留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PBO纤维增强环氧树脂复合材料层间I型断裂韧性的DIC技术测量

杨露 校金友 文立华 张承双 侯晓

杨露, 校金友, 文立华, 等. PBO纤维增强环氧树脂复合材料层间I型断裂韧性的DIC技术测量[J]. 复合材料学报, 2023, 40(1): 72-82. doi: 10.13801/j.cnki.fhclxb.20220112.002
引用本文: 杨露, 校金友, 文立华, 等. PBO纤维增强环氧树脂复合材料层间I型断裂韧性的DIC技术测量[J]. 复合材料学报, 2023, 40(1): 72-82. doi: 10.13801/j.cnki.fhclxb.20220112.002
YANG Lu, XIAO Jinyou, WEN Lihua, et al. Mode I interlaminar fracture toughness measurement of PBO fiber reinforced epoxy composites by DIC technology[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 72-82. doi: 10.13801/j.cnki.fhclxb.20220112.002
Citation: YANG Lu, XIAO Jinyou, WEN Lihua, et al. Mode I interlaminar fracture toughness measurement of PBO fiber reinforced epoxy composites by DIC technology[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 72-82. doi: 10.13801/j.cnki.fhclxb.20220112.002

PBO纤维增强环氧树脂复合材料层间I型断裂韧性的DIC技术测量

doi: 10.13801/j.cnki.fhclxb.20220112.002
基金项目: 国家自然科学基金(N2016KD0068;U1837601;11902255;52090051)
详细信息
    通讯作者:

    文立华,博士,教授,博士生导师,研究方向为飞行器复合材料结构设计 E-mail: Lhwen@nwpu.edu.cn

    张承双,博士,研究员,研究方向为先进聚合物基复合材料 E-mail: 3425756@qq.com

  • 中图分类号: TB332

Mode I interlaminar fracture toughness measurement of PBO fiber reinforced epoxy composites by DIC technology

Funds: National Natural Science Foundation of China (N2016KD0068; U1837601; 11902255; 52090051)
  • 摘要: I型双悬臂梁(DCB)试验通常用于单向复合材料的层间抗拉性能研究,目标是测量I型层间断裂韧性,其可作为复合材料分层扩展及失效机制研究的重要输入参数。在DCB试验中必须经常暂停试验以实现多次测量裂纹长度,这不仅会对裂纹传播产生潜在影响,造成测量误差且多次反复试验的时效性较差。数字图像相关(DIC)测试技术应用于裂纹扩展长度测量具有实时跟踪、精确定位的优点,可有效提高I型断裂韧性试验的测量效率,但应用于非连续变形行为仍存在局限性,且易受到图像噪声的干扰,产生测量误差。本文发展了一种基于DIC测试技术的实时获取裂纹长度的检测方法,通过图像匹配算法获取试件的非连续变形位移场,并提出一种根据全局横向位移离散程度的辨别方法,实现了裂纹尖端的实时捕捉。再通过DCB试验,与传统测量方式对比,裂纹长度的测量误差平均不超过2.76%,验证了该方法的准确性和高效性,同时也克服了聚对苯撑苯并双噁唑 (PBO)/环氧树脂复合材料侧表面毛糙、散斑质量较差及纤维桥接对测量结果的干扰,最终获取了有效的I型层间断裂韧性初始值及稳态扩展值。

     

  • 图  1  双悬臂梁(DCB)试验原理

    Figure  1.  Principle of double cantilever beam (DCB) test

    L—Length; h—Thickness; a0—Initial crack length; b—Width

    图  2  稳态扩展(a)和失稳扩展(b)

    Figure  2.  Stable extension (a) and unstable extension (b)

    P—Load of loading end; δ—Displacement of loading end

    图  3  DCB试验装置

    Figure  3.  DCB test device

    图  4  不同时刻的聚对苯撑苯并双噁唑(PBO)/环氧树脂复合材料纤维桥接区域

    Figure  4.  Fiber bridging region of poly p-phenylene-2, 6-benzoxazole (PBO)/epoxy composites at different moments

    图  5  PBO/环氧树脂复合材料试件(a)和碳纤维/环氧树脂复合材料试件(b)表面散斑质量评估

    Figure  5.  Evaluation of speckle quality on specimen surface of PBO/epoxy (a) and carbon fiber/epoxy (b) composites

    CF—Carbon fiber; MIG—Meanintensity gradient

    图  6  PBO/环氧树脂复合材料横向最大应变

    Figure  6.  Maximum strain in y direction of PBO/epoxy composites

    εmax—Maximum strain

    图  7  PBO/环氧树脂复合材料DCB试件的数字图像相关(DIC)位移云图

    Figure  7.  Digital image correlation (DIC) displacement cloud diagram of PBO/epoxy composite DCB specimen

    V—Image vertical displacement

    图  8  PBO/环氧树脂复合材料横向位移标准差分布

    Figure  8.  Standard deviation distribution of lateral displacement of PBO/epoxy composites

    σ0(V)—Standard deviation threshold

    图  9  PBO/环氧树脂复合材料裂纹尖端的确定方法

    Figure  9.  Determination method of crack tip of PBO/epoxy composites

    σ0max(V)—Maximum value of standard deviation threshold range; σ0min(V)—Minimum value of standard deviation threshold range

    图  10  PBO/环氧树脂复合材料裂纹长度的实时测量结果

    Figure  10.  Real-time measurement results of crack length of PBO/epoxy composites

    图  11  PBO/环氧树脂复合材料不同子集大小下的裂纹长度

    Figure  11.  Crack length under different subset sizes of PBO/epoxy composites

    图  12  PBO/环氧树脂复合材料DCB试验的载荷-位移曲线

    Figure  12.  Load-displacement curves of DCB test of PBO/epoxy composites

    图  13  不同测量方法下PBO/环氧树脂复合材料的裂纹扩展长度a随时间变化曲线

    Figure  13.  Variation curve of crack propagation length a of PBO/epoxy composite with time under different measurement methods

    图  14  不同测量方法下PBO/环氧树脂复合材料的I型断裂韧性比较

    Figure  14.  Comparison of fracture toughness GI of PBO/epoxy composites under different measurement methods

    表  1  PBO/环氧树脂复合材料不同时刻裂纹长度测量误差

    Table  1.   Crack length measurement error of PBO/epoxy composites at different moments

    Time/min Magnifying glass/mm DIC/mm Deviation
    /%
    5 71.8 70.0 1.80
    10 90.8 87.2 3.60
    15 106.8 104.9 1.70
    20 112.3 115.2 2.50
    25 130.9 126.1 3.67
    30 143.2 138.5 3.28
    Avg 2.76
    Note: Avg—Average.
    下载: 导出CSV

    表  2  不同测量方式下PBO/环氧树脂复合材料I型断裂韧性

    Table  2.   Mode I fracture toughness of PBO/epoxy composites under different measurement methods

    NumberMethodGI_Initial/
    (N·mm−1)
    GI_Stable/
    (N·mm−1)
    Toughening/%
    01Magnifying glass0.288870.804077278.35
    01DIC0.288510.910412315.56
    Deviation0.125%13.22%
    02Magnifying glass0.312080.931708298.55
    02DIC0.286820.904918315.50
    Deviation8.09%2.88%
    03Magnifying glass0.302900.744596245.82
    03DIC0.286580.751677262.29
    Deviation5.39%0.95%
    下载: 导出CSV
  • [1] SO Y H. Rigid-rod polymers with enhanced lateral interactions[J]. Progress in Polymer Science,2000,25(1):137-157. doi: 10.1016/S0079-6700(99)00038-6
    [2] HU X D, JENKIN S E, MIN B G, et al. Rigid-rod polymers: Synthesis, processing, simulation, structure, and properties[J]. Macromolecular Materials and Engineering,2003,288(11):823-843. doi: 10.1002/mame.200300013
    [3] CHAE H G, KUMAR S. Rigid-rod polymeric fibers[J]. Journal of Applied Polymer Science,2006,100(1):791-802. doi: 10.1002/app.22680
    [4] HU C, WANG F, YANG H Y, et al. Preparation and characterization of poly p-phenylene-2, 6-benzobisoxazole fiber-reinforced resin matrix composite for endodontic post material: A preliminary study[J]. Journal of Dentistry,2014,42(12):1560-1568. doi: 10.1016/j.jdent.2014.10.007
    [5] OMBRES L. Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material[J]. Composite Structures,2015,122:316-329. doi: 10.1016/j.compstruct.2014.11.059
    [6] 王倩, 顾轶卓, 刘宁, 等. PBO纤维与环氧树脂界面粘结性能及其影响因素研究[J]. 玻璃钢/复合材料, 2018(12):28-35.

    WANG Qian, GU Yizhuo, LIU Ning, et al. Studies on interfacial bonding property and influencing factors of PBO fiber and epoxy resin[J]. Fiber Reinforced Plastics/Composites,2018(12):28-35(in Chinese).
    [7] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials,1998,32(14):1246-1272. doi: 0.1177/002199839803201401
    [8] XU W, WAAS A M. Multiple solutions in cohesive zone models of fracture[J]. Engineering Fracture Mechanics,2017,177:104-122. doi: 10.1016/j.engfracmech.2017.03.026
    [9] GONG Y, ZHAO L, ZHANG J, et al. Delamination propagation criterion including the effect of fiber bridging for mixed-mode I/II delamination in CFRP multidirectional laminates[J]. Composites Science & Technology,2017,151:302-309. doi: 10.1016/j.compscitech.2017.09.002
    [10] American Society for Testing and Materials. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—2013[S]. West Conshohocken: ASTM International, 2013.
    [11] ZHU J, GAO Z. Research on crack measurement technique in solids material with digital image correlation (DIC)[C]//Key Engineering Materials. Sanya: Trans Tech Publications Ltd., 2007, 353: 2606-2610.
    [12] ALBERTSEN H, TVENS J, PETERS P, et al. Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results[J]. Composites Science and Technology,1995,54(2):133-145. doi: 10.1016/0266-3538(95)00048-8
    [13] ARAKAWA K, ISHIGUM M, TAKAHASHI K. Study of mode I interlaminar fracture in CFRP laminates by moiré interferometry[J]. International Journal of Fracture,1994,66(3):205-212. doi: 10.1007/BF00042584
    [14] PERRY K E, MCKELVIE J. Measurement of energy release rates for delaminations in composite materials[J]. Experimental Mechanics,1996,36(1):55-63. doi: 10.1007/BF02328698
    [15] COLAVITO K, MADENCI E. Adhesive failure in hybrid double cantilever beams by digital image correlation[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando, 2010: 2603.
    [16] MATTHIAS M, LOUISE A P, TIM F. Measurements of mode I interlaminar properties of carbon fiber reinforced polymers using digital image correlation[C]//Key Engineering Materials. Sanya: Trans Tech Publications Ltd, 2017, 742: 652-659.
    [17] MURRAY B R, FONTEYN S, CARRELLA-PAYAN D, et al. Crack tip monitoring of mode I and mode II delamination in CF/epoxies under static and dynamic loading conditions using digital image correlation[J]. Proceedings,2018,2(8):389.
    [18] KHUDIAKOVA A, WOLFAHRT M, GODEC D, et al. Determination of the mode I strain energy release rate in carbon fiber reinforced composites by means of digital image correlation technique[C]//18th European Conference on Composite Materials. Athens, Greece, 2018.
    [19] REINER J, TORRES J P, VEIDT M. A novel top surface analysis method for mode I interface characterisation using digital image correlation[J]. Engineering Fracture Mechanics,2017,173:107-117. doi: 10.1016/j.engfracmech.2016.12.022
    [20] ZHU M, GORBATIKH L, FONTEYN S, et al. Digital image correlation measurements of mode I fatigue delamination in laminated composites[C]//Multidisciplinary Digital Publishing Institute Proceedings. Switzerland: MDPI AG, 2018, 2(8): 430.
    [21] MALLON S, KOOHBOR B, KIDANE A, et al. Fracture behavior of prestressed composites subjected to shock loading: A DIC-based study[J]. Experimental Mechanics,2015,55(1):211-225. doi: 10.1007/s11340-014-9936-5
    [22] 杜鉴昕, 赵加清, 王海涛, 等. 一种针对裂尖变形场测量的正则化全局DIC方法[J]. 光学学报, 2020, 40(11):1112001. doi: 10.3788/AOS202040.1112001

    DU Jianxin, ZHAO Jiaqing, WANG Haitao, et al. Regularized global digital image correlation method for crack tip deformation field measurement[J]. Acta Optica Sinica,2020,40(11):1112001(in Chinese). doi: 10.3788/AOS202040.1112001
    [23] LIU C, CADY C M, RAE P J, et al. On the quantitative measurement of fracture toughness in high explosive and mock materials[C]//14th International Detonation Symposium. Idaho, 2010.
    [24] HASSAN G M. Deformation measurement in the presence of discontinuities with digital image correlation: A review[J]. Optics and Lasers in Engineering,2021,137:106394. doi: 10.1016/j.optlaseng.2020.106394
    [25] KHUDIAKOVA A, GRASSER V, BLUMENTHAL C, et al. Automated monitoring of the crack propagation in mode I testing of thermoplastic composites by means of digital image correlation[J]. Polymer Testing,2020,82:106304. doi: 10.1016/j.polymertesting.2019.106304
    [26] ZHU M, GORBATIKH L, FONTEYN S, et al. Digital image correlation assisted characterization of mode I fatigue delamination in composites[J]. Composite Structures,2020,253:112746. doi: 10.1016/j.compstruct.2020.112746
    [27] GARCIA D, ORTEU J J, PENAZZI L. A combined temporal tracking and stereo correlation technique for accurate measurement of 3D displacements: Application to sheet metal forming[J]. Journal of Materials Processing Technology,2002,125-126:736-742. doi: 10.1016/S0924-0136(02)00380-1
    [28] BLABER J, ADAIR B, ANTONIOU A. NCORR: Open-source 2D digital image correlation matlab software[J]. Experimental Mechanics,2015,55(6):1105-1122. doi: 10.1007/s11340-015-0009-1
    [29] PAN B, ASUNDI A, XIE H, et al. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J]. Optics & Lasers in Engineering,2009,47(7-8):865-874. doi: 10.1016/j.optlaseng.2008.10.014
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1302
  • HTML全文浏览量:  723
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2021-12-25
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回