留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚芳醚酮树脂基体特性对复合材料界面性能和层间性能的影响

顾洋洋 姚佳楠 王力风 刘刚 陈春海 杨曙光

顾洋洋, 姚佳楠, 王力风, 等. 聚芳醚酮树脂基体特性对复合材料界面性能和层间性能的影响[J]. 复合材料学报, 2023, 40(8): 4481-4490. doi: 10.13801/j.cnki.fhclxb.20221111.002
引用本文: 顾洋洋, 姚佳楠, 王力风, 等. 聚芳醚酮树脂基体特性对复合材料界面性能和层间性能的影响[J]. 复合材料学报, 2023, 40(8): 4481-4490. doi: 10.13801/j.cnki.fhclxb.20221111.002
GU Yangyang, YAO Jianan, WANG Lifeng, et al. Influence of poly aryl ether ketone resin matrix properties on interfacial properties and interlayer properties of composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4481-4490. doi: 10.13801/j.cnki.fhclxb.20221111.002
Citation: GU Yangyang, YAO Jianan, WANG Lifeng, et al. Influence of poly aryl ether ketone resin matrix properties on interfacial properties and interlayer properties of composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4481-4490. doi: 10.13801/j.cnki.fhclxb.20221111.002

聚芳醚酮树脂基体特性对复合材料界面性能和层间性能的影响

doi: 10.13801/j.cnki.fhclxb.20221111.002
基金项目: 中央高校基本科研业务费专项(2232022 A-12)
详细信息
    通讯作者:

    刘刚,博士,研究员,博士生导师,研究方向为纤维增强树脂基复合材料 E-mail: liugang@dhu.edu.cn

  • 中图分类号: TB332

Influence of poly aryl ether ketone resin matrix properties on interfacial properties and interlayer properties of composites

Funds: Fundamental Research Funds for the Central Universities (2232022 A-12)
  • 摘要: 针对不同特性的国产高性能聚芳醚酮(PAEK-L、PAEK-H)树脂,采用微球脱黏的方法研究了PAEK树脂基体与国产T300级碳纤维(SCF35)碳纤维间的界面强度;采用国产碳纤维增强聚芳醚酮(SCF35/PAEK)热塑性预浸料制备复合材料,研究了树脂基体对复合材料的90°拉伸性能、短梁剪切性能、I型断裂韧性、II型断裂韧性的影响。结果表明:SCF35/PAEK复合材料的界面性能受树脂基体的流动性影响,流动性较高的PAEK-H树脂能够与纤维之间形成较好的界面结合及较高的界面强度,SCF35/PAEK-H复合材料中,树脂与纤维的接触角约为34.4°,界面剪切强度约为79 MPa,复合材料90°拉伸强度约为76 MPa,模量约为9.7 GPa,短梁剪切强度约为92 MPa;而流动性较低的PAEK-L树脂与SCF35碳纤维复合材料中,树脂与纤维的接触角约为35.8°,界面剪切强度约为64 MPa,复合材料90°拉伸强度约为55 MPa,模量约为8.6 GPa,短梁剪切强度约为86 MPa。SCF35/PAEK复合材料的层间性能受到树脂基体塑性变形能力的影响,基体塑性变形能力较强的PAEK-L较PAEK-H而言,其复合材料具有较高的断裂韧性,SCF35/PAEK-L的I型断裂韧性约为938 J/m2,II型断裂韧性约为2232 J/m2,SCF35/PAEK-H的I型断裂韧性约为638 J/m2,II型断裂韧性约为1702 J/m2

     

  • 图  1  SCF35碳纤维表面形貌

    Figure  1.  Surface morphology of SCF35 carbon fiber

    图  2  SCF35/PAEK复合材料成型工艺:(a) 薄板成型工艺;(b) 厚板成型工艺

    Figure  2.  Forming process of SCF35/PAEK composite: (a) Thin plate forming process; (b) Thick plate forming process

    图  3  预制缺陷层压板的铺层示意图

    Figure  3.  Schematic diagram of laying of prefabricated defective laminates

    图  4  微球脱粘试验示意图

    Figure  4.  Schematic diagram of microsphere debonding test

    图  5  SCF35/PAEK微球脱粘的表面形貌:(a) SCF35/PAEK-L:(1) 整体形貌、(2) 微球脱粘的示意图、(3) 微球脱粘的前端形貌、(4) 微球脱粘的后端形貌;(b) SCF35/PAEK-H:(1) 整体形貌、(2) 微球脱粘的示意图、(3) 微球脱粘的前端形貌、(4) 微球脱粘的后端形貌

    Figure  5.  Surface morphologies of SCF35/PAEK microsphere debonding: (a) SCF35/PAEK-L: (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding; (b) SCF35/PAEK-H: (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding

    图  6  SCF35/PAEK微球脱粘的截面形貌:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H

    Figure  6.  Cross-sectional morphologies of SCF35/PAEK microsphere debonding: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    图  7  SCF35/PAEK间的接触角

    Figure  7.  Contact angle between SCF35/PAEK

    图  8  SCF35/PAEK复合材料90°拉伸破坏形貌:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H

    Figure  8.  90° tensile damage morphologies of SCF35/PAEK composite: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    图  9  SCF35/PAEK短梁剪切的典型应力-应变曲线

    Figure  9.  Typical stress-strain curves of SCF35/PAEK short beam shear

    图  10  SCF35/PAEK短梁剪切的截面形貌

    Figure  10.  Cross-sectional morphologies of SCF35/PAEK short beam shear

    图  11  SCF35/PAEK短梁剪切的表面形貌

    Figure  11.  Surface morphologies of SCF35/PAEK short beam shear

    图  12  SCF35/PAEK典型断裂韧性曲线:(a) Ⅰ型断裂韧性;(b) Ⅱ型断裂韧性

    Figure  12.  Typical fracture toughness curves of SCF35/PAEK: (a) Type I fracture toughness; (b) Type II fracture toughness

    图  13  SCF35/PAEK断裂形貌:(a) SCF35/PAEK-L Ⅰ型断裂形貌;(b) SCF35/PAEK-L Ⅱ型断裂形貌;(c) SCF35/PAEK-H Ⅰ型断裂形貌;(d) SCF35/PAEK-H Ⅱ型断裂形貌

    Figure  13.  Fracture morphology of SCF35/PAEK: (a) Type I fracture morphology of SCF35/PAEK-L; (b) Type Ⅱ fracture morphology of SCF35/PAEK-L; (c) Type I fracture morphology of SCF35/PAEK-H; (d) Type Ⅱ fracture morphology of SCF35/PAEK-H

    图  14  PAEK树脂试样断裂形貌:(a) PAEK-L冲击断面形貌;(b) PAEK-L拉伸断面形貌;(c) PAEK-H冲击断面形貌;(d) PAEK-H拉伸断面形貌

    Figure  14.  Fracture morphology of PAEK resin specimens: (a) Impact section morphology of PAEK-L; (b) Tensile section morphology of PAEK-L; (c) Impact section morphology of PAEK-H; (d) Tensile section morphology of PAEK-H

    表  1  聚芳醚酮(PAEK)树脂基体的性能

    Table  1.   Properties of poly aryl ether ketone (PAEK) resin matrix

    Property Tensile
    strength/MPa
    Tensile
    modulus/GPa
    Elongation/% Notched impact
    strength/(kJ∙m–2)
    Apparent viscosity
    (360℃)/(Pa·s)
    PAEK-L 96±0.5 4.0±0.2 109±7.2 5.7±0.2 1139
    PAEK-H 95±0.5 3.9±0.2 101±4.4 5.7±0.2 399
    Notes: PAEK-L—Low flow poly aryl ether ketone resin matrix; PAEK-H—High flow poly aryl ether ketone resin matrix.
    下载: 导出CSV

    表  2  国产T300级碳纤维(SCF35)的性能

    Table  2.   Properties of domestic T300 grade carbon fiber (SCF35)

    FibreSpecificationTensile strength
    /MPa
    Tensile modulus
    /GPa
    Elongation
    /%
    Bulk density
    /(g∙cm−3)
    Linear density
    /(g∙m−1)
    SCF3512 K43002301.851.80.8
    下载: 导出CSV

    表  3  SCF35/PAEK复合材料的界面性能

    Table  3.   Interfacial properties of SCF35/PAEK composites

    SystemInterfacial shear
    strength/MPa
    Contact angle/
    (°)
    90° tensile
    strength/MPa
    90° tensile
    modulus/GPa
    Short beam shear
    strength/MPa
    SCF35/PAEK-L64±3.435.8±1.055±2.98.6±0.186±1.9
    SCF35/PAEK-H79±6.034.4±3.076±5.49.7±0.492±1.4
    下载: 导出CSV

    表  4  SCF35/PAEK复合材料的断裂韧性

    Table  4.   Fracture toughness of SCF35/PAEK composites

    SystemGIC/(J∙m−2)GIIC/(J∙m−2)
    SCF35/PAEK-L938±382232±208
    SCF35/PAEK-H638±381702±46
    Notes: GIC—Type I fracture toughness of SCF35/PAEK composites; GIIC—Type Ⅱ fracture toughness of SCF35/PAEK composites.
    下载: 导出CSV
  • [1] NISHIDA H, CARVELLI V, FUJII T, et al. Thermoplastic vs. thermoset epoxy carbon textile composites[C]//IOP Conference Series: Materials Science and Engineering. England: IOP Publishing, 2018, 406(1): 012043.
    [2] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007
    [3] GABRION X, PLACET V, TRIVAUDEY F, et al. About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite[J]. Compo-sites Part B: Engineering,2016,95:386-394. doi: 10.1016/j.compositesb.2016.03.068
    [4] MATHIJSEN D. Leading the way in thermoplastic compo-sites[J]. Reinforced Plastics,2016,60(6):405-407. doi: 10.1016/j.repl.2015.08.067
    [5] MANTELL S C, SPRINGER G S. Manufacturing process models for thermoplastic composites[J]. Journal of Composite Materials,1992,26(16):2348-2377. doi: 10.1177/002199839202601602
    [6] 叶鼎铨. 国外纤维增强热塑性塑料发展概况[J]. 国外塑料, 2012, 30(5):34-40. doi: 10.3969/j.issn.1002-5219.2012.05.010

    YE Dingquan. Developments of fiber reinforced thermoplastics outside China[J]. World Plastics,2012,30(5):34-40(in Chinese). doi: 10.3969/j.issn.1002-5219.2012.05.010
    [7] 郭云竹. 热塑性复合材料研究及其在航空领域中的应用[J]. 纤维复合材料, 2016, 33(3):20-23. doi: 10.3969/j.issn.1003-6423.2016.03.005

    GUO Yunzhu. Research on thermoplastic composites and its application in the field of aviation[J]. Fiber Composites,2016,33(3):20-23(in Chinese). doi: 10.3969/j.issn.1003-6423.2016.03.005
    [8] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 28(2):44-47. doi: 10.3969/j.issn.1003-6423.2011.02.011

    WANG Xinggang, YU Yang, LI Shumao, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites,2011,28(2):44-47(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.011
    [9] ZAHLAN N. Mechanical properties of the carbon fiber/PEEK composite APC-2/AS-4 for structural applications[J]. Advances in Thermoplastic Matrix Composite Materials,1989,1044:199-212.
    [10] JOGUR G, NAWAZ KHAN A, DAS A, et al. Impact properties of thermoplastic composites[J]. Textile Progress,2018,50(3):109-183. doi: 10.1080/00405167.2018.1563369
    [11] TAN W, NAYA F, YANG L, et al. The role of interfacial pro-perties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling[J]. Composites Part B: Engineering,2018,138:206-221. doi: 10.1016/j.compositesb.2017.11.043
    [12] LU C, WANG J, LU X, et al. Wettability and interfacial pro-perties of carbon fiber and poly(ether ether ketone) fiber hybrid composite[J]. ACS Applied Materials & Interfaces,2019,11(34):31520-31531.
    [13] SU Y, ZHANG S, ZHANG X, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly(ether ether ketone) multiscale composites[J]. Composites Part A: Applied Science and Manufacturing,2018,108:89-98. doi: 10.1016/j.compositesa.2018.02.030
    [14] YAN T, YAN F, LI S, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites Part B: Engineering,2020,199:108258. doi: 10.1016/j.compositesb.2020.108258
    [15] WU D, MIAO Q, DAI Z, et al. Effect of voids and crystallinity on the interlaminar shear strength of in-situ manufactured CF/PEEK laminates using repass treatment[J]. Composites Science and Technology,2022,224:109448.
    [16] 史如静, 吴举, 周剑锋, 等. 模压成型工艺参数对CF/PEEK复合材料Ⅰ型层间断裂韧性的影响[J]. 高科技纤维与应用, 2020, 45(1):26-32. doi: 10.3969/j.issn.1007-9815.2020.01.004

    SHI Rujing, WU Ju, ZHOU Jianfeng, et al. Influence of hot-press molding parameters for processing CF/PEEK composites on type Ⅰ interlaminar fracture toughness[J]. Hi-Tech Fiber and Application,2020,45(1):26-32(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.01.004
    [17] CHEN J, WANG K, DONG A, et al. A comprehensive study on controlling the porosity of CCF 300/PEEK composites by optimizing the impregnation parameters[J]. Polymer Composites,2018,39(10):3765-3779. doi: 10.1002/pc.24407
    [18] ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039 M-14[S]. West Conshohocken: ASTM International, 2014.
    [19] ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: D2344/D2344 M-16[S]. West Conshohocken: ASTM International, 2016.
    [20] ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: D5528/D5528 M-21[S]. West Conshohocken: ASTM International, 2021.
    [21] ASTM. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: D7905/D7905 M-19[S]. West Conshohocken: ASTM International, 2019.
    [22] YEAGER M, SIMACEK P, ADVANI S G. Role of fiber distribution and air evacuation time on capillary driven flow into fiber tows[J]. Composites Part A: Applied Science and Manufacturing,2017,93:144-152. doi: 10.1016/j.compositesa.2016.11.016
    [23] BAI T, WANG D, YAN J, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites[J]. Composites Science and Technology,2021,213:108951. doi: 10.1016/j.compscitech.2021.108951
    [24] XU P, YU Y, GUO Z, et al. Evaluation of composite interfacial properties based on carbon fiber surface chemistry and topography: Nanometer-scale wetting analysis using molecular dynamics simulation[J]. Composites Science and Technology,2019,171:252-260. doi: 10.1016/j.compscitech.2018.12.028
    [25] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [26] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.
    [27] GAO S L, KIM J K. Cooling rate influences in carbon fibre/PEEK composites. Part II: Interlaminar fracture toughness[J]. Composites Part A: Applied Science and Manufacturing,2001,32(6):763-774. doi: 10.1016/S1359-835X(00)00188-3
    [28] DAVALLO M. Factors affecting fracture behaviour of composite materials[J]. International Journal of ChemTech Research,2010,2(4):2125-2130.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  395
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-10-22
  • 录用日期:  2022-11-04
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回