Effect of rare earth Ce on microstructure and mechanical properties of in-situ TiB2/A356 composites
-
摘要: 采用盐-金属反应法制备了原位3 wt% TiB2/A356复合材料,并通过向熔体中加入Al-Ce中间合金的方式添加不同质量分数的稀土元素Ce,研究Ce对3 wt%TiB2/A356复合材料显微组织及力学性能的影响。结果表明:稀土元素Ce的加入促进了TiB2颗粒在A356基体中的均匀分布,在稀土元素Ce和TiB2颗粒的协同作用下,实现了α-Al晶粒的细化和共晶Si的改性。当Ce的添加量为0.3 wt%时,3 wt% TiB2/A356复合材料的力学性能最佳,与不添加Ce的复合材料相比,屈服强度、抗拉强度和伸长率分别提高了9.2%、11.5%和57.1%。分析表明,TiB2颗粒分散性的改善是因为Ce增强了TiB2与基体之间的润湿性和界面稳定性,共晶Si的改性是由于Ce偏聚所引起的成分过冷的增加。大量含Ce的纳米尺寸析出物在共晶Si中形成,抑制了Si的生长。Abstract: In this study, 3 wt% TiB2/A356 composites were successfully synthesized via a salt-metal reaction method to investigate the influence of the rare earth element, cerium (Ce), on their microstructure and mechanical properties. Ce was introduced in varying mass fractions through the addition of an Al-Ce intermediate alloy. The findings indicate that Ce promotes a more uniform dispersion of TiB2 particles within the A356 matrix. Additionally, the presence of Ce, alongside TiB2 particles, contributes to the refinement of α-Al grains and the modification of eutectic Si. The optimal mechanical properties were observed with the addition of 0.3 wt% Ce. Specifically, the composites demonstrated increases in yield strength, tensile strength and elongation by 9.2%, 11.5% and 57.1%, respectively, compared to the composites without Ce. The analysis suggests that Ce enhances the dispersion of TiB2 particles by improving wettability and interfacial stability between TiB2 and the matrix, and the modification of eutectic Si is attributed to increased constitutional undercooling due to Ce segregation, which leads to the formation of Ce-containing nanoscale precipitates within the eutectic Si, thereby inhibiting Si growth.
-
Keywords:
- Aluminum matrix composite /
- TiB2 particles /
- rare earth Ce /
- microstructure /
- mechanical properties
-
目前,大量常规材料(木材、塑料、纤维等)存在易燃问题,需要进行阻燃处理。此外,这些常规材料在使用过程中无从感知外界情况,火灾发生时,无法及时向外界发出警报,需要依靠外界安装的火灾预警系统实现报警。2015年我国发布《建筑设计防火规范》,规定相关场所和部位必须安装火灾预警系统。目前商业火灾预警系统发展迅速,主要是基于传感器检测火灾现场温度、湿度、光照强度和物体燃烧后的烟气数据变化从而对现场进行监控,但也存在不少问题。由于火灾传感器往往与建筑材料分离,距离起火点有一定距离,导致火灾警报响应时间往往大于100 s[1],无法为火灾的及时扑救和人员撤离提供最佳时间。由于此类传感器无法面对大雨、大风、灰尘和腐蚀性湿气等苛刻外界环境,因此其在室外及开放公共场所的应用受到较大限制。鉴于上述问题,有必要缩短火灾预警系统的预警时间,实现超早期火灾探测报警。智能材料是一类具有内置或内在传感器、致动器和控制机构的材料,其能够以预定的方式和程度在短时间响应外界刺激,并在刺激被移除后迅速恢复到其原始状态[2]。智能材料打破了传统结构材料和功能材料的界限,应用领域广泛[3-6],前景诱人。随着智能材料的发展,智能涂层引起了研究者们极大的兴趣。智能涂层是一种人造的、能够对外部刺激有选择地提供最佳反应的涂层系统。将智能涂层引入传统建材领域,赋予各种材料智能响应功能,使其在使用过程中主动对外界“火灾”做出响应,将极大程度提高建筑的可靠性,对保障人员的生命及财产安全具有重大研究意义。
在各种基底上构建具有阻燃预警功能的纳米涂层,一方面大大降低了所需阻燃剂的添加量,避免了对聚合物基体性能的破坏;另一方面,火灾发生时,涂层对可燃材料起到有效的阻隔作用,使可燃材料隔热、隔氧,同时涂层可以智能地响应火灾时外部环境变化,从而大大提高火焰检测响应速度,有效改善火灾预警系统的可靠性。本文综述并讨论了近年来阻燃预警涂层的火灾预警机制、构筑策略及目前的研究进展。
1. 涂层火灾预警及阻燃机制
商业化的火灾预警依赖于火灾传感器对火灾现场环境的检测和反馈,现有阻燃预警涂层研究主要依赖于对火灾发生时温度变化的“识别和响应”,并将温度信号转化为可接收的电信号传递给外界,因此在涂层中构建能够只在材料着火时接通的通电回路是非常必要的(如图1所示)。目前,阻燃预警涂层主要是向涂层中引入具有热致响应变化的粒子,如氧化石墨烯(GO)、金属氧化物半导体纳米粒子等,依据功能粒子的差异,涂层的火灾预警机制可分为两大类,即化学反应型和物理型。
1.1 化学反应型涂层火灾预警机制
燃烧是可燃材料剧烈氧化的过程,材料表面达到着火温度时,许多化学物质会发生氧化还原反应,产生新的结构和物质。通过合理选择负载的功能粒子,便可在涂层表面着火时触发“扳机”,连通导电回路,实现对火灾的及时预警。
GO是氧化还原法合成石墨烯过程中的中间产物,其结构式如图2(a)所示,表面接枝了羟基、羧基、环氧基等含氧官能团[7-8],具有很好的水溶性和化学活性,由于在氧化过程中原本的石墨烯共轭网络受到严重官能化,GO的电阻显著高于石墨烯。当GO处于高温条件下时,其表面会脱去含氧官能团发生还原反应,从而使电阻降低,因此GO具有优异的温度-电阻变化,具有火灾预警潜力。
Xiao等[9]较早研究了热处理升温速率对GO结构及导电性的影响,结果表明,升温速率对GO结构有很大影响,且温度越高,GO结构越接近石墨结构,导电性越好,当热处理温度高于180℃时,处理后材料电导率可达1 S/m。侯若男等[10]研究了热还原温度对GO能带结构和电阻-温度特性变化规律的影响,首先在不同温度下(100~450℃)还原GO,得到不同还原程度的还原氧化石墨烯(rGO),以期制备不同还原程度的rGO阻温元件,并对其结构属性的变化进行表征分析,测试了其电阻-温度特性。结果表明,随着还原温度由100℃提高到450℃,GO含氧官能团逐渐脱失减少,缺陷增多;禁带宽度减小,由3.04 eV减小到2.4 eV;导电性增强,电阻由696.3 kΩ降至8 Ω,表现出负电阻-温度特性。阻温元件的电阻随着测试温度的升高而减小,表现出明显的半导体行为,且电导率与温度关系符合阿伦尼乌斯定理。
由于GO优秀的负电阻-温度变化机制,其在火灾预警涂层中具有优异表现,如图2(a)所示。将GO引入功能涂层后并在涂层中添加电极构成火灾预警回路。在正常情况下,由于GO较高的电阻率,导电回路并不连通;一旦火灾发生,材料表面温度达到着火温度(220~500℃)[11-12],涂层中的GO受热发生还原反应,表面含氧官能团(羟基、羧基等)逐渐脱失,着火点附近电极间的电阻迅速降低,导电回路接通,从而可实现对于火灾的及时预警[8]。
除GO外,一些其他物质的氧化还原反应同样可以构建阻燃预警涂层。Liu等[13]将聚乙烯醇(PVA)/AgNO3复合材料嵌入三聚氰胺海绵中(如图2(b)所示)。该海绵暴露在火焰中后,PVA还原AgNO3形成单分散性的银纳米颗粒,使整个材料由绝缘状态变成导电状态,可以迅速实现火灾报警。
表面活性剂是一类低添加量时即可显著降低溶液表面张力并改变体系界面状态的物质。通过在导电纳米粒子表面构建一层脂肪酸盐类的表面活性剂,可以有效改善纳米粒子的分散性。再将处理后的纳米粒子引入功能涂层后,也可以避免导电回路的形成。当火灾发生时,导电纳米粒子表面的脂肪酸盐分解,导电纳米粒子相互接触构成导电网络,可以有效实现火灾预警功能。Yu等[14]利用(3-氨基丙基)三乙氧基硅烷和二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵与壬基酚聚氧乙烯醚硫酸钠的离子交换反应对导电多壁碳纳米管(MWCNT)进行接枝改性,制备活性MWCNT纳米流体,并将其涂覆于棉织物表面,成功构建了具有阻燃预警功能的涂层(响应时间约为21 s),如图2(c)所示。理论上,任何掺杂在涂料中可以形成导电回路的纳米粒子均可以采用表面活性剂处理以实现预警功能。
1.2 物理型涂层火灾预警机制
化学反应型阻燃预警涂层主要利用化学物质在高温下的反应来实现“一次性”触发的阻燃预警回路,与其作用机制不同,以金属氧化物半导体为主的半导体热敏材料是一类可以将温度信号转换为电信号的半导体材料,在温度探测和火灾监控方面具有很大潜力。
半导体材料是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在10−3 Ω·cm~109 Ω·cm范围内),可用来制作半导体器件和集成电路的电子材料。以Fe、Mn、Co、Ni、Cu等过渡族金属的氧化物为例,如图3所示[15],此类材料均具有半导体性质,类似于Ge、Si晶体材料。低温情况下,此类材料体内的载流子(电子和空穴)数目少,电阻较高;随着温度升高,体内载流子数目增加,电阻值降低,表现为负温度系数热敏电阻特性。通过选择适当的金属氧化物半导体纳米粒子,将其引入功能涂层,在火灾发生时,随材料表面温度上升,作为热敏电阻的金属氧化物半导体电阻迅速减小,导电回路接通,从而实现对火灾的及时预警。
1.3 涂层阻燃机制
燃烧是一种剧烈的氧化过程,需要来自大气的O2作为氧化剂,可燃的基体作为燃料,这一过程才能持续进行下去。阻燃的关键在于阻止火焰与聚合物界面的降解行为,而这一目标往往通过向易燃材料添加阻燃剂实现。目前,阻燃剂的添加方式主要包括三类:(1)采用物理共混手段将阻燃剂掺入聚合物基体中,具有成本低、混合速度快的优点,但阻燃剂的有效载荷通常过高,会对材料的强度和弹性模量产生不利影响;(2)将含有阻燃功能的基团通过化学反应结合到基体上,使阻燃功能基团成为聚合物链的一个组成部分,该方法有利于提高阻燃效率并获得更高的耐久性;(3)采用防火涂料在材料表面构建阻燃涂层,该阻燃方式在各种商业应用中得到广泛应用。
常见的GO及金属氧化物半导体基火灾预警涂层,除了具有优异的热致响应变化特性,还具备优异的阻隔性能,能够同步赋予基体优异的阻燃性能。在涂层阻燃方面,GO具有突出的富碳结构,以GO为主的碳基纳米材料在阻燃方面具有优异表现。GO具有特殊的二维片层结构,将其添加到阻燃涂层后,可以形成致密的物理隔绝层,在燃烧过程中能够有效隔绝基底与热量和O2的接触。同时,GO在高温情况下热解,生成CO2和水蒸气,并形成更加致密连续的炭层结构,从而能够有效提高材料的阻燃性能。李洪飞等[16]以水性丙烯酸乳液为成膜物质,钛白粉为颜料,加入不同质量GO纳米粒子作为协效阻燃/抑烟剂配制膨胀型防火涂料,对涂层的阻燃和抑烟效果进行研究。结果表明,GO能有效提高涂层的耐燃时间并降低峰值生烟速率(pSPR)。当GO添加量达到涂料总量的0.025%时,涂层耐燃时间增加了59.5%。对涂层燃烧后炭层的结构形貌进行分析发现,具有片状结构的GO在涂料受热膨胀过程中会使自身和基体分子链取向,进而在聚合物炭化过程中形成骨架结构,增加炭层强度,达到阻燃和抑烟的目的。
金属氧化物半导体在聚合物阻燃方面同样具有优异表现,过渡族金属纳米粒子已经被证明有促进聚合物基体催化成炭的作用,同时具有良好的抑烟效果[17]。同时,为实现涂层的火灾预警功能,在材料表面构建出的致密金属氧化物涂层也能够很好地起到物理屏障作用,有效改善基体的阻燃性能。但考虑到单纯地添加金属纳米粒子对于材料的阻燃效力不足,过渡金属的纳米粒子(如硼酸锌、氧化镍等)常被作为磷氮系阻燃剂、碳基阻燃剂的协效剂使用,用于同步抑烟和提高阻燃效果[18-19]。
2. 基体的选择与涂层构建方式
2.1 涂层基体与传统涂层技术
建筑阻燃及火灾预警的智能涂层往往需要构建在木材、纺织品、塑料等易燃的高分子材料表面,而这些材料的表面特性差异对涂层构筑策略存在重大影响。木材、纺织品等天然高分子材料包含大量纤维素等天然多糖和天然蛋白,表面存在大量极性基团,能够轻易在表面构建牢固的涂层,而不需要考虑对基底进行复杂的预处理。而以聚烯烃为代表的塑料等合成高分子具有低的表面能和弱的界面层,表面难以浸润,缺乏构建涂层的反应位点,在其表面构建牢固涂层较困难,往往需要通过表/界面改性手段来增加表面能,改变界面的物理或化学组成,改善界面的几何性质和结晶形态,或是清除杂质和弱边界层,才能成功构建涂层。常见的表/界面改性手段包括化学处理[20]、等离子体处理[21]、交联聚合[22]等,用以提高材料表面能或额外赋予材料表面活性基团,从而成功构建涂层,处理较为繁琐复杂。
以木材为例,目前常见的功能涂层可以分为三类(如图4所示),包括:
(1)有机聚合物涂层,主要包括丙烯酸酯类、聚氨酯类有机涂料,通过共聚自身发生交联聚合,形成复杂的网状结构,可牢固地附着在木材表面,成膜性和黏附性较好,成膜方式简便易行,构成木材表面的保护层,还可以赋予木材抗紫外、防水、高强度、耐磨、装饰性等优点。从溶剂介质来看,此类涂料又可以分为溶剂型和水性涂料,水性涂料在涂覆固化过程中不会释放有机挥发成分,更符合环保需求。从涂覆工艺上看,此类涂层可以采用简单的涂刷、喷涂工艺,施工过程简单。从成膜工艺上看,在工业化生产过程中,此类涂层主要通过紫外光固化,结合强度牢固可靠。
(2)纳米粒子/聚合物复合涂层,通过向聚合物基体中添加纳米粒子,可以制备得到纳米粒子/聚合物复合涂层。相对于单一的有机聚合物涂层,通过选择性地引入纳米粒子构建复合涂层,材料的耐磨性、硬度、韧性和强度均得到一定程度的提高,同时还可赋予其抗老化、自清洁、抗菌防霉等新特性。包括SiO2、ZnO、TiO2、纳米黏土等多种纳米粒子均可作为功能粒子制备纳米粒子/聚合物复合涂层[23-26]。但无机纳米粒子在聚合物基底中的分散始终是一个问题。
Auclair等[27]通过预先将ZnO纳米颗粒分散在水中,从而改善与聚合物涂层的相容性。Zhao等[28]采用纳米晶纤维素(NCC)模板,通过原位聚合法合成纳米纤维素和纳米SiO2杂化胶体(NCC-SiO2)。将制备的NCC-SiO2杂化胶体引入水性聚丙烯酸酯(PAA)涂层。NCC模板可抑制纳米SiO2的聚集,使其均匀分布在PAA涂层中。此外,氢键交联网络的形成改善了NCC、SiO2和PAA界面相容性。与单独的NCC和纳米SiO2相比,NCC-SiO2杂化胶体对水性PAA涂层的力学性能和透光率有明显改善。
(3)无机纳米材料涂层,无机纳米粒子本身不具备很好的成膜性,因此无法通过简单的涂刷-固化过程将其构建在木材表面。目前在木材表面通过溶胶-凝胶法[29]和水热法[30]生长无机纳米粒子涂层的工艺较成熟。由于木材表面具有大量的羟基和管胞空隙,更利于无机纳米材料的附着和生长。但该方法工艺繁琐,处理成本昂贵,同时不适用于大尺寸试件的涂覆,因此当下无机纳米材料涂层的实用价值不高。
2.2 阻燃预警涂层构筑工艺
智能涂层的构筑不仅要考虑涂层基底的性质,还要考虑涂层成分的特性,两者的共同作用决定了阻燃预警涂层的构筑策略。材料表面涂层效果的好坏,除与基体和涂料本身的性能有关外,也与涂覆的工艺有直接联系。在这些工艺性能中,最重要的是涂层的附着力问题,包括涂层与基体的附着力及涂层内部的凝聚力。关于涂层与基体材料表面附着的原理很多,其中比较流行的理论有机械咬合黏接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等。总之,附着力是机械连接、静电吸引和化学键合共同作用的结果。为提供与基体间更好的附着力,主要通过表面改性手段提高基底的表面能,赋予其更多的附着位点,从而实现牢固的涂覆。
目前阻燃预警涂层主要通过负载GO、金属氧化物半导体等纳米粒子来实现阻燃目的。尽管以有机聚合物为主体,功能粒子负载的涂层技术已经相对成熟,但考虑到上述功能粒子在有机涂层中的分散性及阻燃预警涂层的结构设计要求,上述的预警功能粒子不仅仅作为功能粒子,更是作为涂层的主体部分参与涂层的构建。为了在材料表面构建以功能粒子为连续相组分,且能与涂层基底牢固结合的阻燃预警涂层,涂层的构筑工艺不仅要考虑到功能粒子与基底附着力的问题,涂层本身的凝聚力问题也是关键。
从涂层功能粒子特性的角度出发,作为最常见的阻燃预警涂层功能粒子,GO表面存在大量电荷和活性基团,以其为主体的阻燃预警涂层有必要使这些电荷和活性基团参与到涂层的组装过程中。基于电荷驱动的层层自组装技术在阻燃预警涂层技术在构筑阻燃预警涂层方面表现出众。以GO为例,其表面存在大量电荷,可以通过电荷作用与基底形成离子键的作用,形成牢固涂层。在构筑含GO基的智能涂层方面具有突出优势。层层自组装涂层的制备通常涉及基底的表面电荷。首先,将基底暴露于含有聚合物或纳米粒子的水溶液中,利用基底表面电荷作用吸附溶液中带有能够与基底特定结合的聚合物或纳米粒子,时间从几秒到几分钟不等。然后,进行洗涤和干燥步骤,以去除任何松散黏附的材料。使一个单层沉积在一个表面上,这个表面也逆转了有效的表面相互作用,允许一种互补材料被沉积。此过程形成一个双层,可以根据需要重复多次以获得所需的厚度或性能。GO具有大量负电荷,且具有大量活性基团,将其与带有相反电荷的纳米粒子进行复配,通过层层自组装技术便可成功在基底表面构建含有GO的功能涂层。Wang等[31]利用层层自组装技术,将GO和PVA组装得到超薄多层薄膜。GO可以通过氢键作用与PVA交替自组装到石英衬底上,紫外-可见光谱和XRD结果表明,组装过程定量可重复。考虑到石墨烯具有优异的电性能、热性能和力学性能,可作为传统涂层填料的替代品,降低填料的添加量。Kulkarni等[32]通过层层自组装技术将GO构建进入厚度约为50 nm的聚电解质多层膜中。当GO添加量达到8%时,涂层的弹性模量由1.5 GPa增加至20 GPa,力学性能得到显著改善。由于层层自组装技术可以使GO以纳米涂层的形式均匀转移到基体表面,大大减少了所需GO的量,组装条件温和简单。但目前层层组装过程需要进行较多循环才能达到所需涂层厚度,过程较为繁琐,在GO基阻燃预警涂层的应用中存在一定局限。
GO特殊的片层结构上存在大量活性官能团,利用硅烷偶联剂接枝GO纳米片上的活性基团,可以利用化学键实现GO纳米片的定向交联,同时还能获得优于纯GO的物理性能,在构建GO基功能涂层方面非常常见。沈凯燕[33]将GO与几种硅烷偶联剂进行复合,对获得的复合材料进行一系列表征,发现在GO和硅烷偶联剂形成的复合材料中,复合材料具有良好的分散性,且在普通的布氏漏斗过滤下可得到纸状薄膜,复合材料的层间距增大,力学性能优于纯GO。楚景慧等[34]将羟基化处理后的镁合金交替在1,2-双(三乙氧基硅基)乙烷(BTSE)和GO溶液中反复浸渍,得到致密的多层自组装涂层,由于硅烷偶联剂与GO之间可以通过共价键和氢键连接,有效提高了GO层片之间的结合力,使涂层致密,显著改善了镁合金的耐腐蚀和耐磨性。此外,由于C、Si元素存在协效阻燃作用,因此硅烷偶联剂改性法制备的GO基阻燃预警涂层在阻燃方面具有更出众的表现。
金属氧化物纳米粒子易团聚,在涂料中分散不佳,且成膜性差,常规条件下无法单独形成功能涂层,无法通过常规方式直接转移到涂层中实现预期的阻燃预警功能。因此,以金属氧化物半导体为主的阻燃预警涂层主要通过溶胶-凝胶及水热合成法直接在基体表面“生成”。通过溶胶-凝胶法在预先经过处理的材料表面构建金属氧化物纳米粒子,可以有效避免纳米粒子分散性不佳带来的问题。Wang等[35]利用γ-甲基丙烯氧基丙基三甲氧基硅烷(MAPS)的辐射接枝聚合(RIGP)和随后的溶胶-凝胶原位矿化,在聚对苯二甲酸乙二醇酯(PET)织物上制备高耐久性、高强度的ZnO涂层。涂层的界面层则由Zn—O—Si和Si—O—Si共价键组成,不仅可以改善纳米ZnO与聚合物基体间的结合,也克服了无机粒子成膜能力差的缺点。图5为在材料表面构筑阻燃预警智能涂层的策略和方法。
3. 阻燃预警涂层的应用
随着智能材料概念的出现,阻燃预警涂层日益受到重视。基于GO、金属氧化物半导体等的阻燃预警涂层得到了广泛研究应用。
3.1 GO基阻燃预警涂层
GO兼具优异的阻燃和负电阻-温度特性,同时GO表面携带大量负电荷,具有亲水性,可以简单利用电荷组装技术或混入水性涂料将其构建入功能涂层中。操作方式简单、过程温和、环保,以GO为首的阻燃预警涂层出现较早,国内外均开展了广泛研究。图6为GO 基阻燃预警涂层。
最近,Wu等[36]在GO基阻燃预警涂层方面开展了一系列研究,基于硅烷偶联剂改性GO的构筑策略,在各种易燃材料(聚氨酯、棉织物、木材)表面构筑多层次的有机硅/GO涂层,并连接低压安全电源(<36 V)和报警灯,制备了火焰快速探测/预警传感器装置,涂层具有明显的温度响应电阻变化,可用于探测异常高温环境的传感器,从而在可燃材料着火温度以下实现防火。该涂层具有超疏水(水接触角约为156°)、良好的结构稳定性(火焰燃烧90 s后结构基本不变)、快速火焰探测响应时间(2~3 s)、优异的温度响应性(低于易燃材料的着火点温度)和出色的协同阻燃等特性。此外,上述涂层具有良好的耐候性能,将一些水滴滴到涂层表面(模拟下雨天),警报的响应时间几乎不发生变化,即便将这些样品放置在恶劣外界环境下长达180天后,警报时间也几乎不变,在公共场所和室外条件下的应用显示出相当潜力。由于GO基阻燃预警涂层的出色表现,Huang等[37]进一步以不同含烷氧基的硅烷分子在水溶液中通过水解和缩合与GO反应,组装成硅烷GO纸。与纯GO纸相比,硅烷GO纸具有良好的机械柔韧性、强的耐酸碱性、优异的阻燃性和较低硅烷含量下的热稳定性。此外,硅烷GO纸的火焰探测响应时间为1.6 s,附着在热敏电阻上时的火焰探测响应时间为5 s。此外,针对目前GO基阻燃预警涂层响应温度较高的问题,Zhang等[38]通过向涂层中引入抗坏血酸分子,用于改善涂层的火灾预警性能,成功实现涂层在较低温度下(120℃)的火灾预警功能。此外,为进一步改善涂层的阻燃性能,Guo等[39]还制造了一种聚磷酸铵(APP)/GO/四氢全氟癸基三甲氧基硅烷(TFTS)杂化涂料。由于在燃烧过程中形成了一层均匀覆盖且致密的含有P-Si的还原石墨烯层,这种涂料对于高温火焰表现出极为敏感的温度响应电阻变化。同时,硅烷和APP分子在涂层中呈现选择性分布,从而形成具有低水亲和力的微/纳米粗糙表面,可实现超疏水性(水接触角约为158.4°),是一种绿色多功能涂料。Huang等[40]进一步通过选择硅烷偶联剂3-巯基丙基三甲氧基硅烷(MPTS)与GO搭配制备MPTS-GO纸。研究发现,在高温火焰下,MPTS-GO纸表面形成了一层致密的纳米SiO2微粒层,这层纳米SiO2层可阻挡外界热量向内部GO的传递,同时促进GO层碳化。由于含有巯基的MPTS分子促进了高温下GO的热还原,MPTS-GO可在1 s内反应并触发火灾警报装置,同时,将MPTS-GO纸暴露在室外一年或放在水中几分钟,依旧可以在短时间内触发火灾报警,表明MPTS-GO纸在恶劣环境下依旧可以显示出优良的火灾预警功能和结构稳定性。
基于电荷作用驱动的层层自组装技术在构筑含GO基的智能涂层同样研究广泛。Xie等[8]在羟丙基甲基纤维素(HMC)上接枝脲基嘧啶酮(UPy)基团,合成了功能性纤维素(FC)。随后,利用GO和FC通过一步自组装制备新型多功能阻燃纳米涂层。制备出珍珠状纳米涂层赋予多种可燃材料(包括聚丙烯、聚氨酯泡沫和木材)特殊的防火安全性。在燃烧实验中,所有涂覆材料均实现自熄灭。当遇到火灾时,纳米涂层迅速形成稳定的多条导电路径,并在3 s内触发火灾报警灯。此外,由于UPy基团的引入,涂层在常温下同时具备自愈合性能。但基于GO/石墨烯的火灾报警电路只有在两电极之间的GO纳米片快速受热还原时才能显示灵敏的火灾报警响应。受此限制,目前的火灾预警涂层仍限于小尺寸使用,难以满足实际需求。为解决这一问题,Xie等[41]进一步采用喷涂法制备了一种基于GO、银纳米线和氟化物聚乙烯醇缩丁醛(FPVB)的具有超灵敏火灾报警和超疏水性能的三明治型纳米阻燃涂料,通过将银纳米线和FPVB溶于丁醇,预先在沉积GO/FC前将该溶液喷涂于基底上,并在阻燃预警涂层沉积完成后再次喷涂一层含银纳米粒子的导电层,构建了三明治型的多层阻燃预警涂层。通过在GO/FC阻燃预警涂层上下两面附加含有银纳米线的导电涂层,相当于将原本阻燃预警涂层报警回路的电极安装在整个涂层上,火灾发生时任意着火点两端电极的距离均为微米级,从而解决了阻燃预警涂层大尺寸化的问题,同时在更大的基体表面(300 mm×50 mm)实现更灵敏的火灾预警(0.83 s),此外疏水的保护层也有效解决了原本涂层的亲水流失问题,如图6(c)所示。
Chen等[42]采用简单的逐层组装方法,在木浆纸(WPP)表面构建了苯氧基环磷腈功能化GO (FGO)和壳聚糖功能化碳纳米管(CNTs)的多层涂层,FGO/CNTs杂化结构在不降低WPP内在柔韧性的前提下,具有良好的力学性能和阻燃性能。同时,FGO/CNTs杂化结构的电阻对火焰和温度高度敏感,使其成为理想的火焰传感器。柔性FGO/CNTs杂化结构包覆WPP传感器在乙醇火焰或热处理条件下燃烧时具有良好的形态保持能力和阻燃性能,在点燃可燃材料前几秒钟内可感测到温度的升高。此外,在构建复合导电网络时,可以通过改变CNTs含量来调节火灾响应时间。
最近,Chen等[43]以超长羟基磷灰石纳米线(HNs)和GO混合制备了耐火无机火灾智能报警墙纸,室温下,GO处于电绝缘状态,当遭遇火灾时,高温使GO发生还原反应,壁纸则发生由电绝缘到导电状态的改变,从而触发报警装置。通过使用聚多巴胺作为还原剂和封端剂,GO热敏传感器的灵敏度和阻燃性得到提高,同时实现在低温(126.9℃)下的火灾快速响应(2 s)及长时间报警(5 min)的优异特性。
3.2 金属氧化物半导体阻燃预警涂层
金属氧化物半导体在阻燃预警涂层方面的研究值得关注。Zhang等[15]采用溶胶-凝胶法,在聚丙烯无纺布表面逐层组装Fe3O4和鱼鳞状银纳米片,成功构建了具有阻燃预警功能的阻燃预警涂层,可实现低温下的火灾响应(<100℃),同时具有灵敏的火灾预警速度(2 s),持续响应时间可达15 min,同时涂覆后,织物具有较高的机械灵活性和坚固性,可以容易地裁剪成各种形状而不影响其阻燃预警性能,作为商业化的火灾预警系统存在一定研究价值。
3.3 其他阻燃预警涂层
Yu等[14]采用(3-氨基丙基)三乙氧基硅烷和二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵同时对MWCNT进行表面改性,然后将其与壬基酚聚氧乙烯醚进行离子交换反应,成功合成了具有软玻璃流变性的MWCNT纳米流体,并通过简单喷涂将MWCNT纳米流体涂覆于棉织物表面。结果表明,MWCNT纳米流体的加入在提高棉织物导热性的同时,还保持了棉织物的电绝缘性。MWCNT纳米流体/棉织物的最大导热系数是棉织物的2.42倍。表面接枝的非导电硅烷分子和MWCNT的有机离子盐阻碍了MWCNT的相互接触,形成了保持电绝缘的导电网络。此外,在棉织物燃烧过程中,表面接枝的MWCNT纳米流体有机分子开始分解,从而促进MWCNT导电网络的形成,表现为电流的存在,作为一种低压直流电源在火灾报警传感器中具有潜在应用价值。
最近,Liu等[44]利用蚕丝纤维蛋白和钙离子的螯合作用制备了一种环保的水凝胶。常温条件下,该水凝胶具有较高的电阻率,当温度上升(<200℃)时,水和钙离子在凝胶中的迁移速度增加,凝胶电阻迅速减小,从而可以快速触发火灾报警系统(约2 s),同时水凝胶具有优异的阻燃性能,当钙离子含量达到25%时,水凝胶的极限氧指数为43%,UL-94等级为V-0级。此种水凝胶材料具有优异的附着性能,可作为涂层涂覆在多种材料(纸张、木材、纺织品)表面,为阻燃预警涂层的构筑提供新的思路。
4. 阻燃预警涂层的耐候和耐磨性能
随着阻燃预警涂层研究的不断发展,其在公共场所和室内环境的应用逐渐提上议程。作为智能涂层,涂层的破损和老化即意味着涂层保护和预警功能的丧失,因此有必要探讨阻燃预警涂层使用过程中的耐老化和耐磨擦性能,但目前关于阻燃预警涂层耐候和耐磨性能仍缺乏系统研究。根据阻燃预警功能粒子的差异,以GO、金属氧化物半导体等为基体的阻燃预警涂层在耐老化和耐磨擦性能方面具有不同表现。
GO为具有单原子厚度的二维碳原子晶体,机械性能优异,摩擦系数低,具有电绝缘性,常被用于改善各类材料的耐磨性能[45-46],具有出众的表现。Zhang等[45]采用微弧氧化法在镁锂合金表面制备了含GO涂层,含GO涂层的致密性、厚度和硬度均高于游离GO涂层。当在不锈钢球上滚动时,其表现出优异的抗磨擦和耐磨损性能。为获得更加优异的耐磨性能,GO常与硅烷偶联剂混合使用在材料表面制备耐磨涂层。如上文所述,汤龙程课题组[36-40]以硅烷偶联剂改性GO在多种材料表面制备了阻燃预警涂层,此类涂层具有优秀的耐候性能,即使是经过水浸或暴露在室外长达1年的时间,仍能保持其原本的阻燃预警性能。虽未对涂层的耐磨性能进行测试,但参考硅烷偶联剂改性GO在其他材料表面的耐磨作用,硅烷偶联剂改性GO基阻燃预警涂层的耐磨性能应当具有出色表现。与之相对的,基于层层自组装技术得到的GO基阻燃预警涂层的构筑过程主要依靠电荷相互作用实现,涂层的牢固程度比不上硅烷偶联剂改性GO基阻燃预警涂层,且涂层存在亲水流失问题,其耐候和耐磨损表现相对并不出众。Xie等[41]通过在此类涂层表面额外构建保护层的方式,改善了涂层的流失性,一定程度上改善了其耐候性能。
在材料表面均匀生长而成的金属氧化物纳米涂层具有优异的耐磨性能。Xue等[47]借助等离子体增强原子层沉积辅助水热表面工程技术在3D订制耳塞的表面构建了均匀排列的纳米ZnO阵列,在使用数周后,大部分ZnO纳米阵列仍保持均匀致密,仅出现少量小面积裂纹,表明所得涂层具有优异的耐磨性能。在耐候性能方面,金属氧化物性能同样值得期待。高鹤等[48]采用提拉涂膜法,采用ZnO溶胶及TiO2溶胶在杨木表面构建了保护性纳米金属氧化物涂层,紫外老化试验表明,涂层显著改善了木材的耐候性能。可以预见,通过合理选择金属氧化物在材料表面构建致密的涂层,将可以在实现阻燃预警功能的同时改善材料的耐候性能和耐磨性能。
5. 结束语
阻燃预警涂层技术应用前景诱人,目前基于碳基纳米材料的阻燃预警涂层已有较多研究,基于表面活性剂和半导体等的阻燃预警技术也相应被研发出来。但受限于阻燃预警涂层本身的结构特点,大尺寸涂层的响应仍然十分困难。此外,阻燃预警涂层对涂层本身在使用过程中的稳定性提出更高要求。
综合考虑成本及不同领域对阻燃预警涂层的需求,当今及未来阻燃预警涂层技术仍将关注以下几点:
(1)遴选适宜的阻燃预警功能粒子,简化阻燃预警涂层涂覆工艺,降低生产加工成本,使其满足工业化大规模生产的需求;
(2)实现阻燃预警涂层的多功能化,通过额外引入功能粒子或调整涂层工艺及结构,赋予涂层大尺寸化响应、自修复、耐磨损等性能,进一步推动其工业化进程;
(3)进一步探明阻燃预警涂层的响应原理及调控机制,推动智能涂层技术的发展;
(4)将阻燃预警涂层构建于其他智能材料表面,探索多种智能材料间的协同效果,探索制备复合智能材料;
(5)结合阻燃预警涂层技术和物联网技术,进一步推动其在智能家居和公共安全领域的应用。
-
图 3 不同Ce添加量的3 wt% TiB2/A356复合材料样品腐蚀不同时间的显微组织:不添加Ce的样品腐蚀10 s (a) (b)和腐蚀1 h (c) (d)的SEM图;添加0.1 wt% Ce的样品腐蚀10 s (e) (f)和腐蚀1 h (g) (h)的SEM图;添加0.3 wt% Ce的样品腐蚀10 s (i) (j)和腐蚀1 h (k) (l)的SEM图;添加0.5 wt% Ce的样品腐蚀10 s (m) (n) 和腐蚀的1 h (o) (p) 的SEM图
Figure 3. The microstructure of 3 wt % TiB2/A356 composites with different Ce additions after different corrosion time: SEM images of the samples without Ce addition after corrosion for 10 s (a) (b) and 1 h (c) (d); SEM images of the samples with 0.1 wt % Ce addition after corrosion for 10 s (e) (f) and 1 h (g) (h); SEM images of the samples with 0.3 wt % Ce addition after corrosion for 10 s (i) (j) and 1 h (k) (l); SEM images of the samples with 0.5 wt % Ce addition after corrosion for 10 s (m) (n) and 1 h (o) (p)
图 4 不同Ce添加量的3 wt % TiB2 / A356复合材料的BSE显微图片和相应“+”标点处的EDS分析: 添加0.1 wt% Ce的BSE图 (a)和标点处的EDS分析(b);添加0.3 wt% Ce的BSE图 (c)和标点处的EDS分析(d);添加0.5 wt% Ce的BSE图 (e)和标点处的EDS分析(f)
Figure 4. The BSE microscopic images of 3 wt % TiB2/A356 composites with different Ce additions and the EDS analysis of intermetallic compounds at the corresponding“+”point: (a) BSE image and (b) EDS analysis of point in (a) with 0.1 wt % Ce addition; (c) BSE image and (d) EDS analysis of point in (c) with 0.3 wt % Ce addition; (e) BSE image and (f) EDS analysis of point in (e) of with 0.5 wt % Ce addition
图 5 3 wt % TiB2/A356复合材料中共晶区的SEM图和面扫描能谱分析:(a), (b) 共晶区的SEM图;(c) Al、(d) Si、(e) Ti和 (f) B元素的图谱;(g), (h) TiB2颗粒的高倍SEM图
Figure 5. SEM images and EDS mapping analysis of eutectic area in 3 wt % TiB2/A356 composite: (a), (b) SEM images of eutectic area; EDS elemental mapping of (c) Al, (d) Si, (e) Ti and (f) B; (g), (h) HRSEM images of TiB2 particles
图 6 添加0.3 wt % Ce的3 wt % TiB2/A356复合材料中共晶区的SEM图和面扫描能谱分析:(a) 共晶区的SEM图;(b) Al、(c) Si、(d) Ti、(e) B和(f) Ce元素的图谱;(g), (h) TiB2颗粒的高倍SEM图
Figure 6. SEM image and EDS mapping analysis of eutectic area in 3 wt % TiB2/A356 composite with 0.3 wt % Ce addition: (a) SEM image and EDS elemental mapping of (b) Al, (c) Si, (d) Ti, (e) B and (f) Ce; (g), (h) HRSEM images of TiB2 particles
图 8 Al相中TiB2 颗粒的TEM图和面扫描能谱分析:(a) TEM图; (b) Al、 (c) Si、 (d) Ti、 (e) B和 (f) Ce元素的面扫描图谱; (g) TiB2/Al界面的高倍TEM图像; (h) 图(g)的FFT图像
Figure 8. TEM image and EDS mapping analysis of TiB2 particles in Al phase: (a) TEM image and EDS elemental mapping of (b) Al, (c) Si, (d) Ti, (e) B and (f) Ce; (g) HRTEM image of TiB2/Al interface; (h) corresponding FFT image of (g)
图 9 Si相中TiB2 颗粒的TEM图和面扫描能谱分析:(a) TEM图; (b) Al、 (c) Si、 (d) Ti 、(e) B和 (f) Ce元素的面扫描图谱; (g) TiB2/Si界面的高倍TEM图像; (h) 图(g)的FFT图像
Figure 9. TEM image and EDS mapping analysis of TiB2 particles in Si phase: (a) TEM image and EDS elemental mapping of (b) Al, (c) Si, (d) Ti, (e) B and (f) Ce; (g) HRTEM image of TiB2/Si interface; (h) corresponding FFT image of (g)
图 11 被改性共晶Si的TEM面扫描能谱分析和高分辨TEM图像:(a) TEM图 (b) Al (c) Si 元素的图谱; (d) (a)中区域1的HRTEM图像;(e) (d)中区域2的放大图像;(f) (d)的选区电子衍射图像
Figure 11. EDS mapping analysis of modified eutectic Si and its HRTEM image: (a) TEM image and EDS elemental mapping of (b) Al (c) Si; (d) HRTEM image of the selected area 1 in (a); (e) enlarged image of the selected area 2 in (d); (f) corresponding SAED of (d)
表 1 A356铝合金和不同Ce添加量的3 wt% TiB2/A356复合材料的化学成分。
Table 1 The chemical compositions of A356 alloy and 3 wt% TiB2/A356 composites with different Ce addition.
Samples Si Fe Mg Ce Al A356 alloy 7.18 0.140 0.360 - Bal. TiB2/A356 7.32 0.141 0.326 - Bal. TiB2/A356 +0.1 wt%Ce 7.30 0.139 0.321 0.092 Bal. TiB2/A356 +0.3 wt%Ce 7.28 0.136 0.324 0.303 Bal. TiB2/A356 +0.5 wt%Ce 7.25 0.137 0.319 0.486 Bal. 表 2 原位反应合成的TiB2颗粒的产率计算。
Table 2 Calculation of the yield of TiB2 particles synthesized by in-situ reaction.
Group Quantity of the ingot for extracting
experiment/gQuantity of extracted TiB2
particles/gActual weight percent of
TiB2/wt %Yield of TiB2/% 1 20.461 0.568 2.78 92.5 2 20.729 0.579 2.79 93.1 3 20.273 0.561 2.77 92.2 Average — — 2.78 92.6 Element ki mi m(k-1) Zr 2.5 33.3 6.8 Si 0.11 −6.6 5.9 Cr 2.0 3.5 3.5 Mg 0.51 −6.2 3.0 Fe 0.02 −3.0 2.9 Cu 0.17 −3.4 2.8 Ce 0.004 −18.7 18.6 Notes: ki is the partition coefficient, mi is the gradient of the liquidus slope, the relative magnitude of Q for the various solutes can be compared using the data in the m(k-1) column. -
[1] SHAHA SK, CZERWINSKI F, KASPRZAK W, et al. Microstructure and mechanical properties of Al–Si cast alloy with additions of Zr–V–Ti[J]. Materials & Design, 2015, 83: 801-812.
[2] CAMPO KN, PRONI CTW, ZOQUI EJ. Influence of the processing route on the microstructure of aluminum alloy A356 for thixoforming[J]. Materials Characterization, 2013, 85: 26-37. DOI: 10.1016/j.matchar.2013.08.011
[3] CHEN Yan, JIAN Zengyun, REN Yongming, et al. Influence of TiB2 volume fraction on SiCp/AlSi10Mg composites by LPBF: Microstructure, mechanical, and physical properties[J]. Journal of Materials Research and Technology, 2023, 23: 3697-3710. DOI: 10.1016/j.jmrt.2023.02.031
[4] 张虎, 刘福源, 郭恩宇, 等. TiB2/Al-Cu-Li复合材料时效析出及组织演变对力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6819-6829. ZHANG Hu, LIU Fuyuan, GUO Enyu, et al. Effects of aging precipitation and microstructure evolution on mechanical properties of TiB2/Al-Cu-Li composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6819-6829(in Chinese).
[5] ZHUANG Weibin, YANG Hairui, YANG Weibo, et al. Microstructure, Tensile Properties, and Wear Resistance of In Situ TiB2/6061 Composites Prepared by High Energy Ball Milling and Stir Casting[J]. Journal of Materials Engineering and Performance, 2021, 30: 7730-7740. DOI: 10.1007/s11665-021-05964-1
[6] 段敏鸽, 李晨, 李彪, 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性[J]. 复合材料学报, 2023, 40(11): 6430-6438. DUAN Minge, LI Chen, LI Biao, et al. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6430-6438(in Chinese).
[7] QIAN Wei, ZHAO Yutao, KAI Xizhou, et al. Mechanism of Er inhibiting agglomeration of in situ ZrB2 particles in aluminum matrix composites[J]. Materials Characteri- zation, 2021, 177: 111187. DOI: 10.1016/j.matchar.2021.111187
[8] WANG Mingliang, CHEN Dong, CHEN Zhe, et al. Mechanical properties of in-situ TiB2/A356 composites[J]. Materials Science and Engineering: A, 2014, 590: 246–254.
[9] LIU Zhiwei, DONG Zhiwu, CHENG Xiaole, et al. On the Supplementation of Magnesium and Usage of Ultrasound Stirring for Fabricating In Situ TiB2/A356 Composites with Improved Mechanical Properties[J]. Metallurgical and Materials Transactions A, 2018, 49(11): 5585-5598. DOI: 10.1007/s11661-018-4883-x
[10] CHEN Rui, XU Qingyan, GUO Huiting, et al. Correlation of solidification microstructure refining scale, Mg composition and heat treatment conditions with mechanical properties in Al-7Si-Mg cast aluminum alloys[J]. Materials Science and Engineering: A, 2017, 685: 391-402. DOI: 10.1016/j.msea.2016.12.051
[11] ZHU Man, JIAN Zengyun, YANG Gencang, et al. Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys[J]. Materials & Design, 2012, 36: 243-249.
[12] LIU Lifeng, LI Jinfu, Zhou Yaohe. Solidification of undercooled eutectic alloys containing a third element[J]. Acta Materialia, 2009, 57(5): 1536-1545. DOI: 10.1016/j.actamat.2008.12.001
[13] JIANG Wenming, FAN Zitian, DAI Yucheng, et al. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy[J]. Materials Science and Engineering: A, 2014, 597: 237-244. DOI: 10.1016/j.msea.2014.01.009
[14] WANG Tongmin, ZHENG Yuanping, CHEN Zongning, et al. Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite[J]. Materials & Design, 2014, 64: 185-193.
[15] ZHANG Tingting, KAI Feng, LI Zhuguo, et al. Effects of rare earth elements on the microstructure and wear properties of TiB2 reinforced aluminum matrix composite coatings: Experiments and first principles calculations[J]. Applied Surface Science, 2020, 530: 147051. DOI: 10.1016/j.apsusc.2020.147051
[16] LUDWIG TH, SCHONHOVD Dæhlen E, SCHAFFER PL, et al. The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy[J]. Journal of Alloys and Compounds, 2014, 586: 180-190. DOI: 10.1016/j.jallcom.2013.09.127
[17] LUO Qun, LI Xingrui, LI Qian, et al. Achieving grain refinement of α-Al and Si modification simultaneously by La‒B‒Sr addition in Al‒10Si alloys[J]. Journal of Materials Science & Technology, 2023, 135: 97-110.
[18] 郑秋菊, 叶中飞, 江鸿翔, 等. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110. ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, et al. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. Acta Metallurgica Sinica, 2021, 57(1): 103-110(in Chinese).
[19] ZHANG Lili, SONG Yan, YANG Linjie, et al. Synergistic Effect of La and TiB2 Particles on Grain Refinement in Aluminum Alloy[J]. Materials, 2022, 15(2): 600. DOI: 10.3390/ma15020600
[20] XUE Jing, WU Wenyu, MA Jianbo, et al. Study on the effect of CeO2 for fabricating in-situ TiB2/A356 composites with improved mechanical properties[J]. Materials Science and Engineering: A, 2020, 786: 139416. DOI: 10.1016/j.msea.2020.139416
[21] 柏世梅, 尧军平, 刘辉, 等. 稀土Er和Ce复合改性对过共晶Mg-Si合金组织与性能的影响[J]. 复合材料学报, 2017, 34(6): 1300-1307. BAI Shimei, YAO Junping, LIU Hui, et al. Effect of Er and Ce on modification of primary Mg2Si phase in hypereutectic Mg-Si alloys[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1300-1307(in Chinese)
[22] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1−2021[S]. 北京: 中国标准出版社, 2022. Standardization Administration of the People’s Republic of China. Metallic material-tensile testing Part 1: method of test at room temperature: GB/T 228.1−2021[S]. Beijing: China Standards Press, 2022(in Chinese).
[23] WANG Mingliang, WANG Qian, BIAN Zeyu, et al. Controlled Size Characterization Process for In-Situ TiB2 Particles from Al Matrix Composites Using Nanoparticle Size Analysis[J]. Matrial, 2024, 17: 2052 DOI: 10.3390/ma17092052
[24] VIJAYAN V, NARAYAN Prabhu K. Effect of chilling and cerium addition on microstructure and cooling curve parameters of Al–14%Si alloy[J]. Canadian Metallurgical Quarterly, 2015, 54(1): 66-76. DOI: 10.1179/1879139514Y.0000000151
[25] XI Shuaiying, MA Guodong, LI Lu, et al. Investigate on the phase interfaces and performance evaluation of TiB2p/Al–Si–Cu–Zn (T6) composites[J]. Journal of Materials Research and Technology, 2021, 12: 581-596. DOI: 10.1016/j.jmrt.2021.03.018
[26] WU Liang, ZHOU Cong, LI Xianfeng, et al. Microstructural evolution and mechanical properties of cast high-Li-content TiB2/Al-Li-Cu composite during heat treatment[J]. Journal of Alloys and Compounds, 2018, 739: 270-279. DOI: 10.1016/j.jallcom.2017.12.126
[27] JIANG Dapeng, YU Jiakang. Simultaneous refinement and modification of the eutectic Si in hypoeutectic Al–Si alloys achieved via the addition of SiC nanoparticles[J]. Journal of Materials Research and Technology, 2019, 8(3): 2930-2943. DOI: 10.1016/j.jmrt.2019.05.001
[28] ZHU Hongyi, WANG Qian, YANG Chen, et al. Improving TiB2 dispersion in Al-Si composites by interfacial projection: High-throughput first-principles calculations and experimental verification[J]. Materials & Design, 2024, 244: 113184.
[29] DAI Fuzhi, XIANG Huimin, ZHOU Yanchun. Strategy to design high performance TiB2-based materials: Strengthen grain boundaries by solid solute segregation[J]. Journal of the American Ceramic Society, 2020, 103(5): 3311-3320. DOI: 10.1111/jace.17018
[30] TANG Yitian, CHEN Zhe, BORBÉLY A, et al. Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy[J]. Materials Characterization, 2015, 102: 131-136. DOI: 10.1016/j.matchar.2015.03.003
[31] LIU Jun, LIU Zhiwei, DONG Zhiwu, et al. On the preparation and mechanical properties of in situ small-sized TiB2/Al-4.5Cu composites via ultrasound assisted RD method[J]. Journal of Alloys and Compounds, 2018, 765: 1008-1817. DOI: 10.1016/j.jallcom.2018.06.303
[32] CURRY DA, KNOTT JF. Effect of microstructure on cleavage fracture toughness of quenched and tempered steels[J]. Metal Science, 1979, 13(6): 341-345. DOI: 10.1179/msc.1979.13.6.341
[33] EUSTATHOPOULOS N, DREVET B, RICCI E. Temperature coefficient of surface tension for pure liquid metals[J]. Journal of Crystal Growth, 1998, 191(1): 268-274.
[34] GU Dongdong, SHEN Yifu, ZHAO Long, et al. Effect of rare earth oxide addition on microstructures of ultra-fine WC–Co particulate reinforced Cu matrix composites prepared by direct laser sintering. [J] Materials Science and Engineering: A, 2007, 445–446: 316–322.
[35] STJOHN D H, QIAN M, EASTON M A, et al. The Interdependence Theory: The relationship between grain formation and nucleant selection[J]. Acta Materialia, 2011, 59(12): 4907-4921. DOI: 10.1016/j.actamat.2011.04.035
[36] EASTON M, Stjohn D. An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles[J]. Metallurgical and Materials Transactions A, 2005, 36(7): 1911-1920. DOI: 10.1007/s11661-005-0054-y
[37] WANG Kui, CUI Chunxiang, WANG Qian, et al. Microstructure of Al-5Ti-1B-1RE nanoribbon and its refining efficiency on as-cast A356 alloys[J]. Journal of Rare Earths, 2013, 31(3): 313-318. DOI: 10.1016/S1002-0721(12)60278-6
[38] TIMPEL M, WANDERKA N, SCHLESIGER R, et al. The role of strontium in modifying aluminium–silicon alloys[J]. Acta Materialia, 2012, 60(9): 3920-3928. DOI: 10.1016/j.actamat.2012.03.031
[39] TENG Da, ZHANG Guangzong, ZHANG Shuo, et al. Microstructure evolution and strengthening mechanism of A356/Al-X-Ce(Ti, C) system by inoculation treatment[J]. Journal of Materials Research and Technology, 2024, 28: 1233-1246. DOI: 10.1016/j.jmrt.2023.12.057
[40] LI Bao, WANG Hongwei, JIE Jinchuan, et al. Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5%Si–0.45%Mg alloys[J]. Journal of Alloys and Compounds, 2011, 509(7): 3387-3392. DOI: 10.1016/j.jallcom.2010.12.081
[41] LI J H, ALBU M, HOFER F, et al. Solute adsorption and entrapment during eutectic Si growth in A–Si-based alloys[J]. Acta Materialia, 2015, 83: 187-202. DOI: 10.1016/j.actamat.2014.09.040
[42] KANG Jie, SU Ru, WU Dayong, et al. Synergistic effects of Ce and Mg on the microstructure and tensile properties of Al-7Si-0.3Mg-0.2Fe alloy[J]. Journal of Alloys and Compounds, 2019, 796: 267-278. DOI: 10.1016/j.jallcom.2019.05.049
[43] LI Jiehua, WANG Xiaodong, LUDWIG TH, et al. Modification of eutectic Si in Al–Si alloys with Eu addition[J]. Acta Materialia, 2015, 84: 153-163. DOI: 10.1016/j.actamat.2014.10.064
[44] LU Zhao, TANG Ying, ZHANG Lijun. Atomic mobility in liquid and fcc Al–Si–Mg–RE (RE = Ce, Sc) alloys and its application to the simulation of solidification processes in RE-containing A357 alloys[J]. International Journal of Materials Research, 2017, 108(6): 465-476. DOI: 10.3139/146.111505
-
期刊类型引用(7)
1. 刘瑜,盛德星,王辉,王玲,李茜,胡涛,李永. 紫外-冷凝老化对碳纤维/环氧树脂复合材料性能的影响. 装备环境工程. 2025(01): 196-202 . 百度学术
2. 肖瀚瑶,张勇,王安东,樊伟杰. SO_2盐雾与冲击载荷交替作用下AerMet100钢损伤研究. 装备环境工程. 2025(02): 1-11 . 百度学术
3. 秦国锋,秦旺招,糜沛纹,李铭,范秋寒. 复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述. 交通运输工程学报. 2024(05): 173-194 . 百度学术
4. 张柱柱,陈跃良,姚念奎,卞贵学,张勇,张杨广. 冲击载荷作用下38CrMoAl渗氮钢损伤机理和耐腐蚀性能. 航空学报. 2021(05): 199-210 . 百度学术
5. 王安东,卞贵学,张勇,陈跃良,张柱柱,张杨广. 海洋环境下G814/3233复合材料的老化机理及加速老化与自然老化的相关性. 航空学报. 2021(05): 250-262 . 百度学术
6. 张勇,王安东,陈跃良,樊伟杰,马瑞民. CF8611/AC531复合材料的实验室加速老化行为研究. 装备环境工程. 2020(05): 116-121 . 百度学术
7. 高超干,周储伟. 复合材料环境当量等效加速老化试验方法. 工程塑料应用. 2020(08): 103-107+117 . 百度学术
其他类型引用(2)
-
目的
A356铝合金因具有高比强度,优异的铸造性能和易加工的特性,在汽车和航空工业中被广泛应用。通过将高强度、高硬度、与铝基体界面结合良好的TiB颗粒以化学反应(原位自生)合成方式融入铝合金基体,可以调控铝合金的组织,获得更优的力学性能。但自生TiB颗粒由于比表面能较大,容易团聚,这将削弱TiB作为增强相的效果。另外,TiB颗粒对共晶Si的改性作用不明显,而未改性的片状共晶Si易引起应力集中,对材料的塑性不利。因此需要一种既能改善TiB颗粒的分散性,又能对共晶Si改性的方法。本研究通过在TiB/A356 复合材料中加入稀土元素Ce改善TiB颗粒的分散性的同时改性共晶Si,探究Ce改善TiB颗粒分散性,促进 α-Al细化,以及共晶Si改性的机制,以进一步推动该复合材料的实用化进程。
方法通过盐-金属反应法制备3 wt% TiB/A356 复合材料,并通过加入Al-Ce中间合金的方式添加稀土元素Ce,研究质量分数为0.1 wt%、0.3 wt%和0.5 wt%的Ce对TiB/A356复合材料显微组织和力学性能的影响。通过XRD、SEM、TEM等对TiB/A356复合材料进行表征,并使用电子万能材料试验机对复合材料的力学性能进行测试。
结果随着Ce的添加量从0增加到0.3 wt%,α-Al晶粒和Si被明显细化,Ce的添加量为0.3 wt%时细化效果最佳,α-Al的二次枝晶间距和共晶Si的平均长度对比不加Ce的复合材料减少了31.1%和32.6%。同时,共晶Si形态从针片状转变为珊瑚状和短棒状。但当Ce的添加量达到0.5 wt%时,这种细化和改性作用减弱。同时,Ce改善了TiB颗粒的分散性,随着Ce的添加量从0增加到0.3 wt%,α-Al晶粒内部的TiB颗粒数量增加,这些近球形的TiB颗粒轮廓清晰,直径约为100 nm,孤立地存在于α-Al晶粒内。高倍TEM照片和EDS元素图谱显示出Ce元素在TiB颗粒上的偏聚。此外,在高倍TEM照片下观察到在共晶Si上析出了粒径为十几纳米的AlSiCe析出相。当Ce的添加量为0.3 wt%时,复合材料的力学性能最佳,其屈服强度、抗拉强度和伸长率分别为86.4 MPa、184.3 MPa和12.1%,相比未加Ce的复合材料分别提高了9.2%、11.5%和57.1%。但当Ce的添加量进一步增加到0.5 wt%时,由于形成了不规则的针状AlSiCe金属间化合物,使得材料的强度和塑性下降。
结论添加Ce使得TiB/A356复合材料中TiB颗粒的分散性提高。Ce增强了TiB颗粒与基体之间的润湿性和界面稳定性,使得TiB颗粒更易被凝固界面吞没,从而均匀地分散在Al基体中。Ce增加了α-Al的成分过冷度和有效的TiB异质晶核数量,促进了晶粒细化。由于Ce的偏聚导致的成分过冷的增加,大量含Ce的纳米AlSiCe析出相在共晶Si上析出,抑制了Si的生长并导致Si的改性。当Ce的添加量达到0.3 wt%时,细化α-Al晶粒和改性共晶Si的作用就充分显现出来,此时3 wt% TiB/A356复合材料达到最佳的力学性能。
-
A356铝合金因具有高比强度,优异的铸造性能和易加工的特性,被广泛应用于汽车和航空工业领域。将高强度、高硬度、与铝基体界面结合良好的TiB2颗粒以化学反应的方式与A356铝合金原位复合,可以获得更优的力学性能。但TiB2颗粒由于比表面能大,容易团聚,会削弱其作为增强相的效果,并且TiB2颗粒对共晶Si的改性作用不明显。本文以原位自生TiB2/A356复合材料为研究对象,研究不同质量分数的稀土元素Ce对显微组织及力学性能的影响。发现稀土元素Ce在TiB2颗粒上的偏聚促进了颗粒在基体中的均匀分布,Ce和TiB2颗粒的协同作用促进了α-Al晶粒的细化和共晶Si的改性。当Ce的添加量为0.3 wt%时,3 wt% TiB2/A356复合材料的力学性能最佳,与不添加Ce的复合材料相比,屈服强度、抗拉强度和伸长率分别提高了9.2%、11.5%和57.1%。分析表明:TiB2颗粒分散性的改善是因为Ce增强了TiB2与基体之间的润湿性和界面稳定性。共晶Si改性是由于Ce偏聚导致成分过冷的增加。大量含Ce的纳米尺寸析出物在共晶Si中形成,抑制了Si的生长。
被改性共晶Si的TEM面扫描能谱分析和高分辨TEM图像:(a) TEM图 (b) Al, (c) Si元素的图谱;(d) (a)中区域1的HRTEM图像;(e) (d)中区域2的放大图像;(f) (d)的选区电子衍射图像