9 SCF35/PAEK-H 79±6.0 34.4±3.0 76±5.4 9.7±0.4 92±1.4 表 4 SCF35/PAEK复合材料的断裂韧性
Table 4. Fracture toughness of SCF35/PAEK composites
System GIC/(J∙m−2) GIIC/(J∙m−2) SCF35/PAEK-L 938±38 2232±208 SCF35/PAEK-H 638±38 1702±46 Notes: GIC—Type I fracture toughness of SCF35/PAEK composites; GIIC—Type Ⅱ fracture toughness of SCF35/PAEK composites. -
[1] NISHIDA H, CARVELLI V, FUJII T, et al. Thermoplastic vs. thermoset epoxy carbon textile composites[C]//IOP Conference Series: Materials Science and Engineering. England: IOP Publishing, 2018, 406(1): 012043. [2] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007 [3] GABRION X, PLACET V, TRIVAUDEY F, et al. About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite[J]. Compo-sites Part B: Engineering,2016,95:386-394. doi: 10.1016/j.compositesb.2016.03.068 [4] MATHIJSEN D. Leading the way in thermoplastic compo-sites[J]. Reinforced Plastics,2016,60(6):405-407. doi: 10.1016/j.repl.2015.08.067 [5] MANTELL S C, SPRINGER G S. Manufacturing process models for thermoplastic composites[J]. Journal of Composite Materials,1992,26(16):2348-2377. doi: 10.1177/002199839202601602 [6] 叶鼎铨. 国外纤维增强热塑性塑料发展概况[J]. 国外塑料, 2012, 30(5):34-40. doi: 10.3969/j.issn.1002-5219.2012.05.010YE Dingquan. Developments of fiber reinforced thermoplastics outside China[J]. World Plastics,2012,30(5):34-40(in Chinese). doi: 10.3969/j.issn.1002-5219.2012.05.010 [7] 郭云竹. 热塑性复合材料研究及其在航空领域中的应用[J]. 纤维复合材料, 2016, 33(3):20-23. doi: 10.3969/j.issn.1003-6423.2016.03.005GUO Yunzhu. Research on thermoplastic composites and its application in the field of aviation[J]. Fiber Composites,2016,33(3):20-23(in Chinese). doi: 10.3969/j.issn.1003-6423.2016.03.005 [8] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 28(2):44-47. doi: 10.3969/j.issn.1003-6423.2011.02.011WANG Xinggang, YU Yang, LI Shumao, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites,2011,28(2):44-47(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.011 [9] ZAHLAN N. Mechanical properties of the carbon fiber/PEEK composite APC-2/AS-4 for structural applications[J]. Advances in Thermoplastic Matrix Composite Materials,1989,1044:199-212. [10] JOGUR G, NAWAZ KHAN A, DAS A, et al. Impact properties of thermoplastic composites[J]. Textile Progress,2018,50(3):109-183. doi: 10.1080/00405167.2018.1563369 [11] TAN W, NAYA F, YANG L, et al. The role of interfacial pro-perties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling[J]. Composites Part B: Engineering,2018,138:206-221. doi: 10.1016/j.compositesb.2017.11.043 [12] LU C, WANG J, LU X, et al. Wettability and interfacial pro-perties of carbon fiber and poly(ether ether ketone) fiber hybrid composite[J]. ACS Applied Materials & Interfaces,2019,11(34):31520-31531. [13] SU Y, ZHANG S, ZHANG X, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly(ether ether ketone) multiscale composites[J]. Composites Part A: Applied Science and Manufacturing,2018,108:89-98. doi: 10.1016/j.compositesa.2018.02.030 [14] YAN T, YAN F, LI S, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites Part B: Engineering,2020,199:108258. doi: 10.1016/j.compositesb.2020.108258 [15] WU D, MIAO Q, DAI Z, et al. Effect of voids and crystallinity on the interlaminar shear strength of in-situ manufactured CF/PEEK laminates using repass treatment[J]. Composites Science and Technology,2022,224:109448. [16] 史如静, 吴举, 周剑锋, 等. 模压成型工艺参数对CF/PEEK复合材料Ⅰ型层间断裂韧性的影响[J]. 高科技纤维与应用, 2020, 45(1):26-32. doi: 10.3969/j.issn.1007-9815.2020.01.004SHI Rujing, WU Ju, ZHOU Jianfeng, et al. Influence of hot-press molding parameters for processing CF/PEEK composites on type Ⅰ interlaminar fracture toughness[J]. Hi-Tech Fiber and Application,2020,45(1):26-32(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.01.004 [17] CHEN J, WANG K, DONG A, et al. A comprehensive study on controlling the porosity of CCF 300/PEEK composites by optimizing the impregnation parameters[J]. Polymer Composites,2018,39(10):3765-3779. doi: 10.1002/pc.24407 [18] ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039 M-14[S]. West Conshohocken: ASTM International, 2014. [19] ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: D2344/D2344 M-16[S]. West Conshohocken: ASTM International, 2016. [20] ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: D5528/D5528 M-21[S]. West Conshohocken: ASTM International, 2021. [21] ASTM. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: D7905/D7905 M-19[S]. West Conshohocken: ASTM International, 2019. [22] YEAGER M, SIMACEK P, ADVANI S G. Role of fiber distribution and air evacuation time on capillary driven flow into fiber tows[J]. Composites Part A: Applied Science and Manufacturing,2017,93:144-152. doi: 10.1016/j.compositesa.2016.11.016 [23] BAI T, WANG D, YAN J, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites[J]. Composites Science and Technology,2021,213:108951. doi: 10.1016/j.compscitech.2021.108951 [24] XU P, YU Y, GUO Z, et al. Evaluation of composite interfacial properties based on carbon fiber surface chemistry and topography: Nanometer-scale wetting analysis using molecular dynamics simulation[J]. Composites Science and Technology,2019,171:252-260. doi: 10.1016/j.compscitech.2018.12.028 [25] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546 [26] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994. [27] GAO S L, KIM J K. Cooling rate influences in carbon fibre/PEEK composites. Part II: Interlaminar fracture toughness[J]. Composites Part A: Applied Science and Manufacturing,2001,32(6):763-774. doi: 10.1016/S1359-835X(00)00188-3 [28] DAVALLO M. Factors affecting fracture behaviour of composite materials[J]. International Journal of ChemTech Research,2010,2(4):2125-2130.