留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸水性微胶囊/水泥基材料的多尺度界面表征及其自修复效果

师树青 毛倩瑾 陈佳艺 张璐 王子明 崔素萍

师树青, 毛倩瑾, 陈佳艺, 等. 吸水性微胶囊/水泥基材料的多尺度界面表征及其自修复效果[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 师树青, 毛倩瑾, 陈佳艺, 等. 吸水性微胶囊/水泥基材料的多尺度界面表征及其自修复效果[J]. 复合材料学报, 2024, 42(0): 1-10.
SHI Shuqing, MAO Qianjin, Chen Jiayi, et al. Multiscale interfacial characterization and self-healing effect of cementitious materials containing absorbent microcapsules[J]. Acta Materiae Compositae Sinica.
Citation: SHI Shuqing, MAO Qianjin, Chen Jiayi, et al. Multiscale interfacial characterization and self-healing effect of cementitious materials containing absorbent microcapsules[J]. Acta Materiae Compositae Sinica.

吸水性微胶囊/水泥基材料的多尺度界面表征及其自修复效果

基金项目: 国家自然科学基金项目-创新研究群体项目 (51621003)
详细信息
    通讯作者:

    毛倩瑾,博士,副教授,硕士生导师,研究方向为混凝土外加剂、自修复混凝土 E-mail: maoqj@bjut.edu.cn

  • 中图分类号: TU599; TB332

Multiscale interfacial characterization and self-healing effect of cementitious materials containing absorbent microcapsules

Funds: National Natural Science Foundation of China - Innovative Research Group Project (51621003)
  • 摘要: 针对以海藻酸钙为壳、环氧树脂E-51为核的吸水性微胶囊(SA)与水泥基体界面结合力较弱的问题,利用硅烷偶联剂对SA微胶囊表面进行修饰处理,改善其与水泥基体的界面结合,以提升自修复效果。采用SEM、显微硬度和拉拔试验等分析测试手段分别从微观、介观到宏观尺度分析界面结合情况,并通过砂浆试件损伤修复后的抗压强度、抗水渗透性的恢复率来评价自修复效果。研究结果表明,SA经偶联剂KH792修饰处理后,与水泥基体的界面结合更为紧密,界面处显微硬度提高了159%,界面粘结强度提高了67%;掺加4wt%(水泥质量)SA的砂浆,荷载损伤修复后抗压强度恢复率103%,水压损伤修复后抗渗性恢复率达到118%。硅烷偶联剂表面修饰显著提升了SA与水泥基体的界面结合,水泥基材料自修复效果增强。

     

  • 图  1  环氧树脂E-51@海藻酸钙微胶囊(SA)制备示意图

    Figure  1.  Preparation diagram of epoxy resin E-51@calcium alginate absorbent microcapsule (SA)

    图  2  “三明治”夹心结构试件示意图

    Figure  2.  "Sandwich" sandwich structure specimen diagram

    图  3  (a) 环氧树脂@海藻酸钙微胶囊(SA)形貌SEM图;(b) 去除核环氧树脂E-51的SA内部SEM图

    Figure  3.  (a) SEM image of calcium alginate@epoxy resin (SA) morphology; (b) SEM image of the internal SA of nuclear epoxy resin E-51

    图  4  硅烷偶联剂修饰后微胶囊表面EDS面扫:(a) KH-1扫描位置;(b) KH-1表面N元素;(c) KH-1表面Si元素; (d) KH-2扫描位置;(e) KH-2表面N元素;(f) KH-2表面Si元素; (g) KH-3扫描位置;(h) KH-3表面N元素;(i) KH-3表面Si元素

    Figure  4.  EDS surface scan images of microcapsules modified with silane coupling agent: (a) KH-1 scanning position; (b) KH-1 surface N elements; (c) KH-1 surface Si elements; (d) KH-2 scanning position; (e) KH-2 surface N elements; (f) KH-2 surface Si elements; (g) KH-3 scanning position; (h) KH-3 surface N elements; (i) KH-3 surface Si elements

    图  5  微胶囊与水泥基体界面结合处形貌SEM图:(a) SA-100X;(b) KH-1-100X;(c) KH-2-100X;(d) KH-3-100X

    Figure  5.  SEM image of the interface between microcapsule and cement matrix: (a) SA-100X; (b) KH-1-100X; (c) KH-2-100X; (d) KH-3-100X

    图  6  SA和KH-3组样品不同位置处的维氏硬度:(a) 测试位置示意图;(b) 维氏硬度

    Figure  6.  Vickers hardness of SA and KH-3 samples at different locations: (a) Schematic diagram of test locations; (b) Vickers hardness

    图  7  掺SA、KH-1、KH-2和KH-3样品的界面粘结强度

    Figure  7.  Interfacial bonding strength of samples doped with SA, KH-1, KH-2 and KH-3

    图  8  硅烷偶联剂KH792结构式

    Figure  8.  Silane coupling agent KH792 structural formula

    图  9  水解处理法修饰微胶囊反应示意图

    Figure  9.  Schematic diagram of the hydrolysis treatment method for modifying microcapsules

    图  10  直接处理法修饰微胶囊反应示意图

    Figure  10.  Schematic diagram of the direct treatment method for modifying microcapsules

    图  11  对照组砂浆、掺SA砂浆和掺KH-3砂浆自修复前后的抗压强度

    Figure  11.  Compressive strength of control group mortar, SA mortar and KH-3 mortar before and after self-repair

    图  12  对照组砂浆、掺SA砂浆和掺KH-3砂浆试样自修复前后的抗水渗透性

    Figure  12.  Water permeability resistance of mortar, SA mortar and KH-3 mortar samples in control group before and after self-repair

    表  1  实验所用P.I 42.5硅酸盐水泥的化学成分及熟料矿物组成

    Table  1.   Chemical composition and clinker mineral composition of P.I 42.5 Portland cement used in the experiment

    ConstituteSiO2Fe2O3CaOMgOSO3Na2Oeqf-CaOC2SC3SC3AC4AF
    Content/wt%22.153.1264.762.980.650.570.919.0159.426.369.48
    下载: 导出CSV

    表  2  实验所用 ISO 标准砂粒径分布

    Table  2.   ISO standard sand particle diameter distribution used in the experiment

    Square hole side length/ mmCumulative screening margin/%Square hole side length/ mmCumulative screening margin/%
    2.000.567±5
    1.67±50.1687±5
    1.033±50.0899±1
    下载: 导出CSV

    表  3  偶联剂处理微胶囊的工艺编号

    Table  3.   Processing code for coupling agent-treated microcapsules

    Serial number Process mode mKH792mSA
    KH-1 Hydrolysis method 1∶10
    KH-2 Direct method 1∶1
    KH-3 Direct method 2∶1
    下载: 导出CSV
  • [1] 房国豪, 陈锦妹, 王琰帅等. 微胶囊自修复混凝土研究进展[J]. 硅酸盐学报, 2023, 51(9): 2423-2432.

    FANG Guohao, CHEN Jinmei, WANG Yanshuai, et al. Research development on microencapsulated self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2423-2432(in Chinese).
    [2] YANG Z, HOLLAR J, HE X, et al. A self - healing cementitious composite using oil core / silica gel shell microcapsules[J]. Cement & Concrete Composites, 2011, 33(4): 506-512.
    [3] XUE C, LI W, LI J, et al. A review study on encapsulation - based self - healing for cementitious materials[J]. Structural Concrete, 2019, 20(1): 198-212. doi: 10.1002/suco.201800177
    [4] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites (vol 409, pg 794, 2001)[J]. Nature, 2002, 415(6873): 817. doi: 10.1038/415817a
    [5] MA Y, LIU J, ZHANG Y, et al. Mechanical behavior and self-healing mechanism of polyurea-based double-walled microcapsule/epoxy composite films[J]. Progress in Organic Coatings, 2021, 157: 106283. doi: 10.1016/j.porgcoat.2021.106283
    [6] WANG X F, HAN R, HAN T L, et al. Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory[J]. Materials Chemistry and Physics, 2018, 215: 346-354. doi: 10.1016/j.matchemphys.2018.05.041
    [7] LV L, ZHANG H, SCHLANGEN E, et al. Experimental and numerical study of crack behaviour for capsule-based self-healing cementitious materials[J]. Construction and Building Materials, 2017, 156: 219-229. doi: 10.1016/j.conbuildmat.2017.08.157
    [8] MA X, YUAN Q, LIU J, et al. Effect of water absorption of SAP on the rheological properties of cement-based materials with ultra-low w/b ratio[J]. Construction and Building Materials, 2019, 195: 66-74. doi: 10.1016/j.conbuildmat.2018.11.050
    [9] MAULUDIN L M, ZHANG X, RABCZUK T. Computational modeling of fracture in encapsulation-based self-healing concrete using cohesive elements[J]. Composite Structures, 2018, 196: 63-75.
    [10] LV L, GUO P, XING F, et al. Trigger efficiency enhancement of polymeric microcapsules for self-healing cementitious materials[J]. Construction and Building Materials, 2020, 235: 117443. doi: 10.1016/j.conbuildmat.2019.117443
    [11] 张璐, 毛倩瑾, 伍文文等. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208008

    ZHANG Lu, MAO Qianjin, WU Wenwen, et al. Interface modification of water absorbent microcapsules to improve impermeability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 41(8): 2663-2671(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208008
    [12] SOUZA L, AI-TABBAA A. Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials[J]. Construction and Building Materials, 2018, 184: 713-722. doi: 10.1016/j.conbuildmat.2018.07.005
    [13] Qianjin Mao, Jiayi Chen, Wenjing Qi, et al. Improving self-healing and shrinkage reduction of cementitious materials using water absorbing polymer microcapsules. Materials. 2022, 15(3): 847.
    [14] Qianjin Mao, Jiayi Chen, Wenwen Wu, et al. Multiple self-healing effects of water-absorbing microcapsules in cementitious materials. Polymers. 2023, 15(2): 428.
    [15] 郎风超, 朱静, 李云芳等. SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能[J]. 复合材料学报, 2020, 37(6): 1383-1389.

    LANG Fengchao, ZHU Jing, LI Yunfang, et al. Characterization of interfacial meso-mechanical properties of composites using fiber push-out under SEM combing with electron beam moiré method[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1383-1389(in Chinese).
    [16] 戚亮亮, 程乐乐, 余木火等. Ⅳ型高压储氢气瓶用碳纤维复合材料界面表征与分析[J]. 合成纤维, 2023, 52(4): 28-32.

    QI Liangliang, CHENG Lele, YU Muhuo, et al. Interface Characterization and Analysis of Carbon Fiber Composites for Type IV high-pressure Hydrogen Storage Cylinder[J]. Synthetic Fiber in China, 2023, 52(4): 28-32(in Chinese).
    [17] JIN X, WU G. Quasi - in - situ analysis of adhesion failure at reduced iron / substrate interface of advanced high strength steel[J]. Materials Characterization, 2023, 197: 112712. doi: 10.1016/j.matchar.2023.112712
    [18] 徐晶, 王彬彬. 浆/集界面纳米改性的多尺度力学表征[J]. 电子显微学报, 2015, 34(6): 492-497. doi: 10.3969/j.issn.1000-6281.2015.06.008

    XU Jing, WANG Binbin. Multi-scale mechanical characterization of nanoscale modification of slurry/collector interface[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(6): 492-497(in Chinese). doi: 10.3969/j.issn.1000-6281.2015.06.008
    [19] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征: 理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870. doi: 10.11896/cldb.201905019

    QIU Bo, XING Shuming, DONG Qi. Characterization of interfacial bonding strength of particles reinforced metal matrix composites: Theory model, Finite element Simulation and Experimental test[J]. Materials Reports, 2019, 33(5): 862-870(in Chinese). doi: 10.11896/cldb.201905019
    [20] SHI C, WANG X, ZHAO Y, et al. Bond strength and interface characteristics between magnesium phosphate cement mortar and ordinary Portland cement concrete in a frigid environment[J]. International Journal of Pavement Engineering, 2024, 25(1): 2318610. doi: 10.1080/10298436.2024.2318610
    [21] 中华人民共和国住房和城乡建设部. 挤塑聚苯板(XPS)薄抹灰外墙外保温系统材料: GB/T 30595-2014 [S]. 北京: 中国标准出版社, 2014.

    Ministry of Housing and Urban-Rural Development, People's Republic of China. Extruded polystyrene board (XPS) thin plaster external insulation system material: GB/T 30595-2014 [S]. Beijing: China Standard Press, 2014(in Chinese).
    [22] 中国建筑材料联合会. 干混砂浆物理性能试验方法: GB/T 29756-2013 [S]. 北京: 中国标准出版社, 2013.

    China Building Materials Federation. Test method for physical properties of dry mixed mortar: GB/T 29756-2013 [S]. Beijing: China Standard Press, 2013(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T70-2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development, People's Republic of China. Standard of test method for basic properties of building mortar: JGJ/T70-2009[S]. Beijing: China Architecture and Construction Press, 2009(in Chinese).
    [24] LLOYD D J, GALLERNEAULT M, WAGSTAFF R B. The Deformation of Clad Aluminum Sheet Produced By Direct Chill Casting[J]. Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science, 2010, 41A(8): 2093-2103.
    [25] ZHANG Q, GAO F, ZHANG C, et al. Enhanced dielectric tunability of Ba0.6Sr0.4ATiO3/ Poly (vinylidene fluoride) composites via interface modification by silane coupling agent[J]. Composites Science and Technology, 2016, 129: 93-100. doi: 10.1016/j.compscitech.2016.04.016
    [26] LI H, WANG R, HU H, et al. Surface modification of self-healing poly (urea-formaldehyde) microcapsules using silane-coupling agent[J]. Applied Surface Science, 2008, 255(5): 1894-1900. doi: 10.1016/j.apsusc.2008.06.170
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2024-06-06
  • 录用日期:  2024-06-14
  • 网络出版日期:  2024-06-29

目录

    /

    返回文章
    返回