留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸湿耦合四点弯曲载荷条件下碳纤维复合材料的性能演变规律

范燕生 顾轶卓 王俊涛 石亮 王绍凯 李敏

范燕生, 顾轶卓, 王俊涛, 等. 吸湿耦合四点弯曲载荷条件下碳纤维复合材料的性能演变规律[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 范燕生, 顾轶卓, 王俊涛, 等. 吸湿耦合四点弯曲载荷条件下碳纤维复合材料的性能演变规律[J]. 复合材料学报, 2024, 42(0): 1-12.
FAN Yansheng, GU Yizhuo, WANG Juntao, et al. Performance evolution of carbon fiber composites under moisture absorption coupled four-point bending load[J]. Acta Materiae Compositae Sinica.
Citation: FAN Yansheng, GU Yizhuo, WANG Juntao, et al. Performance evolution of carbon fiber composites under moisture absorption coupled four-point bending load[J]. Acta Materiae Compositae Sinica.

吸湿耦合四点弯曲载荷条件下碳纤维复合材料的性能演变规律

详细信息
    通讯作者:

    顾轶卓,博士,副教授,博士生导师,研究方向为树脂基复合材料、碳纤维、纳米复合材料 E-mail: benniegu@buaa.edu.cn

  • 中图分类号: TB332

Performance evolution of carbon fiber composites under moisture absorption coupled four-point bending load

  • 摘要: 为研究吸湿耦合四点弯曲载荷条件下碳纤维增强环氧树脂基复合材料的性能演变规律,通过自行设计的夹具施加四点弯曲载荷,并耦合5倍浓度模拟海水吸湿环境以模拟复合材料承载结构在海水中的服役条件。通过裂纹观测系统原位监测复合材料在力学实验过程中的损伤萌生与扩展,对比分析不同预处理条件对复合材料剩余力学性能及损伤模式的影响,分别通过四点弯曲、三点弯曲及短梁剪切力学试验,对预处理中复合材料的加载区域、等弯矩段进行评估。结果表明,预处理后复合材料的四点弯曲性能降低,一端加载处出现损伤破坏后,随之继续发生多次载荷下降直至最终失效发生;复合材料的等弯矩段短梁剪切性能无明显变化,三点弯曲力学试验结果表明预处理条件对等弯矩段的应力集中作用不显著。从而,预处理条件对加载区域影响显著,使其在失效过程中呈现出多断口扩展,伴随有层间裂纹扩展现象,而对等弯矩段无显著影响。

     

  • 图  1  (a)自行设计的四点弯曲夹具载荷施加实验;(b)吸湿耦合四点弯曲载荷条件预处理实验;(c)四点弯曲力学实验;(d)原位裂纹观测实验

    Figure  1.  (a)Self-designed four-point bending fixture loading experiment; (b)Moisture absorption coupling four-point bending loading pretreatment experiment; (c)Four-point bending mechanical experiment; (d)In-situ crack observation experiment

    图  2  吸湿耦合四点弯曲载荷预处理后,复合材料力学性能评价

    Figure  2.  Evaluation of mechanical properties of composites after 5 times seawater moisture coupled with four-point bending load pretreatment

    图  3  四点弯曲载荷加载过程的有限元模型

    Figure  3.  Finite element model for four-point bending load

    图  4  未经预处理,T800级碳纤维复合材料层合板载荷-位移曲线:(a)三点弯曲,(b)四点弯曲

    Figure  4.  Load-displacement curve of untreated T800 carbon fiber composite laminate: (a) three-point bending, (a) four-point bending

    图  5  未经预处理,T800级碳纤维复合材料四点弯曲左侧(a-d)、右侧(e-h)压头处失效形貌特征

    Figure  5.  Failure morphology of the left and right loading position of untreated T800 carbon fiber composite laminate under four-point bending experiment

    图  6  未经预处理,T800级碳纤维复合材料层合板中心等弯矩段位置处失效形貌特征

    Figure  6.  Failure morphology characteristics at the position of equal bending moment section in the center of untreated T800 carbon fiber composite laminate

    图  7  经预处理后,T800级碳纤维复合材料层合板的四点弯曲性能对比图

    Figure  7.  Comparison of four-point bending properties of T800 carbon fiber composite laminate after pretreatment

    图  8  T800级碳纤维复合材料层合板的四点弯曲载荷位移对比图:(a)未经预处理、(b)预处理7天后、(c)预处理14天后、(d)预处理21天后

    Figure  8.  Comparison of four-point bending load displacement of T800 carbon fiber composite laminate: (a) without pretreatment, (b) with pretreatment for 7 days, (c) with pretreatment for 14 days, (d) with pretreatment for 21 days.

    图  9  5倍盐水+60%四点弯曲载荷条件下处理7天,T800级碳纤维复合材料层合板四点失效形貌特征(a)左侧加载处,(b)右侧加载处

    Figure  9.  Four-point failure morphology characteristics of T800 carbon fiber composite laminate after 7 days pretreatment under 5 times seawater moisture coupled with 60% four-point bending load (a)the left loading position, (b)the right loading position

    图  10  5倍盐水+60%四点弯曲载荷条件下处理14天,T800级碳纤维复合材料层合板四点失效形貌特征(a)左侧加载处,(b)右侧加载处

    Figure  10.  Four-point failure morphology characteristics of T800 carbon fiber composite laminate after 14 days pretreatment under 5 times seawater moisture coupled with 60% four-point bending load (a)the left loading position, (b)the right loading position

    图  11  5倍盐水+60%四点弯曲载荷条件下处理21天,T800级碳纤维复合材料层合板四点失效形貌特征(a)左侧加载处,(b)等弯矩段,(c)右侧加载处

    Figure  11.  Four-point failure morphology characteristics of T800 carbon fiber composite laminate after 21 days pretreatment under 5 times seawater moisture coupled with 60% four-point bending load (a)the left loading position, (b) the equal bending moment area, (c)the right loading position

    图  12  经预处理后,T800级碳纤维复合材料层合板的三点弯曲性能对比图

    Figure  12.  Comparison of three-point bending properties of T800 carbon fiber composite laminate after pretreatment

    图  13  吸湿耦合60%(a)四点弯曲(b)三点弯曲载荷处理14天,T800级碳纤维复合材料层合板三点弯曲失效过程对比图

    Figure  13.  Comparison of three-point bending failure process of T800 carbon fiber composite laminate after 5 times seawater moisture coupled with 60% (a) four-point bending (b) three-point bending load pretreatment for 14 days

    图  14  吸湿耦合60%(a)四点弯曲(b)三点弯曲载荷处理21天,T800级碳纤维复合材料层合板三点弯曲失效过程对比图

    Figure  14.  Comparison of three-point bending failure process of T800 carbon fiber composite laminate after 5 times seawater moisture coupled with 60% (a) four-point bending (b) three-point bending load pretreatment for 21 days

    图  15  经预处理后,T800级碳纤维复合材料层合板的等弯距段短梁剪切性能对比

    Figure  15.  Comparison of short-beam shear properties of T800 carbon fiber composite laminate after pretreatment

    图  16  四点弯曲载荷条件下复合材料层合板的应力分布情况

    Figure  16.  Stress distribution of composite laminate under four-point bending load

    表  1  未经预处理,T800级碳纤维复合材料层合板四点弯曲性能

    Table  1.   Four-point bending properties of untreated T800 carbon fiber composite laminate

    Width/
    mm
    Thickness/
    mm
    Bending
    load/N
    Bending
    strength/MPa
    Bending
    modulus/GPa
    13.1 1.95 1197 1441 223
    下载: 导出CSV
  • [1] AFSHAR A, LIAO H T, CHIANG F P, KORACH C S. Time-dependent changes in mechanical properties of carbon fiber vinyl ester composites exposed to marine environments[J]. Composite Structures, 2016, 144(1): 80-85.
    [2] ALAM P, ROBERT C, Ó BRÁDAIGH C M. Tidal turbine blade composites-A review on the effects of hygrothermal aging on the properties of CFRP[J]. Composites Part B. Engineering, 2018, 149: 248-259. doi: 10.1016/j.compositesb.2018.05.003
    [3] GARGANO A, GALOS J, MOURITZ A P. Importance of fibre sizing on the seawater durability of carbon fibre laminates[J]. Composite Communications, 2020, 19: 11-15. doi: 10.1016/j.coco.2020.02.002
    [4] JESTHI D K, NAYAK R K. Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites[J]. Composites Part B: Engineering, 2019, 174: 106980. doi: 10.1016/j.compositesb.2019.106980
    [5] MINAKUCHI S, NAKAMURA K, MIZUTANI T, et al. Life-cycle evaluation of the moisture absorption and desorption behaviors of prepreg-based carbon fiber reinforced plastic[J]. Advanced Functional Materials, 2020, 30: 17-33.
    [6] WONG K J, JOHAR M, KOLOOR S S R, et al. Moisture absorption effects on mode II delamination of carbon/epoxy composites[J]. Polymers, 2020, 12(9): 2162. doi: 10.3390/polym12092162
    [7] JOHAR M, CHONG W W F, KANG H S, WONG K J. Effects of moisture absorption on the different modes of carbon/epoxy composites delamination[J]. Polymer Degradation and Stability, 2019, 165: 117-125. doi: 10.1016/j.polymdegradstab.2019.05.007
    [8] LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures, 2018, 204: 645-657. doi: 10.1016/j.compstruct.2018.08.009
    [9] HUMEAU C, DAVIES P, JACQUEMIN F. An experimental study of water diffusion in carbon/epoxy composites under static tensile stress[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 94-104. doi: 10.1016/j.compositesa.2017.12.016
    [10] ABDEL-MAGID B, ZIAEE S, GASS K, et al. The combined effects of load, moisture and temperature on the properties of E-glass/epoxy composites[J]. Composite Structures, 2005, 71: 320-326. doi: 10.1016/j.compstruct.2005.09.022
    [11] ARGUELLES A, FERNANDEZ-CANTELI A, VINA J, et al. Evolution of the impact strength of carbon fiber-reinforced PEI following exposure to mechanical, hygrothermal and hygrothermomechanical aging[J]. Journal of Composite Materials, 2007, 41: 2337-2346. doi: 10.1177/0021998307075446
    [12] MOROKOV E, LEVIN V, RYZHOVA T, et al. Bending damage evolution from micro to macro level in CFRP laminates studied by high-frequency acoustic microscopy and acoustic emission[J]. Composite Structures, 2022, (288): 115427.
    [13] 董晓龙. 原位四点弯曲测试装置的设计分析与试验研究[D]. 吉林大学, 2015.

    DONG Xiaolong. Development of an in-situ Four-point Bending Instrument and Corresponding Experimental Research[D]. Jilin University, 2015 (in Chinese).
    [14] MARTIN R H, DAVIDSON B D. Mode II fracture toughness evaluation using four point bend, end notched flexure test[J]. Plastics, Rubber and Composites, 1999, 28(8): 401-406. doi: 10.1179/146580199101540565
    [15] MURAT K, SONMEZ F O, ERSOY N, et al. Failure behavior of composite laminates under four-point bending[J]. Journal of Composite Materials, 2016, 50: 1-19.
    [16] ABBADI A, AZARI Z, BELOUETTAR S. Modelling the fatigue behaviour of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests[J]. International Journal of Fatigue. 2010, 32: 11: 1739-1747.
    [17] Rojas-Sanchez J F, Schmack T, BOESL B, et al. Strain rate-dependent characterization of carbon fibre-reinforced composite laminates using four-point bending tests[J]. Journal of Reinforced Plastics and Composites, 2019, 39: 165-174.
    [18] SYED ABDULLAH S I B, BOKTI S K, WONG K J. Mode II and mode III delamination of carbon fiber/epoxy composite laminates subjected to a four-point bending mechanism[J]. Composites Part B: Engineering, 2024, 270: 111110. doi: 10.1016/j.compositesb.2023.111110
    [19] COCCHI A, MONTAGNIER O, HOCHARD C. Study of hourglass-shaped specimens for the analysis of compression behaviour in fibre direction of FRP composites using compression and four-point bending tests[J]. Composites Part A: Applied Science and Manufacturing, 2021, 144: 106332. doi: 10.1016/j.compositesa.2021.106332
    [20] AWAD Z K, ARAVINTHAN T, MANALO A. Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending[J]. Materials & Design, 2012, 39: 93-103.
    [21] 郝敏娟, 谢中朋, 岳忠. 四点弯曲载荷作用下复合材料分层演化行为探索[J]. 玻璃钢/复合材料, 2017, 8: 25-29.

    HAO Minjuan, XIE Zhongpeng, YUE Zhong. Experimental studyu for evolution behavior of composite materials with delamination defect by four-point bending[J]. Fiber Reinforced Plastics/Composites, 2017, 8: 25-29 (in Chinese).
    [22] 赵玉卿, 姜峰, 黄争鸣. 纤维复合材料层合板在四点弯曲载荷下的损伤分析[J]. 复合材料科学与工程, 2020, 2: 10-18.

    ZHAO Yuqing, JIANG Feng, HUANG Zhengming. Damage analysis of fiber composite laminates under four-point bending load[J]. Composites Science and Engineering, 2020, 2: 10-18 (in Chinese).
    [23] 马丽婷, 陈新文, 王翔, 等. 碳纤维复合材料曲梁冲击后四点弯曲强度及损伤失效模式研究[J]. 玻璃钢/复合材料, 2017, 3: 17-20.

    MA Liting, CHEN Xinwen, WANG Xiang, GUO Guangping. Study on the post impact curved beam strength and failure mode of carbon/epoxy laminate[J]. Fiber Reinforced Plastics/Composites, 2017, 3: 17-20 (in Chinese).
    [24] WANG Y, CHAI Y, SOUTIS C, et al. Evolution of kink bands in a notched unidirectional carbon fibre-epoxy composite under four-point bending[J]. Composites Science and Technology, 2019, 172: 143-152. doi: 10.1016/j.compscitech.2019.01.014
    [25] COCCHI A, MONTAGNIER O, HOCHARD C. Study of hourglass-shaped specimens for the analysis of compression behaviour in fibre direction of FRP composites using compression and four-point bending tests[J]. Composites Part A Applied Science and Manufacturing, 2021, 144(4): 106332.
    [26] AWAD Z K, ARAVINTHAN T, MANALO A. Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending[J]. Materials & Design, 2012, 39(8): 93-103.
    [27] American Society for Testing and Materials. ASTM D5229/D5229M-20 Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials[S]. West Conshohocken: ASTM International, 2020.
    [28] 中国国家标准化管理委员会(标准制定单位). 定向纤维增强聚合物基复合材料弯曲性能试验方法: GB/T 3356-2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of orientational fiber reinforced polymer metrix composite materials: GB/T 7314—1987[S]. Beijing: China Standards Press, 2014 (in Chinese).
  • 加载中
计量
  • 文章访问数:  98
  • HTML全文浏览量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-05-20
  • 录用日期:  2024-06-02
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回