留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交优化纤维聚合物修补防护砂浆配比及其综合性能实现机制

高乙博 罗健林 李治庆 张纪刚 高嵩 朱夏彤 朱敏 张立卿

高乙博, 罗健林, 李治庆, 等. 正交优化纤维聚合物修补防护砂浆配比及其综合性能实现机制[J]. 复合材料学报, 2022, 40(0): 1-18
引用本文: 高乙博, 罗健林, 李治庆, 等. 正交优化纤维聚合物修补防护砂浆配比及其综合性能实现机制[J]. 复合材料学报, 2022, 40(0): 1-18
Yibo GAO, Jianlin LUO, Zhiqing LI, Jigang ZHANG, Song GAO, Xiatong ZHU, Min ZHU, Liqing ZHANG. Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism[J]. Acta Materiae Compositae Sinica.
Citation: Yibo GAO, Jianlin LUO, Zhiqing LI, Jigang ZHANG, Song GAO, Xiatong ZHU, Min ZHU, Liqing ZHANG. Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism[J]. Acta Materiae Compositae Sinica.

正交优化纤维聚合物修补防护砂浆配比及其综合性能实现机制

基金项目: 国家自然科学基金(51878364);中建八局横向合作项目(JM20191030, QUT-2022-FW-0192, QUT-2022-FW-0028);国家111计划与省高峰学科资助
详细信息
    通讯作者:

    罗健林,博士,副教授,博士生导师,研究方向为复合材料与结构 E-mail: lawjanelim@qut.edu.cn

  • 中图分类号: TU58+9

Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism

Funds: National Natural Science Foundation of China (51878364); Projects from China Construction Eighth Division (JM20191030; QUT-2022-FW-0192; QUT-2022-FW-0028); The National “111” project, and Gaofeng discipline project funded by Shandong Province
  • 摘要: 双碳节约型经济大背景下,亟待开发面向复杂服役环境下基础设施修补用高性能修补防护砂浆。本文结合正交试验手段,综合探讨钢纤维(SF)掺量、EVA乳胶粉掺量、高贝利特硫酸盐水泥和普通硅酸盐水泥比例对相应复配而成的纤维聚合物修补防护砂浆(SCPRM)的工作性能、力学性能、界面粘结性能和防水/抗渗耐久性能的影响规律。最优配比SCPRM的流动扩展度、凝结时间、抗折强度(ft)、抗压强度(fc)、14 d粘结强度(fb14d)、90 d干燥收缩率、3 d吸水率、接触角和氯离子渗透系数分别达226.0 mm、41 min/63 min(初凝/终凝时间)、5.2/17.1 MPa(ft1 d/ft28 d)、16.7/73.2 MPa(fc1 d/fc28 d)、3.61 MPa(fb14 d)、16.44×10−5、0.16%、70.04°和0.9486×10−12 m2·s−1。相应宏/微观结构显示SF分散均匀、EVA聚合物膜在水化产物中交替分布;FTIR揭示了复合胶凝体系水化特点与EVA对其水化影响机制。最终,制备出了一种综合性能优异,能够适应复杂服役环境的高性能修补防护砂浆。

     

  • 图  1  SCPRM制备工艺流程

    Figure  1.  Basic preparation process of SCPRM

    图  2  SCPRM的14天粘结强度(fb14 d)试验试件与试验过程(①拉拔金属头,②环氧树脂,③修补防护砂浆,④钢垫片,⑤旧混凝土基层)

    Figure  2.  Bond strength at 14 d (fb14 d) test specimens and procedure (① Pulling hook, ② Epoxy resin, ③ Repair mortar, ④ Steel spacer, ⑤ Old concrete substrate)

    图  3  不同组别SCPRM的流动扩展度均值、偏差及不同因素对流动扩展度的影响

    Figure  3.  Mean & deviation of flowability of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on flowability

    图  4  不同组别SCPRM的凝结时间均值及不同因素对凝结时间的影响

    Figure  4.  Mean of setting time of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on setting time

    图  5  不同组别SCPRM的抗折强度(ft)、抗压强度(fc)均值及不同因素对 ftfc的影响

    Figure  5.  Mean of ft, fc of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on ft, fc

    图  6  不同组别SCPRM的fb14 d均值、偏差及不同因素对fb14 d的影响

    Figure  6.  Mean & deviation of fb14 d of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on fb14 d

    图  7  不同组别SCPRM的干燥收缩均值及不同因素对干燥收缩的影响

    Figure  7.  Mean of drying shrinkage of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on drying shrinkage

    图  8  不同组别SCPRM的吸水率均值及不同因素对吸水率的影响

    Figure  8.  Mean of water absorption of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on water absorption

    图  9  不同组别SCPRM的接触角均值、偏差及不同因素对接触角的影响

    Figure  9.  Mean & deviation of contact angle of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on contact angle

    图  10  不同组别SCPRM的迁移系数(λ)均值、偏差及不同因素对λ的影响

    Figure  10.  Mean & deviation of transport coefficient (λ) of varied groups SCPRM and the effect of OPC/HBSAC, wEVA and VSF on λ

    图  11  通过喷涂AgNO3溶液显色法评价修补防护砂浆试件的氯离子侵蚀深度

    Figure  11.  Depth of chloride ion attack of varied groups repair mortar specimens through color comparison after spraying AgNO3 solution

    图  12  SCPRM微观形貌

    Figure  12.  Microscopic morphology of SCPRM

    图  13  EVA和不同龄期时的修补防护砂浆的FTIR图谱(①-CPRM1;②-CPRM2;③-CPRM3)

    Figure  13.  FTIR spectrum of EVA and repair mortars with different proportions at different curing ages (①-CPRM1; ②-CPRM2; ③-CPRM3)

    表  1  普通硅酸盐水泥(OPC)与抗裂快凝快硬高贝利特硫铝酸盐水泥(HBSAC)的主要化学成分(wt%)

    Table  1.   Main chemical composition of ordinary silicate cement (OPC) and high-belite sulfate aluminate cement (HBSAC) (wt%)

    Cement typeCaOSiO2Al2O3SO3Fe2O3MgOR2O
    P·O 42.551.4224.99 8.26 2.514.033.711.73
    HBSAC 52.541.9718.3316.6314.971.005.340.78
    下载: 导出CSV

    表  2  乙烯-醋酸乙烯共聚物(EVA)可再分散乳胶粉的主要理化特性

    Table  2.   Main physical and chemical properties of ethylene-vinyl acetate copolymer (EVA) re-dispersible emulsion powder

    Model of EVAAppearanceSolid content/
    wt%
    Ash content/
    wt%
    Glass transition
    temperature /℃
    Particle
    size /mm
    Stabilization
    system
    Wacker 5044 NWhite powder99±110±200.4Polyvinyl alcohol
    下载: 导出CSV

    表  3  钢纤维(SF)主要性能指标

    Table  3.   Main performance indicators of steel fiber (SF)

    Length /mmDiameter /mmDensity (g·cm−3)Tensile strength /MPaAppearance
    12-140.18-0.237.85≥3000Golden/Glossy
    下载: 导出CSV

    表  4  SF改性聚合物修补防护砂浆(SCPRM)正交试验因素与因素水平

    Table  4.   Factors and factor levels of orthogonal test for SF modified polymer repair protect mortar (SCPRM)

    Test factorLevel of the factorsItem No.
    OPC∶HBSAC1∶0A1
    0.7∶0.3A2
    0.5∶0.5A3
    EVA dosing wEVA/wt%0B1
    8B2
    15B3
    SF dosing VSF/vol%0C1
    1C2
    2C3
    下载: 导出CSV

    表  5  9组SCPRM正交试验材料配比(kg/m3)

    Table  5.   Orthogonal mix ratio of 9 groups of SCPRM (kg/m3)

    Group No.(C + EVA + FA) : WOPCHBSACSFAEVASFWSupDA
    SCPRM1 0.25 900 0 1125 112.5 0 0 253.1 4.1 4
    SCPRM2 72 156 271.1 4.3
    SCPRM3 135 78 286.9 4.6
    SCPRM4 630 270 0 156 253.1 4.1
    SCPRM5 72 78 271.1 4.3
    SCPRM6 135 0 286.9 4.6
    SCPRM7 450 450 0 78 253.1 4.1
    SCPRM8 72 0 271.1 4.3
    SCPRM9 135 156 286.9 4.6
    Notes: C—Cement; FA—Fly ash; S—Quartz sand; W—Water; Sup—Superplasticizer; DA—Defoamer.
    下载: 导出CSV

    表  6  傅里叶变换红外光谱(FTIR)试验中3组修补砂浆的材料配比(kg/m3)

    Table  6.   Mix ratio of 3 groups repair mortar for fourier transform infrared spectrum (FTIR) test (kg/m3)

    Group No.(C + EVA + FA)∶WOPCHBSACSFAEVAWSupDA
    CPRM10.25900 01125112.5 0253.14.14
    CPRM2630270 0253.14.1
    CPRM363027072271.14.3
    下载: 导出CSV

    表  7  SCPRM流动扩展度极差分析结果

    Table  7.   Range analysis results of flowability of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal level
    R*/mm60141.635.7
    Degree of influenceB(wEVA)>A(OPC∶HBSAC)>C(VSF)
    *Note: R in Table 7 is the range of flowability, and R in the range analysis tables below are the range of the corresponding performance respectively.
    下载: 导出CSV

    表  8  SCPRM初凝时间极差分析结果

    Table  8.   Range analysis results of initial setting time of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA3B1C1
    R/min12431083483
    Degree of influenceA(OPC∶HBSAC)>B(wEVA)>C(VSF)
    下载: 导出CSV

    表  9  SCPRM终凝时间极差分析结果

    Table  9.   Range analysis results of final setting time of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA3B1C1
    R/min17861638864
    Degree of influenceA(OPC∶HBSAC)>B(wEVA)>C(VSF)
    下载: 导出CSV

    表  10  SCPRM的1 d抗折强度(ft1 d)极差分析结果

    Table  10.   Range analysis results of flexural strength at 1 d (ft1 d) of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA3B1C3
    R/MPa14.412.03.8
    Degree of influenceA(OPC∶HBSAC)>B(wEVA)>C(VSF)
    下载: 导出CSV

    表  11  SCPRM的1 d抗压强度(fc1 d)极差分析结果

    Table  11.   Range analysis results of compressive strength at 1 d (fc1 d) of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA3B1C3
    R/MPa42.249.63.8
    Degree of influenceB(wEVA)>A(OPC:HBSAC)>C(VSF)
    下载: 导出CSV

    表  12  SCPRM的28 d抗折强度ft28 d极差分析结果

    Table  12.   Range analysis results of flexural strength at 28 d (ft28 d) of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA2B3C3
    R/MPa3.88.93.8
    Degree of influenceB(wEVA)>A(OPC∶HBSAC)>C(VSF)
    下载: 导出CSV

    表  13  SCPRM的28 d抗压强度(fc28 d)极差分析结果

    Table  13.   Range analysis results of compressive strength at 28 d (fc28 d) of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA2B1C2
    R/MPa22.484.524.7
    Degree of influenceB(wEVA)>C(VSF)>A(OPC∶HBSAC)
    下载: 导出CSV

    表  14  SCPRM在14 d龄期时的fb14 d极差分析结果

    Table  14.   Range analysis results of fb14 d of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA2B2C2
    R/MPa1.032.480.93
    Degree of influenceB(wEVA)>A(OPC∶HBSAC)>C(VSF)
    下载: 导出CSV

    表  15  SCPRM的90 d干燥收缩极差分析结果

    Table  15.   Range analysis results of drying shrinkage at 90 d of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA2B2C1
    R/×10−560.6533.9621.78
    Degree of influenceA(OPC∶HBSAC)>B(wEVA)>C(VSF)
    下载: 导出CSV

    表  16  SCPRM的72 h吸水率极差分析结果

    Table  16.   Range analysis results of water absorption rate at 72 h of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA2B3C2
    R/%0.691.440.24
    Degree of influenceB(wEVA)>A(OPC∶HBSAC)>C(VSF)
    下载: 导出CSV

    表  17  SCPRM的接触角极差分析结果

    Table  17.   Range analysis results of contact angle of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA2B3C2
    R8.4975.067.68
    Degree of influenceB(wEVA)>A(OPC∶HBSAC)>C(VSF)
    下载: 导出CSV

    表  18  SCPRM的λ极差分析结果

    Table  18.   Range analysis results of λ of SCPRM

    Analysis resultOPC/HBSACEVASF
    Optimal levelA3B2C1
    R/ m2·s−15.2003×10−122.9155×10−122.0152×10−12
    Degree of influenceA(OPC∶HBSAC)>B(wEVA)>C(VSF)
    下载: 导出CSV

    表  19  SCPRM不同性能对应的最佳配比

    Table  19.   Optimal ratios corresponding to different properties of SCPRM

    PropertySetting timeft1 dfc1 dft28 dfc28 dfb14 dDrying
    shrinkage
    Water absorption
    rate
    Contact
    angle
    λ
    Optimal ratioA3B1C1A3B1C3A3B1C3A2B3C3A2B1C2A2B2C2A2B2C1A2B3C2A2B3C2A3B2C1
    下载: 导出CSV

    表  20  不同类型修补防护砂浆综合性能对比分析

    Table  20.   Comparison of the comprehensive performances of different types repair protect mortars

    Type of repair protect mortarFlowability
    /mm
    Setting time
    /min
    ft1 d/ft28 d
    /MPa
    fc1 d/fc28 d
    /MPa
    fb 14 d
    /MPa
    Drying shrinkage
    /10−5
    Water absorption rate
    /%
    λ
    /10−12 m2·s−1
    SCPRM5226635.2/17.116.7/73.23.6116.440.160.9486
    Basalt fiber reinforced geopolymer repair protect mortar [59]220235.2/10.527.0/59.21.3550-
    Polypropylene fiber reinforced geopolymer repair protect mortar [59]190294.8/9.622.0/56.41.4510
    Acrylic polymer repair protect mortar [60]-12.0 (3 d)
    /17.0
    43.4 (3 d)
    /62.3
    2.87.0-5.25
    MPCRM [61]-1340.0/352.84.0-
    Ultra-early-strength MPCRM [62]200 76.4 (3 h)
    /9.8
    30 (3 h)
    /50.4
    8.8 (Flexural-tensile strength)-
    下载: 导出CSV

    表  21  图12(a)中点#1 EDS点扫描结果(at%)

    Table  21.   EDS point scan results for point #1 in Fig. 12(a) (at%)

    NumberCOSiSCaMo
    #112.357.12.18.115.12.3
    下载: 导出CSV
  • [1] DAMME H V. Concrete material science: Past, present, and future innovations[J]. Cement and Concrete Research,2018,112:5-24. doi: 10.1016/j.cemconres.2018.05.002
    [2] WOETZEL J R. A blueprint for addressing the global affordable housing challenge [M]. McKinsey Global Institute, 2014.
    [3] DOBBS R, POHL H, LIN D Y, et al. Infrastructure productivity: how to save 1 trillion USD a year [J]. McKinsey Global Institute Report, 2013.
    [4] SUN W, MU R, LUO X, et al. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete[J]. Cement and Concrete Research,2002,32(12):1859-1864. doi: 10.1016/S0008-8846(02)00769-X
    [5] SUN W, ZHANG Y M, YAN H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research,1999,29(9):1519-1523. doi: 10.1016/S0008-8846(99)00097-6
    [6] WANG R, HU Z, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment[J]. Construction and Building Materials,2022,321:126371. doi: 10.1016/j.conbuildmat.2022.126371
    [7] TANG S W, YAO Y, ANDRADE C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research,2015,78:143-154. doi: 10.1016/j.cemconres.2015.05.021
    [8] CASCUDO O, TEODORO R, OLIVEIRA A M, et al. Effect of different metakaolins on chloride-related durability of concrete[J]. ACI Materials Journal,2021,118(3):3-14.
    [9] BALOCH W L, SIAD H, LACHEMI M, et al. A review on the durability of concrete-to-concrete bond in recent rehabilitated structures[J]. Journal of Building Engineering,2021,44:103315. doi: 10.1016/j.jobe.2021.103315
    [10] LUO J L, LI Q Y, ZHAO T J, et al. Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar[J]. Construction and Building Materials,2013,49:766-771. doi: 10.1016/j.conbuildmat.2013.08.052
    [11] SHI C, MA C, YANG Y, et al. Effects of curing temperature on mechanical properties of polymer-modified OPC-CA-gypsum repair mortar[J]. Construction and Building Materials,2022,319:126042. doi: 10.1016/j.conbuildmat.2021.126042
    [12] OKAMOTO P A, WHITING D. Use of maturity and pulse velocity techniques to predict strength gain of rapid concrete pavement repairs during curing period[J]. Transportation Research Record,1994:1458.
    [13] LI G Y. A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash[J]. Cement and Concrete Research,2003,33(6):799-806. doi: 10.1016/S0008-8846(02)01064-5
    [14] 高为民. 硫铝酸盐水泥基修补砂浆制备与性能研究[D]. 济南: 济南大学, 2018.

    GAO Weimin. Study on preparation and properties of sulphoaluminate cement mortar [D]. Jinan: Jinan University, 2018. (in Chinese)
    [15] SEEHRA S S, GUPTA S, KUMAR S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—characterisation and durability aspects[J]. Cement and Concrete Research,1993,23(2):254-266. doi: 10.1016/0008-8846(93)90090-V
    [16] 常利, 艾涛, 延西利, 等. 地聚合物水泥路面快速修补材料性能研究[J]. 武汉理工大学学报, 2014, 36(5):1671-4431.

    CHANG Li, AI Tao, YAN Xili, et al. Study on the properties of geopolymer concrete using as rapid repair materials for cement pavement[J]. Journal of Wuhan University of Technology,2014,36(5):1671-4431(in Chinese).
    [17] 谭义. 碱矿渣快速修补砂浆制备与界面性能研究[D]. 重庆: 重庆大学, 2018.

    TAN Yi. Research on bonding interface properties and preparation of alkali-activated slag cement using as rapid repairing mortar [D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [18] MANSUR A A P, SANTOS D B, MANSUR H S. A microstructural approach to adherence mechanism of poly (vinyl alcohol) modified cement systems to ceramic tiles[J]. Cement and Concrete Research,2007,37(2):270-282. doi: 10.1016/j.cemconres.2006.11.011
    [19] TIAN Y, JIN X, JIN N, et al. Research on the microstructure formation of polyacrylate latex modified mortars[J]. Construction and Building Materials,2013,47:1381-1394. doi: 10.1016/j.conbuildmat.2013.06.016
    [20] WONGPRACHUM W, SAPPAKITTIPAKORN M, SUKONTASUKKUL P, et al. Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar[J]. Construction and Building Materials,2018,189:686-694. doi: 10.1016/j.conbuildmat.2018.09.043
    [21] ZHANG X, DU M, FANG H, et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges[J]. Construction and Building Materials,2021,299:124290. doi: 10.1016/j.conbuildmat.2021.124290
    [22] SHI C, WANG P, MA C, et al. Effects of SAE and SBR on properties of rapid hardening repair mortar[J]. Journal of Building Engineering,2021,35:102000. doi: 10.1016/j.jobe.2020.102000
    [23] OJHA P N, KAURA P, SINGH B, et al. Evaluation of Polymer Modified Mortar and Bonding Agent for Structural Repair[J]. Journal of Asian Concrete Federation,2021,7(2):56-62. doi: 10.18702/acf.2021.12.7.2.56
    [24] ZHAO F, LI H, LIU S, et al. Preparation and properties of an environment friendly polymer-modified waterproof mortar[J]. Construction and Building Materials,2011,25(5):2635-2638. doi: 10.1016/j.conbuildmat.2010.12.012
    [25] 霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11):1-12. doi: 10.13801/j.cnki.fhclxb.20220623.005

    HUO Yanlin, SUN Huayang, LIU Tianan, et al. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica,2022,39(11):1-12(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220623.005
    [26] 张云升, 孙伟, 李宗津. PVA 短纤维和粉煤灰对地聚合物基复合材料流变学行为和弯曲性能的影响[J]. 复合材料学报, 2008, 25(6):166-174. doi: 10.3321/j.issn:1000-3851.2008.06.032

    ZHANG Yunsheng, SUN Wei, LI Zongjin. Effect of PVA short fiber and fly ash on rheological and flexural behaviors of geopolymer composites[J]. Acta Materiae Compositae Sinica,2008,25(6):166-174(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.06.032
    [27] 赵焕起, 李国忠. 混杂纤维增强水泥基复合材料的力学性能[J]. 复合材料学报, 2014, 31(1):140-145. doi: 10.3969/j.issn.1000-3851.2014.01.020

    ZHANG Huanqi, LI Guozhong. Mechanics performance of hybrid fiber reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2014,31(1):140-145(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.020
    [28] 张聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):661-668. doi: 10.13801/j.cnki.fhclxb.2014.03.018

    ZHANG Cong, CAO Mingli. Mechanical property test of a multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica,2014,31(3):661-668(in Chinese). doi: 10.13801/j.cnki.fhclxb.2014.03.018
    [29] HAN G Y, LUO J L. Mechanical and Shrinkage Behaviors of Ductile Fiber-Reinforced Polymer Repair Mortar//Key Engineering Materials[J]. Trans Tech Publications Ltd,2020,841:14-19.
    [30] FELEKOGLU B, TURKEL S, ALTUNTAS Y. Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars[J]. Cement and Concrete Composites,2007,29(5):391-396. doi: 10.1016/j.cemconcomp.2006.12.010
    [31] ZANOTTI C, BANTHIA N, PLIZZARI G. A study of some factors affecting bond in cementitious fiber reinforced repairs[J]. Cement and Concrete Research,2014,63:117-126. doi: 10.1016/j.cemconres.2014.05.008
    [32] ZANOTTI C, ROSTAGNO G, TINGLEY B. Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs[J]. Construction and Building Materials,2018,160:775-785. doi: 10.1016/j.conbuildmat.2017.12.140
    [33] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967. doi: 10.13801/j.cnki.fhclxb.20181101.001

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181101.001
    [34] 罗兴华. 钢纤维水泥砂浆与混凝土界面粘结性能试验研究[D]. 长沙: 湖南大学, 2009.

    LUO Xinghua. The research on interfacial bond behavior of steel fiber cement mortar to concrete [D]. Changsha: Hunan University, 2009. (in Chinese)
    [35] 孙科科. 硅酸盐水泥—硫铝酸盐水泥基修补材料及防腐抗渗性能研究[D]. 济南: 济南大学, 2017.

    SUN Keke. Study on anticorrosion and impermeability of repaired materials with blending ordinary portland cement and sulphoaluminate cement [D]. Jinan: Jinan Universsity, 2017. (in Chinese)
    [36] 李贺, 罗健林, 李秋义, 等. 韧性纤维增强聚合物砂浆的粘结修复与收缩耐久性能[J]. 化工新型材料, 2019, 47(7):266-270.

    LI He, LUO Jianlin, LI Qiuyi, et al. Bonding repair and shrinkage durability of ductile fiber-reinforced polymer mortar[J]. New Chemical Materials,2019,47(7):266-270(in Chinese).
    [37] 水泥胶砂流动扩展度测定方法 (GB/T 2419-2005). 北京: 中国建材工业出版社; 2005.

    Test method for fluidity of cement mortar (GB/T 2419-2005). Beijing: China Building Materials Press, 2005. (in Chinese)
    [38] 建筑砂浆基本性能试验方法 (JGJ/T 70-2009). 北京: 中国建筑工业出版社; 2009.

    Standard for test method of performance on building mortar (JGJ/T 70-2009). Beijing: China Architecture & Building Press, 2009. (in Chinese)
    [39] 水泥胶砂强度检验方法(ISO法) (GB/T 17671-2021). 北京: 中国标准出版社; 2021.

    Method of testing cements-Determination of strength (GB/T 17671-2021). Beijing: Standards Press of China, 2021. (in Chinese)
    [40] 修补砂浆 (JC/T 2381-2016). 北京: 中国建筑工业出版社, 2016.

    Repairing mortar (JC/T 2381-2016). Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [41] 普通混凝土长期性能和耐久性能试验方法标准 (GB/T 50082-2009). 北京: 中国建筑工业出版社; 2009.

    Standard for test methods of long-term performance and durability of ordinary concrete (GB/T 50082-2009). Beijing: China Architecture & Building Press, 2009. (in Chinese)
    [42] KWAN A K H, LI Y. Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar[J]. Construction and Building Materials,2013,42:137-145. doi: 10.1016/j.conbuildmat.2013.01.015
    [43] 迟琳. 高贝利特硫铝酸盐水泥活化和水化机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    CHI Lin. Study on the activation and hydration mechanism of belite calcium sulfoaluminate cement [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [44] KONG X, EMMERLING S, PAKUSCH J, et al. Retardation effect of styrene-acrylate copolymer latexes on cement hydration[J]. Cement and Concrete Research,2015,75:23-41. doi: 10.1016/j.cemconres.2015.04.014
    [45] 张霄. 聚合物改性快速水泥基修补材料及其机理研究[D]. 西安: 西安建筑科技大学, 2018.

    ZHANG Xiao. Research on property and mechanism of polymer modified rapid cement-based repaired material [D]. Xi’an: Xi’an University of Architecture and Technology, 2018. (in Chinese)
    [46] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cement and concrete research,2011,41(12):1208-1223. doi: 10.1016/j.cemconres.2010.09.011
    [47] SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cement and concrete research,2011,41(7):651-665. doi: 10.1016/j.cemconres.2011.03.026
    [48] WU Y Y, MA B G, WANG J, et al. Study on interface properties of EVA-modified cement mortar//Advanced Materials Research[J]. Trans Tech Publications Ltd,2011,250:875-880.
    [49] 李帅. 可再分散乳胶粉及粉煤灰对砂浆性能的影响[D]. 华北水利水电大学, 2019.

    LI Shuai. Effect of redispersible latex powder and fly ash mortar performance [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. (in Chinese)
    [50] 谢慧才, 李庚英, 熊光晶. 新老混凝土界面粘结力形成机理[J]. 硅酸盐通报, 2003, 22(3):7-10. doi: 10.3969/j.issn.1001-1625.2003.03.002

    XIE Huicai, LI Gengying, XIONG Guangjing. The mechanism formed the bonding force between new and old concrete[J]. Bulletin of the Chinese Ceramic Society,2003,22(3):7-10(in Chinese). doi: 10.3969/j.issn.1001-1625.2003.03.002
    [51] ROSTAGNO G, TINGLEY B, ZANOTTI C. Bond Strength of Steel FRC Repairs to Concrete Substrate: Investigation on Adhesion Strength, Friction, and Bond Enhancing Mechanisms//High Tech Concrete: Where Technology and Engineering Meet[J]. Springer, Cham,2018:148-156.
    [52] 李长辉, 陈雪芳, 张献民, 等. 合成粗聚丙烯纤维与水泥砂浆界面粘结力学性能[J]. 复合材料学报, 2022, 40(0):1-15.

    LI Changhui, CHEN Xuefang, ZHANG Xianmin, et al. Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar[J]. Acta Materiae Compositae Sinica,2022,40(0):1-15(in Chinese).
    [53] BANFILL P F G, BELLAGRAA L, BENAGGOUN L. Properties of polymer-modified mortars made with blended cements[J]. Advances in Cement Research,1993,5(19):103-109. doi: 10.1680/adcr.1993.5.19.103
    [54] LIU S, HU Q, ZHAO F, et al. Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core–shell styrene–acrylic copolymer as the modifier[J]. Construction and Building Materials,2014,72:15-22. doi: 10.1016/j.conbuildmat.2014.09.016
    [55] 于俊超, 赵庆新. 钢纤维对混凝土徐变性能的影响[J]. 硅酸盐学报, 2013, 41(8):1087-1093. doi: 10.7521/j.issn.0454-5648.2013.08.10

    YU Junchao, ZHAO Qingxin. Effect of steel fiber on creep behavior of concrete[J]. Journal of the Chinese Ceramic Society,2013,41(8):1087-1093(in Chinese). doi: 10.7521/j.issn.0454-5648.2013.08.10
    [56] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.
    [57] JIN Z Q, SUN W, ZHANG Y S, et al. Interaction between sulfate and chloride solution attack of concretes with and without fly ash[J]. Cement and Concrete Research,2007,37(8):1223-1232. doi: 10.1016/j.cemconres.2007.02.016
    [58] 郭丽萍, 张健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究: 合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2018, 31(23):132-137.

    GUO Liping, ZHANG Jian, CAO Yuanzhang, et al. Astudy for compound salts attack on ultra-high performance cement-based materials: the stabilities of chemically synthesized friedel salt and ettringite in solutons of sulfates and chloride salts[J]. Materials Reports,2018,31(23):132-137(in Chinese).
    [59] 冯琦. 地聚合物基路面修补砂浆的制备与性能研究[D]. 沈阳: 沈阳建筑大学, 2019.

    FENG Qi. Study on preparation and properties of geopolymer-based pavement repair mortar [D]. Shenyang: Shenyang Jianzhu University, 2019. (in Chinese)
    [60] 崔弋. 混凝土结构防护与修补砂浆的试验研究[D]. 青岛: 青岛理工大学, 2012.

    CUI Yi. Test research of concrete structure’s protective and repair mortar [D]. Qingdao: Qingdao Technological University, 2012. (in Chinese)
    [61] 胡华洁. 用于高铁无砟轨道损伤快速修复磷酸镁水泥研究[D]. 上海: 上海交通大学, 2015.

    HU Huajie. Experimental research on magnesium phosphate cement for rapid repair of ballastless track in high-speed railway [D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [62] 陈冬冬. 基于计算优化法的磷酸镁材料的设计和应用研究[D]. 青岛: 青岛理工大学, 2021.

    CHEN Dongdong. Design and field application of magnesium phosphate cement based on computational optimization [D]. Qingdao: Qingdao Technological University, 2021. (in Chinese)
    [63] LIU Changjiang, HUANG Xiaochuan, WU Yuyou, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures[J]. Construction and Building Materials,2021,288:123059. doi: 10.1016/j.conbuildmat.2021.123059
    [64] PERA J, HUSSON S, GUILHOT B. Influence of finely ground limestone on cement hydration[J]. Cement and Concrete Composites,1999,21(2):99-105. doi: 10.1016/S0958-9465(98)00020-1
    [65] YLMEN R, JAGLID U, STEENARI BM, et al. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques[J]. Cement and Concrete Research,2009,39(5):433-439. doi: 10.1016/j.cemconres.2009.01.017
    [66] SAAFI M, TANG L, FUNG J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cement and Concrete Research,2015,67:292-299. doi: 10.1016/j.cemconres.2014.08.011
    [67] LIU Changjiang, CHEN Fulian, WU Yuyou, et al. Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials. Nanotechnology Reviews [J], 2021, 10, 1208-1235.
  • 加载中
计量
  • 文章访问数:  126
  • HTML全文浏览量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2022-11-16
  • 录用日期:  2022-11-26
  • 网络出版日期:  2022-12-16

目录

    /

    返回文章
    返回