留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植酸脒基脲的合成及其对木材的阻燃

郑书清 张益 穆佳鑫 王永娟 王奉强 张志军

郑书清, 张益, 穆佳鑫, 等. 植酸脒基脲的合成及其对木材的阻燃[J]. 复合材料学报, 2025, 42(1): 7200-7214.
引用本文: 郑书清, 张益, 穆佳鑫, 等. 植酸脒基脲的合成及其对木材的阻燃[J]. 复合材料学报, 2025, 42(1): 7200-7214.
ZHENG Shuqing, ZHANG Yi, MU Jiaxin, et al. Preparation of amidinourea phytate and its flame retardant effect on wood[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 7200-7214.
Citation: ZHENG Shuqing, ZHANG Yi, MU Jiaxin, et al. Preparation of amidinourea phytate and its flame retardant effect on wood[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 7200-7214.

植酸脒基脲的合成及其对木材的阻燃

基金项目: 国家自然科学基金 (31890773, 31670570)
详细信息
    通讯作者:

    张志军,博士,副教授,博士生导师,研究方向为生物质及其复合材料的制备、生物质复合材料热化学转化及材料阻燃E-mail: zzj_1003@163.com

  • 中图分类号: S781.73; TB332

Preparation of amidinourea phytate and its flame retardant effect on wood

Funds: National Natural Science Foundation of China (No. 31890773 and 31670570)
  • 摘要: 植酸(Phytic acid, PA)是一种极具潜力的磷系水性生物基阻燃剂,但其单独处理木材存在PA易流失,燃烧烟释放量大等问题,通过与其他氮、硼系阻燃剂复配,可在一定程度上缓减上述问题。然而,由于PA酸性较强,PA及其复配阻燃剂处理木材时会造成木材降解,进而影响其力学强度。以PA和双氰胺为原料合成了一类新型磷氮阻燃剂——植酸脒基脲(Amidinourea phytate,AUP)。利用FTIR、XRD、XPS及TG等手段对AUP阻燃剂理化特性进行了表征。采用TG、Py-GC/MS、氧指数测定仪、CONE等研究了AUP对杨木的热解及燃烧行为的影响,探究了其阻燃机制。结果表明:AUP阻燃材在较低的增重率(8.73%)下表现出优异的阻燃及抑烟性能,优于增重率为14.8%的PA阻燃材,且抗流失性较好;AUP阻燃材的LOI值为34.8%,较未处理材提高了54.0%;总释热量和总生烟量分别降低了57.7%、65.7%,成炭率提高了148%,残炭结构更为密实,具有凝聚相与气相协效阻燃效果。此外,AUP阻燃材冲击强度比未处理材提高了58.5%,而PA阻燃材则下降了29.2%。

     

  • 图  1  AUP-x的溶解度变化曲线

    Figure  1.  Solubility change curve of AUP-x

    图  2  PA、DCD、AUP- x的FTIR(a)及AUP- x的XRD(b)、XPS C1s(c)/N1s(d)能谱

    Figure  2.  FTIR(a) of PA, DCD, AUP-x, XRD(b) and C1s(c)/N1s(d) of XPS patterns from AUP- x

    图  3  AUP阻燃剂的合成机制

    Figure  3.  Synthesis Mechanism of AUP Flame retardant

    图  4  AUP- x阻燃剂在N2气氛下的热重分析曲线:(a) TG;(b) DTG

    Figure  4.  Thermogravimetric analysis curves of AUP-x in N2 atmosphere: (a) TG; (b) DTG

    图  5  未处理材及AUP阻燃处理材的SEM图像:(a)、(b)为未处理材的横截面;(c)、(d)为AUP处理材的横截面;(e)为AUP处理材的纵切面;(f)为附着在木材内部的AUP阻燃剂分子形貌

    Figure  5.  SEM images of untreated wood and AUP flame retardant treated wood: (a), (b) are cross section of untreated wood; (c), (d) are cross section of AUP treated wood; (e) are longitudinal section of AUP treated wood; (f) are molecular morphology of AUP flame retardant attached to wood.

    图  6  未处理材及抗流失测试前后的PA、AUP阻燃材LOI值

    Figure  6.  LOI values of control, PA/wood and AUP/wood before and after loss resistance test

    图  7  未处理材、PA阻燃材、AUP阻燃材在50 kW/m2下的锥形量热测试结果:(a)热释放速率(HRR);(b)总热释热量(THR);(c)生烟速率(SPR);(d)总烟释放(TSP);(e)CO释放速率(COP);(f)质量损失速率(MLR);

    Figure  7.  Cone calorimetric test results of of control, PA/wood and AUP/wood under 50 kW/m2: (a) HRR; (b) THR;(c) SPR; (d) TSP; (e) COP; (f) MLR

    图  8  未处理材、PA阻燃材、AUP阻燃材分别在N2气氛下的TG(a)、DTG(b)及空气气氛下的TG(c)、DTG(d);

    Figure  8.  Thermogravimetric curves of control, PA/wood, AUP/wood: TG(a) and DTG(b) in N2 atmosphere; TG(c) and DTG(d) in air

    图  9  未处理材、PA阻燃材、AUP阻燃材锥形量热测试后的残炭数码照片及SEM-EDS图像

    Figure  9.  Digital photographs and SEM-EDS images of residual carbon from control, PA/wood and AUP/wood after cone test

    图  10  未处理材、PA阻燃材、AUP阻燃材的总离子流图及各类型气态产物相对含量

    Figure  10.  TIC and relative content of each type of gas product of control, PA/wood and AUP/wood after cone test

    表  1  AUP-x的合成配方

    Table  1.   Formulation of AUP-x

    Ingre-dients DCD/g 60%PA/mL Molar ratio (PA to DCD) H2O/mL pH
    AUP-6 12.6 27.6 1∶6 10.4 3.52
    AUP-9 18.9 27.6 1∶9 21.4 4.34
    AUP-12 25.2 27.6 1∶12 32.1 5.39
    Notes: pH value is tested after reaction at 25℃; AUP—Amidinourea phytate; PA—Phytic acid; DCD—Dicyandia-mide.
    下载: 导出CSV

    表  2  AUP-x的元素原子比

    Table  2.   XPS patterns of AUP-x

    Sample AUP-6 AUP-9 AUP-12
    C /atom% 23.91 25.17 25.34
    O /atom% 38.65 37.02 30.78
    N /atom% 30.36 32.48 38.41
    P /atom% 7.08 5.33 5.47
    下载: 导出CSV

    表  3  抗流失试验相关参数

    Table  3.   Parameters related to erosion resistance test

    Sample ε/% y1 y2 I/%
    PA/wood −53.94 68.53±3.49 15.73±1.65 22.89±1.35
    AUP/wood −1.36 41.65±0.67 35.55±0.52 85.36±1.09
    Notes: ε indicates the moisture absorption rate of the flame retardant material; y1, y2 indicates the amount of drug load before and after the anti-erosion test; I indicates the loss resistance of the flame retardant.
    下载: 导出CSV

    表  4  未处理材、PA阻燃材、AUP阻燃材的力学性能

    Table  4.   Mechanical properties of Control, PA/wood and AUP/wood

    Sample Flexural strength/MPa Flexural modulus/GPa Impact strength/(kJ·m−2)
    Control 122.68±0.16 11.31±0.08 19.92±0.29
    PA/wood 91.65±0.21 10.69±0.11 14.10±0.12
    AUP/wood 113.18±0.07 10.81±0.07 31.58±0.25
    下载: 导出CSV

    表  5  未处理材、PA阻燃材、AUP阻燃材的锥形量热测试参数

    Table  5.   Cone calorimetric test parameters of control, PA/wood and AUP/wood

    Sample Pk1-HRR/
    (kW·m−2)
    Pk2-HRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    Av-EHC/
    (MJ·kg−1)
    TSP/
    (m2·m−2)
    Av-COY/
    (MJ·kg−1)
    TTI/s FPI/
    (s·m2·k−1)
    Char yield/
    (%)
    B-W A-W B-W A-W B-W A-W
    Control 161.9 201.7 58.2 12.4 3.5 0.026 31 0.154 13.5
    PA/wood 104.9 139.1 129.2 165.1 39.0 49.9 9.8 3.6 0.035 19 0.147 19.4
    AUP/wood 36.3 42.9 82.1 77.1 20.0 21.4 5.7 1.2 0.041 55 0.670 33.5
    Notes: B-W refers to before the loss resistance test; A-W refers to after the loss resistance test; Pk-HRR was the peak values of HRR with time; THR was the total heat release; Av-EHC was the average effective heat of combustion; TSP was the total smoke release; Av-COY was the average CO production; TTI was the was the time from when the cone shutter opened, exposing the sample to the set heat flux, to the moment flaming was established; FPI indicates fire performance index; Char yield was the carbon residue ratio.
    下载: 导出CSV

    表  6  未处理材、PA阻燃材和AUP阻燃材的热重特征参数

    Table  6.   Thermogravimetric parameters of control, PA/wood and AUP/wood

    Sample Atmosphere T5wt%/℃ T10wt%/℃ T50wt%/℃ Tmax/℃ W800℃/%
    Control N2 240 300 353 362 10.9
    Air 264 293 369 372 0.1
    PA/wood N2 72 194 288 264 27.9
    Air 183 233 377 298 17.2
    AUP/wood N2 200 252 322 294 29.5
    Air 213 274 369 306 16.8
    Notes: The data in the table are obtained under nitrogen and air atmosphere. T5wt% refers to the temperature at 5% weight loss; T10wt% refers to the temperature at 10% weight loss; T50wt% refers to the temperature at 50% weight loss; Tmax refers to the temperature at which the rate of heat loss is maximized; W800℃ refers to the residual rate of the sample at 800℃.
    下载: 导出CSV
  • [1] 徐有明. 木材学(第2版)[M]. 北京: 中国林业出版社, 2019: 2-10.

    XU Youming. Wood Science (Second edition) [M]. Beijing: China forestry press, 2001: 4-10(in Chinese).
    [2] 侯方淼, 李浩爽. 全球价值链下中国木材产业参与国际分工及其影响因素[J]. 林业经济, 2020, 42(5): 3-18.

    HOU Fangmiao, LI Haoshuang. Factors influencing China’ s timber industry’s participation into the division of global value chain[J]. Forestry Economics, 2020, 42(5): 3-18(in Chinese).
    [3] 吴天博, 田刚. “丝绸之路经济带”视域下中国与沿线国家木质林产品贸易——基于引力模型的实证研究[J]. 国际贸易问题, 2019, (11): 77-87.

    WU Tianbo, TIAN Gang. The trade of woody forest products between China and the countries along the Silk Road Economic Belt——an empirical study based on gravity model[J]. Journal of International Trade, 2019, (11): 77-87(in Chinese).
    [4] 张其, 肖泽芳, 龚宸, 等. 磷酸脒基脲和季戊四醇磷酸酯复合改性MUF木材涂料的阻燃性能研究[J]. 林业工程学报, 2018, 3(6): 48-55(in Chinese).

    ZHANG Qi, XIAO Zefang, GONG Chen, et al. Wood amino-resin coatings using synergistic fire-retardant modification of pentaerythritol phosphate and guanylurea phosphate[J]. Journal of Forestry Engineering, 2018, 3(6): 48-55(in Chinese).
    [5] 班大明, 徐春萍. 国内磷系阻燃剂在环氧树脂中的应用及研究进展[J]. 贵州师范大学学报(自然科学版), 2023, 41(3): 95-102.

    BAN Daming, XU Chunping. Application and development of phosphorus based flame retardant on epoxy resins in China[J]. Journal of Guizhou Normal University(Natural Sciences), 2023, 41(3): 95-102(in Chinese).
    [6] 胡泊, 朱继伟, 武保林, 等. HPCTP/MMT复配阻燃环氧树脂阻燃及力学性能研究[J]. 塑料科技, 2019, 47(1): 125-128.

    HU Bo, ZHU Jiwei, WU Baolin, et al. Study on flame retardancy and mechanical properties of epoxy resin flame-retarded by HPCTP/MMT compound[J]. Plastics Science and Technology, 2019, 47(1): 125-128(in Chinese).
    [7] 胡泊, 赵腾龙, 武保林, 等. 含磷阻燃剂阻燃环氧树脂的阻燃特性研究[J]. 工业安全与环保, 2019, 45(7): 5-9. doi: 10.3969/j.issn.1001-425X.2019.07.002

    HU Bo, ZHAO Tenglong, WU Baolin, et al. Study on flame retardant properties of epoxy resin with phosphorous-containing flame retardant[J]. Industrial Safety and Environmental Protection, 2019, 45(7): 5-9(in Chinese). doi: 10.3969/j.issn.1001-425X.2019.07.002
    [8] 王会娅, 程哲, 卢林刚等. 新型环磷腈阻燃剂合成及其在环氧树脂中的应用[J]. 塑料, 2019, 48(5): 57-62.

    WANG Huiya, CHENG Zhe, LU Lingang, et al. Synthesis and performance in epoxy resins of novel cyclotriphosphazene flame retardants[J]. Plastics, 2019, 48(5): 57-62(in Chinese).
    [9] 李霈, 付海, 赵欧等. 聚磷酸酯阻燃剂复配聚磷酸铵对环氧树脂阻燃性能的影响[J]. 高等学校化学学报, 2017, 38(2): 294-302. doi: 10.7503/cjcu20160599

    LI Pei, FU Hai, ZHAO Ou, et al. Influence of Polyphosphate Flame Retardant Couple with Ammonium Polyphosphate on Epoxy Resin[J]. Chemical Journal of Chinese Universities, 2017, 38(2): 294-302(in Chinese). doi: 10.7503/cjcu20160599
    [10] 秦维, 闵样, 陈超等. 聚磷酸酯膨胀阻燃剂复配有机蒙脱土阻燃改性环氧树脂[J]. 中国塑料, 2018, 32(12): 112-117.

    QIN Wei, MIN Yang, CHEN Chao, et al. Ammonium Polyphosphate/Organic Montmorillonite Compounds Flame-retardant Epoxy Resin[J]. China Plastics, 2018, 32(12): 112-117(in Chinese).
    [11] XUE Y, ZUO X, WANG L, et al. Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate[J]. Composites Part B Engineering, 2020, : 108124.
    [12] CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016, 124(15): 114-119.
    [13] CHENG X W, LIANG C X. GUAN J P, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018, 427: 69-80. doi: 10.1016/j.apsusc.2017.08.021
    [14] Costes L, Laoutid F, Brohez S, et al. Phytic acid–lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide[J]. European Polymer Journal, 2017, 94: 270-285. doi: 10.1016/j.eurpolymj.2017.07.018
    [15] 王冬. 植酸基阻燃剂的制备及其阻燃机制研究[D]. 江南大学, 2023.

    WANG Dong. Preparation of Phytate Based Flame Retardants and Study on the Flame-retardant Mechansims[D]. Jiangnan University, 2023(in Chinese).
    [16] LI L M, CHEN Z, LU J, et al. Combustion Behavior and Thermal Degradation Properties of Wood Impregnated with Intumescent Biomass Flame Retardants: Phytic Acid, Hydrolyzed Collagen, and Glycerol[J]. ACS Omega, 2021, 6(5): 3921-3930 doi: 10.1021/acsomega.0c05778
    [17] 吴宇晖, 张少迪, 任自忠, 等. 植酸-三聚氰胺处理木材阻燃性能研究[J]. 北京林业大学学报, 2020, (4): 7.

    WU Yuhui, ZHANG Shaodi, REN Zizhong, et al. Flame retardant properties of phytic acid and melamine treated wood[J]. Journal of Beijing Forestry University, 2020, (4): 7(in Chinese).
    [18] 王海军, 陈立新, 缪桦. 氮系阻燃剂的研究及应用概况[J]. 热固性树脂, 2005, 20(4): 36-41. doi: 10.3969/j.issn.1002-7432.2005.04.011

    WANG Haijun, CHEN Lixin, MIAO Hua. The study on nitrogen-Containing flame retardants and its application in plastics[J]. Thermosetting Resin, 2005, 20(4): 36-41(in Chinese). doi: 10.3969/j.issn.1002-7432.2005.04.011
    [19] 刘勤, 柴生勇, 李岩, 等. 双氰胺氰尿酸盐在聚丙烯中的阻燃应用[J]. 塑料工业, 2021, 49(4): 163-168. doi: 10.3969/j.issn.1005-5770.2021.04.031

    LIU Qin, CHAI Shengyong, LI Yan, et al. The Application of Dicyanodiamide Cyanurate in Polypropylene as Flame Retardant[J]. China Plastics Industry, 2021, 49(4): 163-168(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.04.031
    [20] 全国木材标准化技术委员会. 改性木材尺寸稳定性测试方法: LY/T 2490-2015[S]. 北京: 中国标准出版社, 2015.

    National Wood Standardization Technical Committee. Test method for dimensional stability of modified wood: LY/T 2490-2015[S]. Beijing: China Standard Press, 2015(in Chinese).
    [21] American Wood Protection Association. AWPA E11-06 Standard methods for accelerated evaluation of preservative[S]. American: American Wood Protection Association, 2016.
    [22] 中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.2-2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of China. Deter-mination of burning behavior of plastics by oxygen index method Part 2: Room temperature test: GB/T 2406.2-2009 [S]. Beijing: China Standard Press, 2009(in Chinese).
    [23] 中国国家标准化管理委员会. 塑料简支梁冲击性能的测定 第1部分: 非仪器化冲击试验: GB/T 1043.1-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. Deter-mination of impact properties of simply supported beams of plastics Part 1: Non-instrumented impact test: GB/T 1043.1-2008 [S]. Beijing: China Standard Press, 2008(in Chinese).
    [24] American Society for Testing and Materials. ASTM D790-03 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials[S]. American: American Society for Testing and Materials, 2003.
    [25] ISO. ISO 5660-1 Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement)[S]. Geneva: ISO, 2015.
    [26] Rayée Q, Nguyen PT, Segato T, et al. Electrochemical synthesis of copper(I) dicyanamide thin films[J]. Electroanal Chem, 2018, 819: 331-337. doi: 10.1016/j.jelechem.2017.11.001
    [27] YUAN X H, LUO K, WU Y J, et al. Investigation on the stability of derivative melam from melamine pyrolysis under high pressure[J]. Nanomaterials, 2018, 8(3): 172. doi: 10.3390/nano8030172
    [28] ZHANG F X, GAO W W, JIA Y L, et al. A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics[J]. Carbohydrate Polymers, 2018, 199: 256-265. doi: 10.1016/j.carbpol.2018.05.085
    [29] PAN Y, LIU L X, WANG X, et al. Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment[J]. Carbohydrate Polymers, 2018, 201: 1-8. doi: 10.1016/j.carbpol.2018.08.044
    [30] ROSACE G, CASTELLANO A, TROAVTO V, et al. Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organo-phosphorus system[J]. Carbohydrate Polymers, 2018, 196: 348-358. doi: 10.1016/j.carbpol.2018.05.012
    [31] LIU L, PAN Y, ZHAO Y, et al. Self-assembly of phosphonate-metal complex for super-hydrophobic and durable flame-retardant polyester–cotton fabrics[J]. Cellulose, 2020, 27(10): 6011-6025. doi: 10.1007/s10570-020-03148-z
    [32] XU F, ZHANG G X, WANG P, et al. A novel ε-polylysine-derived durable phosphorus-nitrogen-based flame retardant for cotton fabrics[J]. Cellulose, 2021, 28(6): 3807-3822. doi: 10.1007/s10570-021-03714-z
    [33] LIN C, KARLSSON O, MARTINKA J, et al. Approaching Highly Leaching-Resistant Fire-Retardant Wood by In Situ Polymerization with Melamine Formaldehyde Resin[J]. ACS Omega 2021, 6: 12733–12745.
    [34] HONG J, HUANG S Z, WU H Q, et al. Effects of eutrophic water with ammonium chloride, urea, potassium dihydrogen phosphate and sodium-β-glycerophosphate on Myriophyllum verticillatum and epiphytic bacteria[J]. The Science of the total environment, 2023, 891: 164507. doi: 10.1016/j.scitotenv.2023.164507
    [35] YAMADA Y, TANAKA H, KUBO S, et al. Unveiling bonding states and roles of edges in nitrogen-dopedgraphene nanoribbon by X-ray photoelectron spectroscopy[J]. Carbon, 2021, 185: 342-367 doi: 10.1016/j.carbon.2021.08.085
    [36] SALMEIA A K, GAAN S, MALUCELLI G, et al. Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry[J]. Polymers, 2016, 8(9): 319. doi: 10.3390/polym8090319
    [37] André L M D, Jivaldo do R M. Study of thermal behavior of phytic acid[J]. Brazilian Journal of Pharmaceutical Sciences, 2013, 49(2): 277-282.
    [38] 郝畅, 郭垂根. 复配阻燃剂对木材阻燃与力学性能的影响[J]. 消防科学与技术, 2016, 35(5): 663-667 doi: 10.3969/j.issn.1009-0029.2016.05.022

    HAO Chang, GUO Chuigen. Effect of compound flame retardant on flame retardant and mechanical properties of pinus sylvestris[J]. Fire Science and Technology, 2016, 35(5): 663-667(in Chinese). doi: 10.3969/j.issn.1009-0029.2016.05.022
    [39] SHANG S, YUAN B, SUN Y. et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology[J]. ColloidInterface Sci, 2019, 553: 364-371.
    [40] YUAN L, CHEN X, HU Y. Combination effect of 4-picolinic acid with 5A zeolite on ammonium polyphosphate flame-retarded sawdust board. Journal of Fire Sciences. 2014, 32 (3): 230-240.
    [41] ANNA A, STEC T, RICHARD H. Fire toxicity and its assessment. In Fire Retardancy of Polymeric Materials; Taylor & Francis Group: Oxfordshire, 2009; 453–477.
    [42] YAN D, CHEN D, TAN J, et al. Synergistic flame retardant effect of a new N-P flame retardant on wood wood density board[J]. Polymer Degradation and Stability, 2023, 211: 110331. doi: 10.1016/j.polymdegradstab.2023.110331
    [43] 王清文. 新型木材阻燃剂FRW[D]. 东北林业大学, 2007.

    WANG Qingwen. FRW Fire Retardant for Wood[D]. Northeast Forestry University, 2007(in Chinese).
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  102
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2025-01-15

目录

    /

    返回文章
    返回