留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物纤维自结合成型环保材料研究进展

程鹏 钟土华 陈红

程鹏, 钟土华, 陈红. 植物纤维自结合成型环保材料研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 程鹏, 钟土华, 陈红. 植物纤维自结合成型环保材料研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
CHENG Peng, ZHONG Tuhua, CHEN Hong. Research progress of plant fiber self-bonding molding environmentally friendly materials[J]. Acta Materiae Compositae Sinica.
Citation: CHENG Peng, ZHONG Tuhua, CHEN Hong. Research progress of plant fiber self-bonding molding environmentally friendly materials[J]. Acta Materiae Compositae Sinica.

植物纤维自结合成型环保材料研究进展

基金项目: 国家重点研发计划课题(2022YFD2200901);国际竹藤中心基本科研业务费专项资金(1632022025)
详细信息
    通讯作者:

    钟土华,博士,副研究员,硕士生导师,研究方向为竹基纳米纤维素制备、改性及应用 E-mail: zhongth@icbr.ac.cn

    陈红,博士,副教授,硕士生导师,研究方向为绿色竹家居材料、竹家具制造工艺 E-mail: chenhong@njfu.edu.cn

  • 中图分类号: TB332

Research progress of plant fiber self-bonding molding environmentally friendly materials

Funds: National Key Research & Development Program of China (2022YFD2200901); Fundamental Research Funds of the International Centre for Bamboo and Rattan (1632022025)
  • 摘要: 植物纤维作为天然生物质材料,在绿色环保材料开发和应用方面备受关注。植物基微纳米纤维具有高比表面积、高强度、高模量等优异特性,利用其构建绿色环保结构材料,在替代部分不可生物降解塑料材料及产品方面具有巨大潜力。本文综述了目前植物纤维自结合成型环保材料研究进展,主要讨论了植物微米纤维成型材料、植物纳米纤维素结构材料和植物微纳米纤维结构材料的制备工艺及性能表现,展望了未来植物纤维自结合成型环保材料的重点研究方向,为促进植物纤维在结构材料领域发展和应用提供一定的参考。

     

  • 图  1  (a) 机械研磨后的竹粉制备竹纤维自结合成型材料[15];(b) 竹纤维与竹粉混合制备竹纤维自结合成型材料[16];(c) 竹纤维与薄壁细胞混合制备竹纤维自结合成型材料[17]

    Figure  1.  (a) Preparation of bamboo fiber self-bonding molding materials from mechanically grinding bamboo powders[15];(b) Preparation of bamboo fiber Self-bonding molding materials by mixing bamboo fibers and bamboo powders[16];(c) Preparation of bamboo fiber Self-bonding molding materials by mixing bamboo fibers and parenchyma cells[17]

    图  2  (a) 蒸汽爆破预处理后植物纤维自结合成型机制[11];(b) 不同竹单元的蒸汽爆破机制[21]

    Figure  2.  (a) Self-bonding molding mechanism of plant fiber after steam explosion pretreatment[11];(b) Steam explosion mechanism of different bamboo units[21]

    图  3  木屑粉末经碱处理后热压制备出各向同性木材[29]

    Figure  3.  Preparation of isotropic wood by hot pressing of sawdust powder after alkali treatment[29]

    图  4  (a) 制备高密度氢键网络的植物纳米纤维素结构材料[49];(b)基于植物纳米纤维素和云母微片制备的仿生结构材料[50];(c)马尾藻纳米纤维素制备致密结构材料[51];(d) 植物纳米纤维素制备耐火仿生结构材料[52]

    Figure  4.  (a) Preparation of plant nanocellulose structural materials with high density hydrogen bond networks[49]; (b) Bioinspired structural materials based on plant nanocellulose and mica microplatelet[50]; (c) Preparation of dense structural materials from sargassum nanocellulose[51]; (d) Preparation of fire-resistant bioinspired structural materials from plant nanocellulose[52]

    图  5  (a) 剑麻微纤维与纳米纤维素结合制备高性能结构材料[53];(b) 木材加工剩余物制备高性能植物微纳米纤维结构材料[54]

    Figure  5.  (a) Preparation of high performance structural materials by combining sisal microfibers with nanocellulose[53]; (b) Preparation of high performance plant micro-nano fiber structural materials from wood processing residues[54]

    图  6  (a) 纳米纤维素作为粘合剂生产刨花板[55];(b) 纳米纤维素作为粘合剂制备的无胶纤维板[57]

    Figure  6.  (a) Production of particleboard with nanocellulose as adhesive[55]; (b) Binderless fiberboard prepared with nanocellulose as adhesive [57]

    表  1  植物纤维自结合成型环保材料的类型、原料、制备工艺与性能

    Table  1.   Types, raw materials, preparation process and the properties of plant fiber self-bonding molding environmentally friendly materials

    Material types Raw
    materials
    Type of
    pretreatment
    Hot pressing
    temperature/
    Hot pressing
    pressure/MPa
    Hot pressing
    time/min
    Flexural strength/
    MPa
    Flexural modulus/
    GPa
    References
    Plant
    Micro-fiber
    molding
    materials
    Bamboo culms Mechanical grinding 200 18.15 13.2 14.10 2.99 [15]
    Bamboo culms Mechanical grinding 200 18.15 13.2 10.77 2.23 [16]
    Bamboo culms Mechanical grinding 200 18.2 13 14.54 2.66 [17]
    Bamboo
    residues
    Steam
    explosion
    180 5 20 15.9 - [23]
    Wheat straw Steam
    explosion
    190 3.6 8 19.8 - [24]
    Rattan furniture waste Chemical 180 - 5 44.4 - [27]
    The sawdust of pine wood Chemical 95 100 - 170 10 [29]
    Cassava stillage residue Chemical and
    mechanical
    120 8 5 ~16 ~2.0 [30]
    Rubber wood
    fiber
    Enzymatic 200 5 6 9.29 3.60 [37]
    Triarrhena
    residue
    Enzymatic 185 10 8 18.12 4.25 [38]
    Softwood
    residues
    Lignin
    addition
    230 4.2 5 47.0 8.2 [42]
    Corn residues Lignin
    addition
    230 0.23 - ~70 ~5.5 [43]
    Plant
    nanocellulose
    structural
    materials
    Softwood pulp Chemical 80 50 60 300 16 [49]
    TiO2-mica and plant cellulose nanofiber Chemical 80 100 60 281 20 [50]
    Sargassum Chemical 120 60 60 283 15.4 [51]
    Plant cellulose nanofiber and nanoclay Chemical 90 70 120 253 16 [52]
    Plant micro and nanofiber
    structural
    materials
    Sisal fibers and plant cellulose nanofiber Chemical 90 100 180 191 8 [53]
    Particles of
    poplar wood
    Chemical 80 5 - 225.17 13.3 [54]
    Softwood chips Mechanical grinding 180 - 7 12.1 1.5 [56]
    Cellulose
    Powder and wood flour
    Mechanical pulverizing 120 2.4 15 ~15 ~2.2 [58]
    Wood flour Mechanical pulverizing 120 1 10 ~10 ~1.5 [59]
    Wood flour Mechanical pulverizing 120 0.85 10 ~13 ~1.8 [60]
    下载: 导出CSV
  • [1] 孙文潇, 杨帆, 侯梦宗等. 环境中的微塑料污染及降解[J]. 中国塑料, 2023, 37(11): 117-126.

    SUN Wenxiao, YANG Fan, HOU Mengzong, et al. Microplastic pollution and degradation in environment[J]. China Plastics, 2023, 37(11): 117-126(in Chinese).
    [2] ROCHMAN C M, BROWNE M A, HALPERN B S, et al. Classify plastic waste as hazardous[J]. Nature, 2013, 494(7436): 169-171. doi: 10.1038/494169a
    [3] LITHNER D, LARSSON A, DAVE G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18): 3309-3324. doi: 10.1016/j.scitotenv.2011.04.038
    [4] OLIVEIRA J, BELCHIOR A, DA Silva V D, et al. Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization[J]. Frontiers in Marine Science, 2020, 7: 567126. doi: 10.3389/fmars.2020.567126
    [5] Ramesh M, Palanikumar K, Reddy K H. Plant fibre based bio-composites: Sustainable and renewable green materials[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 558-584. doi: 10.1016/j.rser.2017.05.094
    [6] 刘雅奇, 刘运浩, 李普旺等. 几种热带植物纤维在复合材料领域的研究进展[J]. 化工新型材料, 2022, 50(3): 39-44.

    LIU Yaqi, LIU Yunhao, LI Puwang, et al. Research progress on several tropical plant fibers composites[J]. New Chemical Materials, 2022, 50(3): 39-44(in Chinese).
    [7] 韩少杰. 中密度纤维板生产工艺纵横谈[J]. 中国人造板, 2007, (7): 22-25+30. doi: 10.3969/j.issn.1673-5064.2007.07.007

    HAN Shaojie. The production technology of MDF[J]. China Wood-based Panels, 2007, (7): 22-25+30(in Chinese). doi: 10.3969/j.issn.1673-5064.2007.07.007
    [8] 韩少杰. 中密度纤维板生产工艺纵横谈(续)[J]. 中国人造板, 2007, (8): 17-20. doi: 10.3969/j.issn.1673-5064.2007.08.005

    HAN Shaojie. The production technology of MDF (continued)[J]. China Wood-based Panels, 2007, (8): 17-20 (in Chinese). doi: 10.3969/j.issn.1673-5064.2007.08.005
    [9] 黄伟琨, 潘仲年. 我国中密度纤维板生产及应用进展[J]. 林业机械与木工设备, 2014, 42(3): 8-10. doi: 10.3969/j.issn.2095-2953.2014.03.002

    HUANG Weikun, PAN Zhongnian. Production and Application Progress of Medium Density Fiberboard(MDF) in China[J]. Forestry Machinery & Woodworking Equipment, 2014, 42(3): 8-10(in Chinese). doi: 10.3969/j.issn.2095-2953.2014.03.002
    [10] 张洋. 纤维板制造学[M]. 中国林业出版社, 2012.

    ZHANG Yang. Fiberboard Manufacturing[M]. China Forestry Publishing House, 2012(in Chinese).
    [11] ZHANG D, ZHANG A, XUE L. A review of preparation of binderless fiberboards and its self-bonding mechanism[J]. Wood Science and Technology, 2015, 49: 661-679. doi: 10.1007/s00226-015-0728-6
    [12] 祝其丽, 何明雄, 谭芙蓉等. 木质纤维素生物质预处理研究现状[J]. 生物技术进展, 2015, 5(6): 414-419. doi: 10.3969/j.issn.2095-2341.2015.06.02

    ZHU Qili, HE Mingxiong, TAN Furong, et al. Progress on Pretreatment Technologies of Lignocellulosic Biomass[J]. Curr. Biotech., 2015, 5(6): 414-419(in Chinese). doi: 10.3969/j.issn.2095-2341.2015.06.02
    [13] NASIR M, KHALI D P, JAWAID M, et al. Recent development in binderless fiber-board fabrication from agricultural residues: A review[J]. Construction and Building Materials, 2019, 211: 502-516. doi: 10.1016/j.conbuildmat.2019.03.279
    [14] 贾丽萍, 姚秀清, 杨磊等. 木质纤维素的预处理技术进展[J]. 纤维素科学与技术, 2022, 30(2): 72-80.

    JIA Liping, YAO Xiuqing, YANG Lei, et al. Advances in Pretreatment Technology of Lignocellulose[J]. Journal of Cellulose Science and Technology, 2022, 30(2): 72-80(in Chinese).
    [15] SHI J J, XU X, ZHONG T H, et al. Fabrication and Application of Eco-friendly Bamboo Self-Bonded Composites for Furniture[J]. ACS Sustainable Chemistry & Engineering, 2023.
    [16] SHI J J, ZHONG T H, XU X, et al. Eco-friendly and special-shaped bamboo binderless fiberboards fabricated by self-bonding technology: Effect of bamboo fibers with different sizes[J]. Industrial Crops and Products, 2023.
    [17] CHEN H, SHI J J, ZHONG T H, et al. Tunable Physical-Mechanical Properties of Eco-Friendly and Sustainable Processing Bamboo Self-Bonding Composites by Adjusting Parenchyma Cell Content[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10333-10343.
    [18] 曹运齐, 解先利, 郭振强等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495.

    CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495(in Chinese).
    [19] 刘忠, 王慧梅, 惠岚峰. 木质纤维原料蒸汽爆破预处理技术与应用现状[J]. 天津科技大学学报, 2021, 36(2): 1-7.

    LIU Zhong, WANG Huimei, HUI Lanfeng. The Steam Explosion Technology of Lignocellulose and Application Status[J]. Journal of Tianjin University of Science & Technology, 2021, 36(2): 1-7(in Chinese).
    [20] LIU Z H, QIN L, Jin M J, et al. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment[J]. Bioresource technology, 2013, 132: 5-15. doi: 10.1016/j.biortech.2013.01.016
    [21] ZHAO W J, ZHANG J, ZHANG W F, et al. Effect of bamboo unit morphology on the preparation of bamboo fibers by steam explosion[J]. Industrial Crops and Products, 2023, 202: 117066. doi: 10.1016/j.indcrop.2023.117066
    [22] LI J J, LIAN C P, WU J Y, et al. Morphology, chemical composition and thermal stability of bamboo parenchyma cells and fibers isolated by different methods[J]. Cellulose, 2023, 30(4): 2007-2021. doi: 10.1007/s10570-022-05030-6
    [23] LUO H, YUE L, Wang N, et al. Manufacture of binderless fiberboard made from bamboo processing residues by steam explosion pretreatment[J]. Wood Res, 2014, 59(5): 861-870.
    [24] LUO P, YANG C M. Binderless particleboard from steam exploded wheat straw[J]. Advanced Materials Research, 2011, 179: 807-811.
    [25] 朱建伟, 龚德鸿, 茅佳华等. 木质纤维生物质预处理技术研究进展[J]. 新能源进展, 2022, 10(4): 383-392. doi: 10.3969/j.issn.2095-560X.2022.04.012

    ZHU Jianwei, GONG Dehong, MAO Jiahua, et al. Research Progress of Lignocellulosic Biomass Pretreatment Technology[J]. Advances in New and Renewable Energy, 2022, 10(4): 383-392(in Chinese). doi: 10.3969/j.issn.2095-560X.2022.04.012
    [26] 亓伟, 王闻, 王琼等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158. doi: 10.3969/j.issn.2095-560X.2013.02.005

    QI Wei, WANG Wen, WANG Qiong, et al. Review on the Pretreatment Method and Mechanism of Lignocellulose[J]. Advances in New and Renewable Energy, 2013, 1(2): 150-158(in Chinese). doi: 10.3969/j.issn.2095-560X.2013.02.005
    [27] AHMAD Z, TAJUDDIN M, SALIM N F F, et al. Effect of alkaline treatment on properties of rattan waste and fabricated binderless particleboard[J]. IIUM Engineering Journal, 2018, 19(1): 185-196. doi: 10.31436/iiumej.v19i1.879
    [28] HALVARSSON S, EDLUND H, NORGREN M. Manufacture of non-resin wheat straw fibreboards[J]. Industrial crops and products, 2009, 29(2-3): 437-445. doi: 10.1016/j.indcrop.2008.08.007
    [29] GUAN Q F, HAN Z M, YANG H B, et al. Regenerated isotropic wood[J]. National Science Review, 2021, 8(7): 137-145.
    [30] Zhang Y, Gan T, Luo Y, et al. A green and efficient method for preparing acetylated cassava stillage residue and the production of all-plant fibre composites[J]. Composites science and technology, 2014, 102: 139-144. doi: 10.1016/j.compscitech.2014.07.028
    [31] Yuan Z, Wen Y, Kapu N S. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment[J]. Bioresource technology, 2018, 247: 242-249. doi: 10.1016/j.biortech.2017.09.080
    [32] Arslan C, Javed M, Sattar A, et al. Optimizing the Effect of Chemical Pretreatment on Lignocellulosic Properties of Wheat Straw[J]. Journal of Wastes and Biomass Management (JWBM), 2020, 2(2): 28-32.
    [33] Lu X, Zhang M Q, Rong M Z, et al. Self-reinforced melt processable composites of sisal[J]. Composites science and technology, 2003, 63(2): 177-186. doi: 10.1016/S0266-3538(02)00204-X
    [34] ARSLAN C, JAVED M, SATTAR A, et al. Optimizing the Effect of Chemical Pretreatment on Lignocellulosic Properties of Wheat Straw[J]. Journal of Wastes and Biomass Management (JWBM), 2020, 2(2): 28-32.
    [35] 赵文萱, 焦宏官, 郑亚强. 预处理及木质素酶对玉米秸秆酶解糖化效果影响[J]. 吉林农业大学学报, 2022, 44(5): 548-556.

    ZHAO Wenxuan, JIAO Hongguan, ZHENG Yaqiang. Effects of Pretreatment and Ligninase on Enzymatic Hydrolysis and Saccharification of Corn Stalk[J]. Journal of Jilin Agricultural University, 2022, 44(5): 548-556(in Chinese).
    [36] MALHERBE S, CLOETE T E. Lignocellulose biodegradation: fundamentals and applications[J]. Reviews in Environmental Science and Biotechnology, 2002, 1(2): 105-114. doi: 10.1023/A:1020858910646
    [37] NASIR M, GUPTA A, BEG M D H, et al. Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber[J]. BioResources, 2013, 8(3): 3599-3608.
    [38] 李茂钒. 杂色云芝处理荻竹制备中密度纤维板研究[D]. 华中科技大学, 2014.

    LI Maofan. Study on middle density fiberboard production of Triarhena by Coriolus versicolor[D]. Huazhong University of Science and Technology, 2014(in Chinese).
    [39] 王营超, 田中建, 吉兴香等. 木质纤维原料的生物酶预处理理论与技术研究进展[J]. 中国造纸学报, 2022, 37(4): 92-98.

    WANG Yingchao, TIAN Zhongjian, JI Xingxiang, et al. Research Progress on Theory and Technology of Bio-enzyme Pretreatment for Lignocellulosic Materials[J]. Transactions of China Pulp and Paper, 2022, 37(4): 92-98(in Chinese).
    [40] SHARMA A, AGGARWAL N K, SHARMA A, et al. Biological pretreatment: need of the future[J]. Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol, 2020: 51-72.
    [41] Zhang M Q, Rong M Z, Lu X. Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites[J]. Composites Science and Technology, 2005, 65(15-16): 2514-2525. doi: 10.1016/j.compscitech.2005.06.018
    [42] ANGLèS M N, FERRANDO F, FARRIOL, et al. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition[J]. Biomass and Bioenergy, 2001, 21(3): 211-224. doi: 10.1016/S0961-9534(01)00031-9
    [43] THENG D, El Mansouri N E, ARBAT Pujolràs G, et al. Fiberboards made from corn stalk thermomechanical pulp and kraft lignin as a green adhesive[J]. Bioresources, 2017, 12(2): 2379-2393.
    [44] 姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083.

    JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083(in Chinese).
    [45] NITU I P, SHAMS M, ISLAM M, et al. Development of binderless composites from different nonwood lignocellulosic materials: Overview[J]. Handbook of ecomaterials. Springer, Cham, 2018: 1-15.
    [46] LAMAMING J, SULAIMAN O, SUGIMOTO T, et al. Influence of chemical components of oil palm on properties of binderless particleboard[J]. BioResources, 2013, 8(3): 3358-3371.
    [47] RAY U, ZHU S, PANG Z, et al. Mechanics design in cellulose-enabled high-performance functional materials[J]. Advanced Materials, 2021, 33(28): 2002504. doi: 10.1002/adma.202002504
    [48] 宋戎妆, 侯远震, 何泽洲, 等. 纳米纤维素序构材料界面力学行为和设计的研究进展[J]. 中国科学技术大学学报, 2021, 51(10): 766-786.

    SONG Rongzhuang, HOU Yuanzhen, HE Zezhou, et al. Research progress of interfacial mechanical behavior and design of nanocellulose-based sequentially architected materials[J]. Journal of University of Science and Technology of China, 2021, 51(10): 766-786(in Chinese).
    [49] GUAN Q F, YANG H B, HAN Z M, et al. Plant cellulose nanofiber-derived structural material with high-density reversible interaction networks for plastic substitute[J]. Nano Letters, 2021, 21(21): 8999-9004. doi: 10.1021/acs.nanolett.1c02315
    [50] GUAN Q F, YANG H B, HAN Z M, et al. An all-natural bioinspired structural material for plastic replacement[J]. Nature communications, 2020, 11(1): 5401. doi: 10.1038/s41467-020-19174-1
    [51] LI D H, HAN Z M, HE Q, et al. Ultrastrong, Thermally Stable, and Food-Safe Seaweed-Based Structural Material for Tableware[J]. Advanced Materials, 2023, 35(1): 2208098. doi: 10.1002/adma.202208098
    [52] YANG H B, LIU Z X, CHEN H, et al. An all-natural fire-resistant bioinspired cellulose-based structural material by external force-induced assembly[J]. Materials Today Nano, 2023, 23: 100342. doi: 10.1016/j.mtnano.2023.100342
    [53] YUE X, YANG H B, HAN Z M, et al. Tough and Moldable Sustainable Cellulose-Based Structural Materials via Multiscale Interface Engineering[J]. Advanced Materials, 2023: 2306451.
    [54] DONG X, SONG R, WANG P, et al. Multiscale Engineered Waste Wood Particles toward a Sustainable, Scalable, and High-Performance Structural Material[J]. Advanced Functional Materials, 2023: 2308361.
    [55] TAYEB A H, AMINI E, GHASEMI S, et al. Cellulose nanomaterials—Binding properties and applications: A review[J]. Molecules, 2018, 23(10): 2684. doi: 10.3390/molecules23102684
    [56] DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard[J]. Cellulose, 2017, 24: 3037-3050. doi: 10.1007/s10570-017-1320-z
    [57] DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards[J]. Industrial crops and products, 2017, 109: 27-36. doi: 10.1016/j.indcrop.2017.08.004
    [58] KOJIMA Y, MINAMINO J, ISA A, et al. Binding effect of cellulose nanofibers in wood flour board[J]. Journal of wood science, 2013, 59: 396-401. doi: 10.1007/s10086-013-1348-0
    [59] KOJIMA Y, ISA A, KOBORI H, et al. Evaluation of binding effects in wood flour board containing ligno-cellulose nanofibers[J]. Materials, 2014, 7(9): 6853-6864. doi: 10.3390/ma7096853
    [60] KOJIMA Y, ISHINO A, KOBORI H, et al. Reinforcement of wood flour board containing ligno-cellulose nanofiber made from recycled wood[J]. Journal of wood science, 2015, 61(5): 492-499. doi: 10.1007/s10086-015-1493-8
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 修回日期:  2024-03-18
  • 录用日期:  2024-03-30
  • 网络出版日期:  2024-04-26

目录

    /

    返回文章
    返回