Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism
-
摘要: 双碳节约型经济大背景下,亟待开发面向复杂服役环境下基础设施修补用高性能修补防护砂浆。本文结合正交试验手段,综合探讨钢纤维(SF)掺量、EVA乳胶粉掺量、高贝利特硫酸盐水泥和普通硅酸盐水泥比例对相应复配而成的纤维聚合物修补防护砂浆(SCPRM)的工作性能、力学性能、界面粘结性能和防水/抗渗耐久性能的影响规律。最优配比SCPRM的流动扩展度、凝结时间、抗折强度(ft)、抗压强度(fc)、14 d粘结强度(fb14d)、90 d干燥收缩率、3 d吸水率、接触角和氯离子渗透系数分别达226.0 mm、41 min/63 min(初凝/终凝时间)、5.2/17.1 MPa(ft1 d/ft28 d)、16.7/73.2 MPa(fc1 d/fc28 d)、3.61 MPa(fb14 d)、16.44×10−5、0.16%、70.04°和0.9486×10−12 m2·s−1。相应宏/微观结构显示SF分散均匀、EVA聚合物膜在水化产物中交替分布;FTIR揭示了复合胶凝体系水化特点与EVA对其水化影响机制。最终,制备出了一种综合性能优异,能够适应复杂服役环境的高性能修补防护砂浆。Abstract: Under background of carbon peaking and carbon neutrality economic savings, it is urgent to develop high performance repair protect mortar for infrastructure repairing and protecting in complex service environment. In this paper, the effects of steel fiber (SF) dosing, EVA emulsion powder dosing, and the proportion of high-belite sulfate cement and ordinary Portland cement on the workability, mechanical properties, interfacial bonding performance and waterproofing/ impermeability durability of the fiber reinforced polymer repair protect mortar (SCPRM) were investigated by Taguchi orthogonal method. Results reveal that the flowability, setting time, flexural strength (ft), compressive strength (fc), bond strength at 14 d (fb14d), drying shrinkage at 90 d, water absorption after 3 d soaking, surface contact angle and chlorine ion permeability coefficient are 226.0 mm, 41 min/63 min (initial/final setting time), 5.2/17.1 MPa (ft1d/ft28d), 16.7/73.2 MPa (fc1d/fc28d), 3.61 MPa (fb14d), 16.44×10−5, 0.16%, 70.04°, and 0.9486×10−12 m2·s−1, respectively. The corresponding macroscopic/microscopic structures show that SFs are uniformly dispersed in the hydration products and the EVA polymer film was netlike distributed. FTIR reveals the hydration feature of compound cementitious system, and the corresponding influence mechanism of its hydration of EVA dosing. Finally, a high-performance repair protect mortar with excellent comprehensive performance and adaptability to complex service environment are successively prepared.
-
表 1 普通硅酸盐水泥(OPC)与抗裂快凝快硬高贝利特硫铝酸盐水泥(HBSAC)的主要化学成分(wt%)
Table 1. Main chemical composition of ordinary silicate cement (OPC) and high-belite sulfate aluminate cement (HBSAC) (wt%)
Cement type CaO SiO2 Al2O3 SO3 Fe2O3 MgO R2O P·O 42.5 51.42 24.99 8.26 2.51 4.03 3.71 1.73 HBSAC 52.5 41.97 18.33 16.63 14.97 1.00 5.34 0.78 表 2 乙烯-醋酸乙烯共聚物(EVA)可再分散乳胶粉的主要理化特性
Table 2. Main physical and chemical properties of ethylene-vinyl acetate copolymer (EVA) re-dispersible emulsion powder
Model of EVA Appearance Solid content/
wt%Ash content/
wt%Glass transition
temperature /℃Particle
size /mmStabilization
systemWacker 5044 N White powder 99±1 10±2 0 0.4 Polyvinyl alcohol 表 3 钢纤维(SF)主要性能指标
Table 3. Main performance indicators of steel fiber (SF)
Length /mm Diameter /mm Density (g·cm−3) Tensile strength /MPa Appearance 12-14 0.18-0.23 7.85 ≥3000 Golden/Glossy 表 4 SF改性聚合物修补防护砂浆(SCPRM)正交试验因素与因素水平
Table 4. Factors and factor levels of orthogonal test for SF modified polymer repair protect mortar (SCPRM)
Test factor Level of the factors Item No. OPC∶HBSAC 1∶0 A1 0.7∶0.3 A2 0.5∶0.5 A3 EVA dosing wEVA/wt% 0 B1 8 B2 15 B3 SF dosing VSF/vol% 0 C1 1 C2 2 C3 表 5 9组SCPRM正交试验材料配比(kg/m3)
Table 5. Orthogonal mix ratio of 9 groups of SCPRM (kg/m3)
Group No. (C + EVA + FA) : W OPC HBSAC S FA EVA SF W Sup DA SCPRM1 0.25 900 0 1125 112.5 0 0 253.1 4.1 4 SCPRM2 72 156 271.1 4.3 SCPRM3 135 78 286.9 4.6 SCPRM4 630 270 0 156 253.1 4.1 SCPRM5 72 78 271.1 4.3 SCPRM6 135 0 286.9 4.6 SCPRM7 450 450 0 78 253.1 4.1 SCPRM8 72 0 271.1 4.3 SCPRM9 135 156 286.9 4.6 Notes: C—Cement; FA—Fly ash; S—Quartz sand; W—Water; Sup—Superplasticizer; DA—Defoamer. 表 6 傅里叶变换红外光谱(FTIR)试验中3组修补砂浆的材料配比(kg/m3)
Table 6. Mix ratio of 3 groups repair mortar for fourier transform infrared spectrum (FTIR) test (kg/m3)
Group No. (C + EVA + FA)∶W OPC HBSAC S FA EVA W Sup DA CPRM1 0.25 900 0 1125 112.5 0 253.1 4.1 4 CPRM2 630 270 0 253.1 4.1 CPRM3 630 270 72 271.1 4.3 表 7 SCPRM流动扩展度极差分析结果
Table 7. Range analysis results of flowability of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level R*/mm 60 141.6 35.7 Degree of influence B(wEVA)>A(OPC∶HBSAC)>C(VSF) *Note: R in Table 7 is the range of flowability, and R in the range analysis tables below are the range of the corresponding performance respectively. 表 8 SCPRM初凝时间极差分析结果
Table 8. Range analysis results of initial setting time of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A3 B1 C1 R/min 1243 1083 483 Degree of influence A(OPC∶HBSAC)>B(wEVA)>C(VSF) 表 9 SCPRM终凝时间极差分析结果
Table 9. Range analysis results of final setting time of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A3 B1 C1 R/min 1786 1638 864 Degree of influence A(OPC∶HBSAC)>B(wEVA)>C(VSF) 表 10 SCPRM的1 d抗折强度(ft1 d)极差分析结果
Table 10. Range analysis results of flexural strength at 1 d (ft1 d) of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A3 B1 C3 R/MPa 14.4 12.0 3.8 Degree of influence A(OPC∶HBSAC)>B(wEVA)>C(VSF) 表 11 SCPRM的1 d抗压强度(fc1 d)极差分析结果
Table 11. Range analysis results of compressive strength at 1 d (fc1 d) of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A3 B1 C3 R/MPa 42.2 49.6 3.8 Degree of influence B(wEVA)>A(OPC:HBSAC)>C(VSF) 表 12 SCPRM的28 d抗折强度ft28 d极差分析结果
Table 12. Range analysis results of flexural strength at 28 d (ft28 d) of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A2 B3 C3 R/MPa 3.8 8.9 3.8 Degree of influence B(wEVA)>A(OPC∶HBSAC)>C(VSF) 表 13 SCPRM的28 d抗压强度(fc28 d)极差分析结果
Table 13. Range analysis results of compressive strength at 28 d (fc28 d) of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A2 B1 C2 R/MPa 22.4 84.5 24.7 Degree of influence B(wEVA)>C(VSF)>A(OPC∶HBSAC) 表 14 SCPRM在14 d龄期时的fb14 d极差分析结果
Table 14. Range analysis results of fb14 d of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A2 B2 C2 R/MPa 1.03 2.48 0.93 Degree of influence B(wEVA)>A(OPC∶HBSAC)>C(VSF) 表 15 SCPRM的90 d干燥收缩极差分析结果
Table 15. Range analysis results of drying shrinkage at 90 d of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A2 B2 C1 R/×10−5 60.65 33.96 21.78 Degree of influence A(OPC∶HBSAC)>B(wEVA)>C(VSF) 表 16 SCPRM的72 h吸水率极差分析结果
Table 16. Range analysis results of water absorption rate at 72 h of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A2 B3 C2 R/% 0.69 1.44 0.24 Degree of influence B(wEVA)>A(OPC∶HBSAC)>C(VSF) 表 17 SCPRM的接触角极差分析结果
Table 17. Range analysis results of contact angle of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A2 B3 C2 R/° 8.49 75.06 7.68 Degree of influence B(wEVA)>A(OPC∶HBSAC)>C(VSF) 表 18 SCPRM的λ极差分析结果
Table 18. Range analysis results of λ of SCPRM
Analysis result OPC/HBSAC EVA SF Optimal level A3 B2 C1 R/ m2·s−1 5.2003×10−12 2.9155×10−12 2.0152×10−12 Degree of influence A(OPC∶HBSAC)>B(wEVA)>C(VSF) 表 19 SCPRM不同性能对应的最佳配比
Table 19. Optimal ratios corresponding to different properties of SCPRM
Property Setting time ft1 d fc1 d ft28 d fc28 d fb14 d Drying
shrinkageWater absorption
rateContact
angleλ Optimal ratio A3B1C1 A3B1C3 A3B1C3 A2B3C3 A2B1C2 A2B2C2 A2B2C1 A2B3C2 A2B3C2 A3B2C1 表 20 不同类型修补防护砂浆综合性能对比分析
Table 20. Comparison of the comprehensive performances of different types repair protect mortars
Type of repair protect mortar Flowability
/mmSetting time
/minft1 d/ft28 d
/MPafc1 d/fc28 d
/MPafb 14 d
/MPaDrying shrinkage
/10−5Water absorption rate
/%λ
/10−12 m2·s−1SCPRM5 226 63 5.2/17.1 16.7/73.2 3.61 16.44 0.16 0.9486 Basalt fiber reinforced geopolymer repair protect mortar [59] 220 23 5.2/10.5 27.0/59.2 1.3 550 - Polypropylene fiber reinforced geopolymer repair protect mortar [59] 190 29 4.8/9.6 22.0/56.4 1.4 510 Acrylic polymer repair protect mortar [60] - 12.0 (3 d)
/17.043.4 (3 d)
/62.32.8 7.0 - 5.25 MPCRM [61] - 13 40.0/35 2.8 4.0 - Ultra-early-strength MPCRM [62] 200 7 6.4 (3 h)
/9.830 (3 h)
/50.48.8 (Flexural-tensile strength) - 表 21 图12(a)中点#1 EDS点扫描结果(at%)
Table 21. EDS point scan results for point #1 in Fig. 12(a) (at%)
Number C O Si S Ca Mo #1 12.3 57.1 2.1 8.1 15.1 2.3 -
[1] DAMME H V. Concrete material science: Past, present, and future innovations[J]. Cement and Concrete Research,2018,112:5-24. doi: 10.1016/j.cemconres.2018.05.002 [2] WOETZEL J R. A blueprint for addressing the global affordable housing challenge [M]. McKinsey Global Institute, 2014. [3] DOBBS R, POHL H, LIN D Y, et al. Infrastructure productivity: how to save 1 trillion USD a year [J]. McKinsey Global Institute Report, 2013. [4] SUN W, MU R, LUO X, et al. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete[J]. Cement and Concrete Research,2002,32(12):1859-1864. doi: 10.1016/S0008-8846(02)00769-X [5] SUN W, ZHANG Y M, YAN H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research,1999,29(9):1519-1523. doi: 10.1016/S0008-8846(99)00097-6 [6] WANG R, HU Z, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment[J]. Construction and Building Materials,2022,321:126371. doi: 10.1016/j.conbuildmat.2022.126371 [7] TANG S W, YAO Y, ANDRADE C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research,2015,78:143-154. doi: 10.1016/j.cemconres.2015.05.021 [8] CASCUDO O, TEODORO R, OLIVEIRA A M, et al. Effect of different metakaolins on chloride-related durability of concrete[J]. ACI Materials Journal,2021,118(3):3-14. [9] BALOCH W L, SIAD H, LACHEMI M, et al. A review on the durability of concrete-to-concrete bond in recent rehabilitated structures[J]. Journal of Building Engineering,2021,44:103315. doi: 10.1016/j.jobe.2021.103315 [10] LUO J L, LI Q Y, ZHAO T J, et al. Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar[J]. Construction and Building Materials,2013,49:766-771. doi: 10.1016/j.conbuildmat.2013.08.052 [11] SHI C, MA C, YANG Y, et al. Effects of curing temperature on mechanical properties of polymer-modified OPC-CA-gypsum repair mortar[J]. Construction and Building Materials,2022,319:126042. doi: 10.1016/j.conbuildmat.2021.126042 [12] OKAMOTO P A, WHITING D. Use of maturity and pulse velocity techniques to predict strength gain of rapid concrete pavement repairs during curing period[J]. Transportation Research Record,1994:1458. [13] LI G Y. A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash[J]. Cement and Concrete Research,2003,33(6):799-806. doi: 10.1016/S0008-8846(02)01064-5 [14] 高为民. 硫铝酸盐水泥基修补砂浆制备与性能研究[D]. 济南: 济南大学, 2018.GAO Weimin. Study on preparation and properties of sulphoaluminate cement mortar [D]. Jinan: Jinan University, 2018. (in Chinese) [15] SEEHRA S S, GUPTA S, KUMAR S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—characterisation and durability aspects[J]. Cement and Concrete Research,1993,23(2):254-266. doi: 10.1016/0008-8846(93)90090-V [16] 常利, 艾涛, 延西利, 等. 地聚合物水泥路面快速修补材料性能研究[J]. 武汉理工大学学报, 2014, 36(5):1671-4431.CHANG Li, AI Tao, YAN Xili, et al. Study on the properties of geopolymer concrete using as rapid repair materials for cement pavement[J]. Journal of Wuhan University of Technology,2014,36(5):1671-4431(in Chinese). [17] 谭义. 碱矿渣快速修补砂浆制备与界面性能研究[D]. 重庆: 重庆大学, 2018.TAN Yi. Research on bonding interface properties and preparation of alkali-activated slag cement using as rapid repairing mortar [D]. Chongqing: Chongqing University, 2018. (in Chinese) [18] MANSUR A A P, SANTOS D B, MANSUR H S. A microstructural approach to adherence mechanism of poly (vinyl alcohol) modified cement systems to ceramic tiles[J]. Cement and Concrete Research,2007,37(2):270-282. doi: 10.1016/j.cemconres.2006.11.011 [19] TIAN Y, JIN X, JIN N, et al. Research on the microstructure formation of polyacrylate latex modified mortars[J]. Construction and Building Materials,2013,47:1381-1394. doi: 10.1016/j.conbuildmat.2013.06.016 [20] WONGPRACHUM W, SAPPAKITTIPAKORN M, SUKONTASUKKUL P, et al. Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar[J]. Construction and Building Materials,2018,189:686-694. doi: 10.1016/j.conbuildmat.2018.09.043 [21] ZHANG X, DU M, FANG H, et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges[J]. Construction and Building Materials,2021,299:124290. doi: 10.1016/j.conbuildmat.2021.124290 [22] SHI C, WANG P, MA C, et al. Effects of SAE and SBR on properties of rapid hardening repair mortar[J]. Journal of Building Engineering,2021,35:102000. doi: 10.1016/j.jobe.2020.102000 [23] OJHA P N, KAURA P, SINGH B, et al. Evaluation of Polymer Modified Mortar and Bonding Agent for Structural Repair[J]. Journal of Asian Concrete Federation,2021,7(2):56-62. doi: 10.18702/acf.2021.12.7.2.56 [24] ZHAO F, LI H, LIU S, et al. Preparation and properties of an environment friendly polymer-modified waterproof mortar[J]. Construction and Building Materials,2011,25(5):2635-2638. doi: 10.1016/j.conbuildmat.2010.12.012 [25] 霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11):1-12. doi: 10.13801/j.cnki.fhclxb.20220623.005HUO Yanlin, SUN Huayang, LIU Tianan, et al. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica,2022,39(11):1-12(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220623.005 [26] 张云升, 孙伟, 李宗津. PVA 短纤维和粉煤灰对地聚合物基复合材料流变学行为和弯曲性能的影响[J]. 复合材料学报, 2008, 25(6):166-174. doi: 10.3321/j.issn:1000-3851.2008.06.032ZHANG Yunsheng, SUN Wei, LI Zongjin. Effect of PVA short fiber and fly ash on rheological and flexural behaviors of geopolymer composites[J]. Acta Materiae Compositae Sinica,2008,25(6):166-174(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.06.032 [27] 赵焕起, 李国忠. 混杂纤维增强水泥基复合材料的力学性能[J]. 复合材料学报, 2014, 31(1):140-145. doi: 10.3969/j.issn.1000-3851.2014.01.020ZHANG Huanqi, LI Guozhong. Mechanics performance of hybrid fiber reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2014,31(1):140-145(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.020 [28] 张聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):661-668. doi: 10.13801/j.cnki.fhclxb.2014.03.018ZHANG Cong, CAO Mingli. Mechanical property test of a multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica,2014,31(3):661-668(in Chinese). doi: 10.13801/j.cnki.fhclxb.2014.03.018 [29] HAN G Y, LUO J L. Mechanical and Shrinkage Behaviors of Ductile Fiber-Reinforced Polymer Repair Mortar//Key Engineering Materials[J]. Trans Tech Publications Ltd,2020,841:14-19. [30] FELEKOGLU B, TURKEL S, ALTUNTAS Y. Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars[J]. Cement and Concrete Composites,2007,29(5):391-396. doi: 10.1016/j.cemconcomp.2006.12.010 [31] ZANOTTI C, BANTHIA N, PLIZZARI G. A study of some factors affecting bond in cementitious fiber reinforced repairs[J]. Cement and Concrete Research,2014,63:117-126. doi: 10.1016/j.cemconres.2014.05.008 [32] ZANOTTI C, ROSTAGNO G, TINGLEY B. Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs[J]. Construction and Building Materials,2018,160:775-785. doi: 10.1016/j.conbuildmat.2017.12.140 [33] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967. doi: 10.13801/j.cnki.fhclxb.20181101.001JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181101.001 [34] 罗兴华. 钢纤维水泥砂浆与混凝土界面粘结性能试验研究[D]. 长沙: 湖南大学, 2009.LUO Xinghua. The research on interfacial bond behavior of steel fiber cement mortar to concrete [D]. Changsha: Hunan University, 2009. (in Chinese) [35] 孙科科. 硅酸盐水泥—硫铝酸盐水泥基修补材料及防腐抗渗性能研究[D]. 济南: 济南大学, 2017.SUN Keke. Study on anticorrosion and impermeability of repaired materials with blending ordinary portland cement and sulphoaluminate cement [D]. Jinan: Jinan Universsity, 2017. (in Chinese) [36] 李贺, 罗健林, 李秋义, 等. 韧性纤维增强聚合物砂浆的粘结修复与收缩耐久性能[J]. 化工新型材料, 2019, 47(7):266-270.LI He, LUO Jianlin, LI Qiuyi, et al. Bonding repair and shrinkage durability of ductile fiber-reinforced polymer mortar[J]. New Chemical Materials,2019,47(7):266-270(in Chinese). [37] 水泥胶砂流动扩展度测定方法 (GB/T 2419-2005). 北京: 中国建材工业出版社; 2005.Test method for fluidity of cement mortar (GB/T 2419-2005). Beijing: China Building Materials Press, 2005. (in Chinese) [38] 建筑砂浆基本性能试验方法 (JGJ/T 70-2009). 北京: 中国建筑工业出版社; 2009.Standard for test method of performance on building mortar (JGJ/T 70-2009). Beijing: China Architecture & Building Press, 2009. (in Chinese) [39] 水泥胶砂强度检验方法(ISO法) (GB/T 17671-2021). 北京: 中国标准出版社; 2021.Method of testing cements-Determination of strength (GB/T 17671-2021). Beijing: Standards Press of China, 2021. (in Chinese) [40] 修补砂浆 (JC/T 2381-2016). 北京: 中国建筑工业出版社, 2016.Repairing mortar (JC/T 2381-2016). Beijing: China Architecture & Building Press, 2016. (in Chinese) [41] 普通混凝土长期性能和耐久性能试验方法标准 (GB/T 50082-2009). 北京: 中国建筑工业出版社; 2009.Standard for test methods of long-term performance and durability of ordinary concrete (GB/T 50082-2009). Beijing: China Architecture & Building Press, 2009. (in Chinese) [42] KWAN A K H, LI Y. Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar[J]. Construction and Building Materials,2013,42:137-145. doi: 10.1016/j.conbuildmat.2013.01.015 [43] 迟琳. 高贝利特硫铝酸盐水泥活化和水化机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.CHI Lin. Study on the activation and hydration mechanism of belite calcium sulfoaluminate cement [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [44] KONG X, EMMERLING S, PAKUSCH J, et al. Retardation effect of styrene-acrylate copolymer latexes on cement hydration[J]. Cement and Concrete Research,2015,75:23-41. doi: 10.1016/j.cemconres.2015.04.014 [45] 张霄. 聚合物改性快速水泥基修补材料及其机理研究[D]. 西安: 西安建筑科技大学, 2018.ZHANG Xiao. Research on property and mechanism of polymer modified rapid cement-based repaired material [D]. Xi’an: Xi’an University of Architecture and Technology, 2018. (in Chinese) [46] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cement and concrete research,2011,41(12):1208-1223. doi: 10.1016/j.cemconres.2010.09.011 [47] SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cement and concrete research,2011,41(7):651-665. doi: 10.1016/j.cemconres.2011.03.026 [48] WU Y Y, MA B G, WANG J, et al. Study on interface properties of EVA-modified cement mortar//Advanced Materials Research[J]. Trans Tech Publications Ltd,2011,250:875-880. [49] 李帅. 可再分散乳胶粉及粉煤灰对砂浆性能的影响[D]. 华北水利水电大学, 2019.LI Shuai. Effect of redispersible latex powder and fly ash mortar performance [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. (in Chinese) [50] 谢慧才, 李庚英, 熊光晶. 新老混凝土界面粘结力形成机理[J]. 硅酸盐通报, 2003, 22(3):7-10. doi: 10.3969/j.issn.1001-1625.2003.03.002XIE Huicai, LI Gengying, XIONG Guangjing. The mechanism formed the bonding force between new and old concrete[J]. Bulletin of the Chinese Ceramic Society,2003,22(3):7-10(in Chinese). doi: 10.3969/j.issn.1001-1625.2003.03.002 [51] ROSTAGNO G, TINGLEY B, ZANOTTI C. Bond Strength of Steel FRC Repairs to Concrete Substrate: Investigation on Adhesion Strength, Friction, and Bond Enhancing Mechanisms//High Tech Concrete: Where Technology and Engineering Meet[J]. Springer, Cham,2018:148-156. [52] 李长辉, 陈雪芳, 张献民, 等. 合成粗聚丙烯纤维与水泥砂浆界面粘结力学性能[J]. 复合材料学报, 2022, 40(0):1-15.LI Changhui, CHEN Xuefang, ZHANG Xianmin, et al. Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar[J]. Acta Materiae Compositae Sinica,2022,40(0):1-15(in Chinese). [53] BANFILL P F G, BELLAGRAA L, BENAGGOUN L. Properties of polymer-modified mortars made with blended cements[J]. Advances in Cement Research,1993,5(19):103-109. doi: 10.1680/adcr.1993.5.19.103 [54] LIU S, HU Q, ZHAO F, et al. Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core–shell styrene–acrylic copolymer as the modifier[J]. Construction and Building Materials,2014,72:15-22. doi: 10.1016/j.conbuildmat.2014.09.016 [55] 于俊超, 赵庆新. 钢纤维对混凝土徐变性能的影响[J]. 硅酸盐学报, 2013, 41(8):1087-1093. doi: 10.7521/j.issn.0454-5648.2013.08.10YU Junchao, ZHAO Qingxin. Effect of steel fiber on creep behavior of concrete[J]. Journal of the Chinese Ceramic Society,2013,41(8):1087-1093(in Chinese). doi: 10.7521/j.issn.0454-5648.2013.08.10 [56] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994. [57] JIN Z Q, SUN W, ZHANG Y S, et al. Interaction between sulfate and chloride solution attack of concretes with and without fly ash[J]. Cement and Concrete Research,2007,37(8):1223-1232. doi: 10.1016/j.cemconres.2007.02.016 [58] 郭丽萍, 张健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究: 合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2018, 31(23):132-137.GUO Liping, ZHANG Jian, CAO Yuanzhang, et al. Astudy for compound salts attack on ultra-high performance cement-based materials: the stabilities of chemically synthesized friedel salt and ettringite in solutons of sulfates and chloride salts[J]. Materials Reports,2018,31(23):132-137(in Chinese). [59] 冯琦. 地聚合物基路面修补砂浆的制备与性能研究[D]. 沈阳: 沈阳建筑大学, 2019.FENG Qi. Study on preparation and properties of geopolymer-based pavement repair mortar [D]. Shenyang: Shenyang Jianzhu University, 2019. (in Chinese) [60] 崔弋. 混凝土结构防护与修补砂浆的试验研究[D]. 青岛: 青岛理工大学, 2012.CUI Yi. Test research of concrete structure’s protective and repair mortar [D]. Qingdao: Qingdao Technological University, 2012. (in Chinese) [61] 胡华洁. 用于高铁无砟轨道损伤快速修复磷酸镁水泥研究[D]. 上海: 上海交通大学, 2015.HU Huajie. Experimental research on magnesium phosphate cement for rapid repair of ballastless track in high-speed railway [D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese) [62] 陈冬冬. 基于计算优化法的磷酸镁材料的设计和应用研究[D]. 青岛: 青岛理工大学, 2021.CHEN Dongdong. Design and field application of magnesium phosphate cement based on computational optimization [D]. Qingdao: Qingdao Technological University, 2021. (in Chinese) [63] LIU Changjiang, HUANG Xiaochuan, WU Yuyou, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures[J]. Construction and Building Materials,2021,288:123059. doi: 10.1016/j.conbuildmat.2021.123059 [64] PERA J, HUSSON S, GUILHOT B. Influence of finely ground limestone on cement hydration[J]. Cement and Concrete Composites,1999,21(2):99-105. doi: 10.1016/S0958-9465(98)00020-1 [65] YLMEN R, JAGLID U, STEENARI BM, et al. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques[J]. Cement and Concrete Research,2009,39(5):433-439. doi: 10.1016/j.cemconres.2009.01.017 [66] SAAFI M, TANG L, FUNG J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cement and Concrete Research,2015,67:292-299. doi: 10.1016/j.cemconres.2014.08.011 [67] LIU Changjiang, CHEN Fulian, WU Yuyou, et al. Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials. Nanotechnology Reviews [J], 2021, 10, 1208-1235. -

计量
- 文章访问数: 126
- HTML全文浏览量: 84
- 被引次数: 0