留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP-镀锌波纹钢管海水海砂混凝土柱轴压性能

邵凌峰 魏洋 王高飞 张依睿 李国芬

邵凌峰, 魏洋, 王高飞, 等. FRP-镀锌波纹钢管海水海砂混凝土柱轴压性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 邵凌峰, 魏洋, 王高飞, 等. FRP-镀锌波纹钢管海水海砂混凝土柱轴压性能[J]. 复合材料学报, 2024, 42(0): 1-13.
SHAO Lingfeng, WEI Yang, WANG Gaofei, et al. Axial compression performance of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns[J]. Acta Materiae Compositae Sinica.
Citation: SHAO Lingfeng, WEI Yang, WANG Gaofei, et al. Axial compression performance of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns[J]. Acta Materiae Compositae Sinica.

FRP-镀锌波纹钢管海水海砂混凝土柱轴压性能

基金项目: 国家自然科学基金(52378244);江苏省自然科学基金(BK20231293)
详细信息
    通讯作者:

    魏洋,教授,博士生导师,研究方向为新型材料与新型结构 E-mail: wy78@njfu.edu.cn

  • 中图分类号: TB332

Axial compression performance of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

Funds: National Natural Science Foundation of China(No. 52378244);Natural Science Foundation of Jiangsu Province (BK20231293)
  • 摘要: 提出了一种纤维增强复合材料(FRP)-镀锌波纹钢管(CST)-海水海砂混凝土(SSC)柱的新型组合柱,该结构由内侧海水海砂混凝土、中间波纹钢管、外侧纤维布组成。为了研究这种新型组合柱的轴压性能,共制备了14个试件,主要参数为纤维布层数(0、1、2、3)和类型(BFRP、CFRP)。试验结果表明,FRP-波纹钢管海水海砂混凝土柱的主要破坏模式为剪切破坏和局部屈曲破坏,增加纤维布层数可提高其极限荷载、极限应变;特殊的波纹结构使得钢管只提供环向约束而避免轴向荷载传递,发挥具有类似于箍筋的约束作用。与无纤维布约束试件相比,BFRP约束试件的极限荷载和极限应变分别增加了13.9%~15.8%和16.2%~33.7%;CFRP约束试件的极限荷载和极限应变分别增加了19.6%~28%和14.5%~24.1%,结合试验数据对现有FRP-箍筋复合约束混凝土强度计算模型进行了评估。

     

  • 图  1  FRP-镀锌波纹钢管海水海砂混凝土柱结构概念图

    Figure  1.  Structural concept diagram of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    D0, Din, Dout—Nominal, inner and outer diameters of the corrugated steel tube

    图  2  FRP-镀锌波纹钢管海水海砂混凝土柱的制备过程

    Figure  2.  Manufacture process of structural concept diagram of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  3  波纹钢管几何结构

    Figure  3.  Geometry of corrugated steel tube

    Bf—Width of galvanized steel sheet before pressing corrugated sheets, B0—Width of spirally coiled sheet; θ—Helical angle of the CST; h—Corrugation height; l—Corrugation length; lcr, lmid, ltr—Length for the crest, trough, and middle of the CST; cs—Ripple length corresponding to one ripple period; t0—Thickness of the CST

    图  4  试验加载及测量装置

    Figure  4.  Test loading and measuring device

    图  5  镀锌波纹钢管海水海砂混凝土柱的破坏形态

    Figure  5.  Failure modes of galvanized corrugated steel tube seawater sea-sand concrete columns

    图  6  FRP-镀锌波纹钢管海水海砂混凝土柱的破坏形态

    Figure  6.  Failure modes of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  7  FRP-镀锌波纹钢管海水海砂混凝土柱的核心混凝土破坏形态

    Figure  7.  Failure modes of core concrete of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  8  FRP-镀锌波纹钢管海水海砂混凝土柱的轴向荷载-位移关系曲线

    Figure  8.  Axial load-displacement curves of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  9  FRP-镀锌波纹钢管海水海砂混凝土柱的轴向荷载-应变关系曲线

    Figure  9.  Axial load-strain curves of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  10  FRP-镀锌波纹钢管海水海砂混凝土柱的轴压试验结果参数化分析

    Figure  10.  Parametric analysis of axial compression test results of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  11  FRP-镀锌波纹钢管海水海砂混凝土受力等效转化

    Figure  11.  Equivalent conversion of the force of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  12  FRP-镀锌波纹钢管海水海砂混凝土圆形截面等效受力

    Figure  12.  Equivalent force diagram of the round cross-section of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    图  13  波纹钢管不同区域应力状态

    Figure  13.  Stress state in different zones of corrugated steel tube

    图  14  各模型对FRP-镀锌波纹钢管混凝土柱计算值与试验值对比

    Figure  14.  Comparison between the calculated values and the experimental values of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns by different models

    表  1  FRP-镀锌波纹钢管海水海砂混凝土柱试件的具体参数

    Table  1.   Detailed parameters of structural concept diagram of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns

    SpecimenH/mmD0/mmt0/mmtf/mmNu/kNfcu/MPaεcuOuter FRP layersFRP type
    CST1.6-16003201.60N/A3020.936.60.0041N/AN/A
    CST1.6-26003201.60N/A3051.137.00.0042N/AN/A
    CST1.6-B1-16003201.600.1673483.242.50.00541BFRP
    CST1.6-B1-26003201.600.1673432.441.80.00571BFRP
    CST1.6-B2-16003201.600.3343908.247.90.00692BFRP
    CST1.6-B2-26003201.600.3344049.849.70.00692BFRP
    CST1.6-B3-16003201.600.5014475.956.00.00783BFRP
    CST1.6-B3-26003201.600.5014532.355.80.00803BFRP
    CST1.6-C1-16003201.600.1673582.843.70.00511CFRP
    CST1.6-C1-26003201.600.1673672.544.90.00521CFRP
    CST1.6-C2-16003201.600.3344744.258.50.00632CFRP
    CST1.6-C2-26003201.600.3344658.157.40.00612CFRP
    CST1.6-C3-16003201.600.5015604.369.40.00713CFRP
    CST1.6-C3-26003201.600.5015644.369.90.00713CFRP
    Notes: Specimens were numbered according to the different parameters of the specimens. "CST" represents the corrugated steel tube; "1.6" represents the thickness of the corrugated steel tube; "-B/C" represents the types of FRP (BFRP/CFRP); furthermore, the numbers “1”, “2”, “3” represents the number of FRP layers (1, 2, 3); the labels “1”, “2” were assigned to differentiate between two specimens with identical parameters. H—Height of all specimens; D0—Nominal of the corrugated steel tube; t0—Thickness of the corrugated steel tube; tf—Thickness of the outer FRP; Nu—Ultimate load of specimen; fcu—Ultimate stress of specimen; εcu—Ultimate strain of specimen.
    下载: 导出CSV

    表  2  波纹钢管截面尺寸

    Table  2.   Section size of corrugated steel tube

    l×h(mm×mm)lcr/mmlmid/mmltr/mmcs/mmλcr/%λmid/%λtr/%
    68×1317.2535.9117.2570.4124.551.024.5
    Notes: p—Corrugation length; h—Corrugation height; lcr—Lengths of the crest; lmid—Lengths of the middle; ltr—Lengths of the trough; cs—Ripple length corresponding to one ripple period; λcr—Lengths coefficients of the crest; λmid—Lengths coefficients of the middle; λtr—Lengths coefficients of the trough.
    下载: 导出CSV

    表  3  人工海水化学掺比

    Table  3.   Chemical admixture ratio of artificial seawater

    Reagent
    content
    KClNaClCaCl2MgCl2Na2SO4NaHCO3KBr
    g/kg0.69524.531.165.24.090.2010.101
    下载: 导出CSV

    表  4  FRP-箍筋约束混凝土柱的强度计算模型

    Table  4.   Strength calculation models of FRP-stirrup confined concrete columns

    Model source Calculation formula
    Ilki et al. (2008)[39] $ \dfrac{{{f_{{\mathrm{cu}}}}}}{{{f_{{\mathrm{co}}}}}} = \left[ {1 + 2.54\left( {\dfrac{{{f_{{\mathrm{lf}}}}}}{{{f_{{\mathrm{co}}}}}}} \right) + 4.54\left( {\dfrac{{{f_{{\mathrm{ls}}}}}}{{{f_{{\mathrm{co}}}}}}} \right)} \right] $
    Issa et al.(2009)[40] $ \dfrac{{{f_{{\mathrm{cu}}}}}}{{{f_{{\mathrm{co}}}}}} = 1 + 3.4\left( {\dfrac{{{f_{{\mathrm{ls}}}} + {f_{{\mathrm{lf}}}}}}{{{f_{{\mathrm{co}}}}}}} \right) $
    Hu et al. (2013)[41] $ \dfrac{{{f_{{\mathrm{cu}}}}}}{{{f_{{\mathrm{co}}}}}} = 1 + 3.5\left( {\dfrac{{{f_{\mathrm{l}}}_{\mathrm{f}}}}{{{f_{{\mathrm{co}}}}}}} \right) + \left( {2.254\sqrt {1 + 7.94\left( {\dfrac{{{f_{\mathrm{l}}}_{\mathrm{s}}}}{{{f_{{\mathrm{co}}}}}}} \right)} - 2\left( {\dfrac{{{f_{\mathrm{l}}}_{\mathrm{s}}}}{{{f_{{\mathrm{co}}}}}}} \right) - 2.254} \right) $
    Chastre et al. (2013)[42] $ \dfrac{{{f_{{\mathrm{cu}}}}}}{{{f_{{\mathrm{co}}}}}} = \dfrac{{1.5 + D/H}}{2} + 5.29\left( {\dfrac{{{f_{{\mathrm{ls}}}} + 0.6{f_{{\mathrm{lf}}}}}}{{{f_{{\mathrm{co}}}}}}} \right) $
    Miao et al. (2021)[43] $ \begin{gathered} \dfrac{{{f_{{\mathrm{cu}}}}}}{{{f_{{\mathrm{co}}}}}} = 0.75 + 2.7\left( {1 + \gamma } \right){\left( {\dfrac{{{f_{{\mathrm{lf}}}}}}{{{f_{{\mathrm{co}}}}}}} \right)^{0.9}} + 4.1\dfrac{{{f_{{\mathrm{ls}}}}}}{{{f_{{\mathrm{co}}}}}} \cdot \dfrac{{{A_{\mathrm{c}}}}}{{{A_{\mathrm{g}}}}} \\ \gamma = 1.03 \\ \end{gathered} $
    Notes:fcu—Ultimate stress of specimen; fco—Peak stress of unconfined concrete; fls—Lateral confining stress exerted by the stirrup; flf—Later confining stress exerted by FRP; D—Diameter of the column; H—Height of the column; Ac—Area of the core concrete; Ag—Area of the total specimen area.
    下载: 导出CSV

    表  5  FRP-箍筋约束混凝土柱的强度计算模型评估

    Table  5.   Evaluation of strength calculation models of FRP-hoop confined concrete columns

    Model sourceAVSDAAE
    Ilki et al. (2008)[39]0.9590.0344.8%
    Issa et al.(2009)[40]1.1190.03111.9%
    Hu et al. (2013)[41]1.1020.02910.2%
    Chastre et al.(2013)[42]1.0530.0285.3%
    Miao et al. (2021)[43]1.1940.11319.5%
    Notes:AV—Average value; SD—Standard deviation; AAE—Average absolute error.
    下载: 导出CSV
  • [1] 陈文尹. 大直径镀锌金属波纹钢管在装配式接口中的运用[J]. 工程与建设, 2021, 35(2): 379-382. doi: 10.3969/j.issn.1673-5781.2021.02.066

    CHEN Wenyin. Application of large diameter galvanized corrugated steel pipe in prefabricated joints[J]. Engineering and Construction, 2021, 35(2): 379-382(in Chinese). doi: 10.3969/j.issn.1673-5781.2021.02.066
    [2] Ding W, Huang X, Li S, et al. Flexural stiffness characterization of the corrugated steel–concrete composite structure for tunnel projects[J]. Underground Space, 2023, 12: 18-30. doi: 10.1016/j.undsp.2023.02.003
    [3] 李珊. 寒区桥涵工程中金属波纹钢管材料性能试验研究[J]. 青海交通科技, 2022, 34(3): 151-158. doi: 10.3969/j.issn.1672-6189.2022.03.026

    LI Shan. Experimental study on material properties of metal bellows for bridge and culvert engineering in cold regions[J]. Qinghai Traffic Detection, 2022, 34(3): 151-158(in Chinese). doi: 10.3969/j.issn.1672-6189.2022.03.026
    [4] 路腾飞, 张琦悦. 楼体建筑中金属波纹钢管被冲击下的热温度场模拟[J]. 兵器材料科学与工程, 2023, 46(04): 113-117.

    LU Tengfei, ZHANG Qiyue, Thermal temperature field simulation of metal bellows under impact in buildings[J]. Ordnance Materila Science And Engineering, 2023, 46(04): 113-117 (in Chinese).
    [5] Xu P, Wei Y, Yang Y, et al. Application of fabricated corrugated steel plate in subway tunnel supporting structure[J]. Case Studies in Construction Materials, 2022, 17: e01323. doi: 10.1016/j.cscm.2022.e01323
    [6] Zhang Y, Liu B, Meng L. Structural behavior and soil arching state of underground corrugated steel utility tunnel[J]. Journal of Constructional Steel Research, 2023, 203: 107798. doi: 10.1016/j.jcsr.2023.107798
    [7] Wang G F, Wei Y, Zhang Y R, et al. Experimental behavior of concrete-filled double-skin tubular columns with outer galvanized corrugated steel tubes under axial compression[J]. Engineering Structures, 2023, 295: 116856. doi: 10.1016/j.engstruct.2023.116856
    [8] 中国国家标准化管理委员会. 冷弯波纹钢管: GB/T 34567-2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of China. Cold curved corrugated steel tube: GB/T 34567-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [9] Fang Y, Wang Y, Elchalakani M, et al. Experimental investigation on concrete-filled corrugated steel tubular column under constant axial load and cyclic load[J]. Engineering Structures, 2021, 248: 113245. doi: 10.1016/j.engstruct.2021.113245
    [10] Roberts B C. Durability Guide for Corrugated Steel Pipe[M]//WRPMD'99: Preparing for the 21st Century. 2004: 1-8.
    [11] Islam M R, AlMasud M A. Numerical analysis of a corrugated metal pipe: A case study[J]. International Journal of Applied Engineering Research, Dindigul, 2011, 2(1): 250-258.
    [12] Wang Y, Yang L, Yang H, et al. Behaviour of concrete-filled corrugated steel tubes under axial compression[J]. Engineering Structures, 2019, 183: 475-495. doi: 10.1016/j.engstruct.2018.12.093
    [13] Zou Y, Wang L, Sun Z, et al. Experimental and numerical studies of concrete-filled corrugated steel tubular column under axial compression[J]. Engineering Structures, 2023, 276: 114813. doi: 10.1016/j.engstruct.2022.114813
    [14] Fang Y, Liu C, Yang H, et al. Axial behaviour of concrete-filled corrugated steel tubular column embedded with structural steel[J]. Journal of Constructional Steel Research, 2020, 170: 106064. doi: 10.1016/j.jcsr.2020.106064
    [15] Fang Y, Wang Y, Yang H, et al. Experimental behavior of concrete-filled thin-walled corrugated steel tubes with large helical angles under monotonic and cyclic axial compression[J]. Thin-Walled Structures, 2022, 173: 109043. doi: 10.1016/j.tws.2022.109043
    [16] Yang L, Wang Y, Elchalakani M, et al. Experimental behavior of concrete-filled corrugated steel tubular short columns under eccentric compression and non-uniform confinement[J]. Engineering Structures, 2020, 220: 111009 doi: 10.1016/j.engstruct.2020.111009
    [17] 肖建庄, 张鹏, 张青天, 等. 海水海砂再生混凝土的基本力学性能[J]. 建筑科学与工程学报, 2018, 35(2): 16-22. doi: 10.3969/j.issn.1673-2049.2018.02.004

    XIAO Jianzhuang, ZHANG Peng, ZHANG Qintian, et al. Basic Mechanical Properties of Seawater Sea sand Recycled Concrete[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 16-22(in Chinese). doi: 10.3969/j.issn.1673-2049.2018.02.004
    [18] 秦斌. 海水海砂混凝土基本力学性能研究[J]. 混凝土, 2019, (2): 90-91. doi: 10.3969/j.issn.1002-3550.2019.02.020

    QIN Bin. Basic m echanical properties of seaw ater and sea sand concrete[J]. Concrete, 2019, (2): 90-91(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.02.020
    [19] Hensher D A. Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications[M]. Elsevier, 2016.
    [20] Nwankwo C O, Mahachi J, Olukanni D O, et al. Natural fibres and biopolymers in FRP composites for strengthening concrete structures: A mixed review[J]. Construction and Building Materials, 2023, 363: 129661. doi: 10.1016/j.conbuildmat.2022.129661
    [21] Sonnenschein R, Gajdosova K, Holly I. FRP Composites and their Using in the Construction of Bridges[J]. Procedia Engineering, 2016, 161: 477-482. doi: 10.1016/j.proeng.2016.08.665
    [22] Teng J G, Chen J F, Smith S T, et al. Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review[J]. Proceedings of the Institution of Civil Engineers-structures and Buildings, 2003, 156(1): 51-62. doi: 10.1680/stbu.2003.156.1.51
    [23] Miao K, Wei Y, Dong F, et al. Experimental study on concrete-filled steel tube columns with inner distributed seawater and sea sand concrete-filled fiber-reinforced polymer tubes under axial compression[J]. Composite Structures, 2023, 320: 117181. doi: 10.1016/j.compstruct.2023.117181
    [24] Sun J, Ding Z, Wei Y, et al. Compressive behavior of GFRP tube filled with structural polypropylene fiber reinforced seawater coral aggregates concrete[J]. Construction and Building Materials, 2021, 312: 125372. doi: 10.1016/j.conbuildmat.2021.125372
    [25] Zeng J J, Gao W Y, Duan Z J, et al. Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns[J]. Construction and Building Materials, 2020, 234: 117383. doi: 10.1016/j.conbuildmat.2019.117383
    [26] Chen Z, Pang Y, Xu R, et al. Mechanical performance of ocean concrete-filled circular CFRP-steel tube columns under axial compression[J]. Journal of Constructional Steel Research, 2022, 198: 107514. doi: 10.1016/j.jcsr.2022.107514
    [27] Wei Y, Bai J, Zhang Y, et al. Compressive performance of high-strength seawater and sea sand concrete-filled circular FRP-steel composite tube columns[J]. Engineering Structures, 2021, 240: 112357. doi: 10.1016/j.engstruct.2021.112357
    [28] Zhang Y, Wei Y, Li B, et al. A novel seawater and sea sand concrete-filled CFRP-carbon steel composite tube column: Seismic behavior and finite element analysis[J]. Engineering Structures, 2022, 270: 114872. doi: 10.1016/j.engstruct.2022.114872
    [29] Chou C C, Lee C S, Wu K Y, et al. Development and validation of a FRP-wrapped spiral corrugated tube for seismic performance of circular concrete columns[J]. Construction and Building Materials, 2018, 170: 498-511. doi: 10.1016/j.conbuildmat.2018.03.047
    [30] 余顺新, 卢傲. 波纹钢埋置式结构设计施工手册[M]. 人民交通出版社股份有限公司, 2014.

    YU Shunxin, Lu Ao. Design and Construction Manual for Corrugated Steel Embedded Structures[M]. China Communications Press Co. , Ltd, 2014(in Chinese).
    [31] Fang Y, Gai W, Yang H, et al. Modelling and lock-seam effects on compressive behaviour of concrete-filled helical corrugated steel tubes[C]//Structures. Elsevier, 2023, 58: 105321.
    [32] American Society for Testing and Materials. Standard Practice for the Preparation of Substitute Ocean Water[M]. ASTM International, 2013.
    [33] 中国国家标准化管理委员会. 普通混凝土配合比设计技术规定: JGJ55-2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of China. Specification for mix proportion design of ordinary concrete: JGJ55-2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [34] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354-2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of China. Test method for tensile properties of directional fiber reinforced polymer matrix composites: GB/T 3354−2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [35] 中国国家标准化管理委员会. 金属材料拉伸试验: 第一部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. Tensile test of metallic materials: Part 1: Test method at room temperature: GB/T 228.1−2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [36] 中华人民共和国行业标准. 冷弯波纹钢管: GB/T 34567-2017[S]. 北京: 中国建筑工业出版社, 2017.

    China Standard Press. Cold-Formed Corrugated Steel Pipes: GB/T 34567-2017[S]. Beijing: China Architecture & Building Press, 2017(in Chinese).
    [37] Fang Y, Wang Y, Yang L, et al. Uniaxial monotonic and cyclic compressive stress–strain model for concrete-filled thin-walled helical corrugated steel tubes[J]. Journal of Structural Engineering, 2023, 149(6): 04023052. doi: 10.1061/JSENDH.STENG-11719
    [38] Wang Y, Chen J, Geng Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns[J]. Engineering Structures, 2015, 86: 192-212. doi: 10.1016/j.engstruct.2015.01.007
    [39] Ilki A, Peker O, Karamuk E, et al. FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns[J]. Journal of Materials in Civil Engineering, 2008, 20(2): 169-188. doi: 10.1061/(ASCE)0899-1561(2008)20:2(169)
    [40] Issa M A, Alrousan R Z, Issa M A. Experimental and parametric study of circular short columns confined with CFRP composites[J]. Journal of Composites for Construction, 2009, 13(2): 135-147. doi: 10.1061/(ASCE)1090-0268(2009)13:2(135)
    [41] Hu H, Seracino R. Analytical model for FRP-and-steel-confined circular concrete columns in compression[J]. Journal of Composites for Construction, 2014, 18(3): A4013012. doi: 10.1061/(ASCE)CC.1943-5614.0000394
    [42] Chastre C, Silva M A G. Monotonic axial behavior and modelling of RC circular columns confined with CFRP[J]. Engineering Structures, 2010, 32(8): 2268-2277. doi: 10.1016/j.engstruct.2010.04.001
    [43] Miao K, Wei Y, Zhang X, et al. Performance of Circular Concrete-Filled FRP-Grooved Steel Composite Tube Columns under Axial Compression[J]. Polymers, 2021, 13(21): 3638 doi: 10.3390/polym13213638
  • 加载中
计量
  • 文章访问数:  103
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 修回日期:  2024-07-10
  • 录用日期:  2024-08-21
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回