留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向双马树脂基复合材料电场驱动微3D打印高精度电路

刘亚东 张厚超 朱晓阳 许权 李义睿 韩志峰 赵佳伟 刘琦 兰红波

刘亚东, 张厚超, 朱晓阳, 等. 面向双马树脂基复合材料电场驱动微3D打印高精度电路[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 刘亚东, 张厚超, 朱晓阳, 等. 面向双马树脂基复合材料电场驱动微3D打印高精度电路[J]. 复合材料学报, 2024, 42(0): 1-15.
LIU Yadong, ZHANG Houchao, ZHU Xiaoyang, et al. Electric field driven micro 3D printing of high-precision circuit on bismaleimide resin matrix composite[J]. Acta Materiae Compositae Sinica.
Citation: LIU Yadong, ZHANG Houchao, ZHU Xiaoyang, et al. Electric field driven micro 3D printing of high-precision circuit on bismaleimide resin matrix composite[J]. Acta Materiae Compositae Sinica.

面向双马树脂基复合材料电场驱动微3D打印高精度电路

基金项目: 国家自然科学基金(52175331、52375348);山东省自然科学基金重大基础研究资助项目(ZR2020ZD04)
详细信息
    通讯作者:

    张厚超,博士研究生,主要研究方向为微纳尺度3D打印、复合微纳增材制造。 E-mail:zhanghc0918@163.com

    兰红波,博士生导师,主要研究方向为微纳3D打印、先进电子电路增材制造、功能梯度增材制造、大面积微纳米压印光刻等。 E-mail:hblan99@126.com

  • 中图分类号: TB332

Electric field driven micro 3D printing of high-precision circuit on bismaleimide resin matrix composite

Funds: National Natural Science Foundation of China (No. 52175331、No. 52375348); Shandong Provincial Natural Science Foundation Major Basic Research Support Project (No. ZR2020ZD04)
  • 摘要: 纤维改性双马树脂基复合材料凭借其优异的力学性能、耐高温、耐腐蚀特性,被广泛应用于航空航天、智能蒙皮、共形天线、电磁屏蔽、高频电路基板、电加热等领域。然而,由于石英纤维增强双马树脂基复合材料具有非平整、异质、各向异性的特点,在此基材上简单、高效、低成本制造高分辨率微细电路是当前亟待解决的难题。本文提出了一种基于电场驱动微3D打印在石英纤维增强双马树脂基复合材料上制造高精度电路的新方法,阐述了基本成形原理和关键技术实现,探究了非平整异质复合材料表面电场分布特点和场强变化规律,提出通过调节电场强度阈值实现稳定打印的策略;通过实验揭示了主要工艺参数对制造电路精度、形貌以及性能的影响规律,并结合优化的工艺窗口,实现了最小线宽50 μm的多种图案微细电路的制造。制造的典型样件电导率为4.5×107 S/m,经100次附着力实验和100分钟超声实验后电阻变化率在1%左右;在电加热应用方面展现出优异的热响应速度,在3 V电压下最高温度可达158℃,能够在200 s内实现除冰。该技术为高效低成本制造纤维改性双马树脂复合材料基微细电路提供了一种有效方法,显示出良好的工业化应用前景。

     

  • 图  1  电场驱动喷射沉积微3D打印原理示意图

    Figure  1.  Schematic diagram of electric field driven jet deposition micro 3D printing principle

    图  2  电场驱动喷射微3D打印双马树脂基复合材料高精度微细电路工艺流程示意图

    Figure  2.  Schematic diagram of the process flow of high-precision microfabricated circuits in electric field-driven jet micro-3D printing of bismaleimide resin matrix composites

    图  3  石英纤维增强双马树脂基复合材料宏观图与微观图

    Figure  3.  Macroscopic and microscopic diagrams of quartz fiber reinforced bismaleimide resin matrix composites

    图  4  单材料组分基底与双马树脂基复材的电场强度对比和双马树脂基复材在EHD模式下的电场强度

    Figure  4.  Comparison of electric field strength between single material component substrate and bismaleimide resin-based composite and bismaleimide resin-based composite in EHD mode

    图  5  电场仿真结果

    Figure  5.  Electric field simulation results:

    图  6  不同电压和不同打印高度下电场数值模拟流程图及仿真结果

    Figure  6.  Numerical simulation flowchart and simulation results of electric field at different voltages and different print heights

    图  7  纳米银浆在双马树脂基复材上喷射性能实验图

    Figure  7.  Experimental plot of spraying performance of nanosilver paste on bismaleimide resin-based composites

    图  8  不同喷头内径下打印效果图

    Figure  8.  Printing effect under different nozzle inner diameter

    图  9  石英纤维增强双马树脂基复合材料基底3D打印工艺参数研究结果

    Figure  9.  Results of 3D printing process parameters of quartz fiber reinforced bismaleimide resin matrix composite substrates

    图  10  不同烧结温度和烧结时间下银线电阻变化规律

    Figure  10.  Change rule of silver wire resistance at different sintering temperature and sintering time

    图  11  石英纤维增强双马树脂基复合材料电加热实验

    Figure  11.  Electric heating experiment of quartz fiber reinforced bismaleimide resin matrix composites

    图  12  石英纤维增强双马树脂基复合材料与银线的结合性能测试

    Figure  12.  Adhesion test of quartz fiber reinforced bismaleimide resin matrix composites with silver wire

    图  13  不同线宽银线烧结后单位长度电阻和电导率

    Figure  13.  Resistance and conductivity per unit length after sintering of silver wires with different wire widths

    图  14  石英纤维增强双马树脂基复材复杂图案打印

    Figure  14.  Complex pattern printing on quartz fiber-reinforced bismaleimide resin-based replicas

    表  1  主要实验设备信息

    Table  1.   Main experimental equipment information

    NameModel numberFactory owners
    Electric field-driven micro-3D printerEM3DP-4 ASelf-research
    High temperature atmosphere furnacesGR.AF12/11Shanghai guier machinery equipment co
    Vacuum drying ovenDZF-6092Shanghai yiheng scientific instrument co.
    Resistance testerATL56Suzhou penglian electronic equipment co.
    Infrared thermal imagerNDJ-5 SGuangzhou ruimei electronic technology co.
    Constant voltage and constant current DC power supplies85-2Changzhou yinergy experimental instrument factory
    Ultrasonic cleanerSCQ—180323 PShanghai shengyan ultrasonic co.
    下载: 导出CSV
  • [1] GAINA V, GAINA C. New Bismaleimide-Epoxy Resin System[J]. Polymer-Plastics Technology and Engineering, 2009, 48(5): 525-529. doi: 10.1080/03602550902824325
    [2] CHEN W-C, CHEN Z-Y, BA Y, et al. Double-Decker-Shaped Polyhedral Silsesquioxanes Reinforced Epoxy/Bismaleimide Hybrids Featuring High Thermal Stability[J]. Polymers, 2022, 14(12): 2380. doi: 10.3390/polym14122380
    [3] LI H, ZHAO L, QIAO Y, et al. Surface Treatment of Composites with Bismaleimide Resin-Based Wet Peel Ply for Enhanced Adhesive Bonding Performance[J]. Polymers, 2021, 13(20): 3488. doi: 10.3390/polym13203488
    [4] XU J, CHEN P, MA S, et al. Synthesis, polymerization kinetics, and thermal properties of novel bismaleimides containing twisted structure[J]. Journal of Applied Polymer Science, 2023, 140(42): e54547. doi: 10.1002/app.54547
    [5] YU L, YU Y, SHI J, et al. Synthesis of a Novel Hyperbranched Polyimide for Reinforcing Toughness and Insulating Properties of Bismaleimide Resin[J]. Polymers, 2022, 14(19): 4234. doi: 10.3390/polym14194234
    [6] WU D, CHENG X, CHEN Z, et al. A flexible tactile sensor that uses polyimide/graphene oxide nanofiber as dielectric membrane for vertical and lateral force detection[J]. Nanotechnology, 2022, 33(40): 405205. doi: 10.1088/1361-6528/ac73a4
    [7] HONG T, GUO S, JIANG W, et al. Highly Selective Frequency Selective Surface With Ultrawideband Rejection[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(5): 3459-3468. doi: 10.1109/TAP.2021.3137453
    [8] SHAO Y, WEI L, WU X, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks[J]. Nature Communications, 2022, 13(1): 3223. doi: 10.1038/s41467-022-30648-2
    [9] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450-2525. doi: 10.1109/JSAC.2020.3007211
    [10] ZHAO Z, ZHU Y, WANG Z, et al. A biaxial stretchable, flexible electric heating composite film for de-icing[J]. Composites Part A:Applied Science and Manufacturing, 2022, 162: 107124. doi: 10.1016/j.compositesa.2022.107124
    [11] SHAHAPURKAR K, GELAW M, TIRTH V, et al. Comprehensive review on polymer composites as electromagnetic interference shielding materials[J]. Polymers and Polymer Composites, 2022, 30: 096739112211021.
    [12] SHENG A, YU J, REN S. Printing Nanostructured Copper for Electromagnetic Interference Shielding[J]. ACS Applied Electronic Materials, 2022, 4(4): 2047-2052. doi: 10.1021/acsaelm.2c00199
    [13] STEFANO J S, KALINKE C, DA ROCHA R G, et al. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols[J]. Analytical Chemistry, 2022, 94(17): 6417-6429. doi: 10.1021/acs.analchem.1c05523
    [14] HYUN W J, SECOR E B, HERSAM M C, et al. High-Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics[J]. Advanced Materials, 2015, 27(1): 109-115. doi: 10.1002/adma.201404133
    [15] CHEN C, RAN C, YAO Q, et al. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells[J]. Advanced Science, 2023, 10(28): 2303992. doi: 10.1002/advs.202303992
    [16] CHEN S, FU H, SI Y, et al. Size effect enabling additive-free MXene ink with ultrahigh conductivity for screen printing of wireless electronics[J]. Nano Research, 2023, 16(8): 11012-11017. doi: 10.1007/s12274-023-5762-3
    [17] LOHSE D. Fundamental Fluid Dynamics Challenges in Inkjet Printing[J]. Annual Review of Fluid Mechanics, 2022, 54(1): 349-382. doi: 10.1146/annurev-fluid-022321-114001
    [18] LI X, LIU B, PEI B, et al. Inkjet Bioprinting of Biomaterials[J]. Chemical Reviews, 2020, 120(19): 10793-10833. doi: 10.1021/acs.chemrev.0c00008
    [19] CRATON M T, ALBRECHT J D, CHAHAL P, et al. Multimaterial Aerosol Jet Printed Magnetic Nanocomposites for Microwave Circuits[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(5): 865-871. doi: 10.1109/TCPMT.2021.3071113
    [20] RAMESH S, MAHAJAN C, GERDES S, et al. Numerical and experimental investigation of aerosol jet printing[J]. Additive Manufacturing, 2022, 59: 103090. doi: 10.1016/j.addma.2022.103090
    [21] WANG H, WANG J, CHEN D, et al. Robust Tattoo Electrode Prepared by Paper-Assisted Water Transfer Printing for Wearable Health Monitoring[J]. IEEE Sensors Journal, 2022, 22(5): 3817-3827. doi: 10.1109/JSEN.2022.3141457
    [22] 兰红波, 李红珂, 钱垒, 等. 电场驱动喷射沉积微纳3D打印及其在先进电路和电子制造中的应用[J]. 机械工程学报, 2023, 59(9): 230-251.

    LAN Hongbo, LI Hongke, QIAN Lei, et al. Electric-field-driven Jet deposition micro-nano 3D printing and its applications in manufacturing advanced circuits and electronics[J]. Sci Sin Tech, 2023, 59(9): 230-251(in Chinese).
    [23] LI H, ZHANG Y, TAI Y, et al. Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing[J]. Optics & Laser Technology, 2022, 148: 107717.
    [24] SUN L, WANG R, ZHU X, et al. Low Cost and Facile Fabrication of a Micro-Mold with High Aspect Ratio for Transparent Electrodes with Metal Mesh Using Micro-Scale 3D Printing[J]. Advanced Materials Technologies, 2022, 7(12): 2200584. doi: 10.1002/admt.202200584
    [25] ZHANG H, ZHU X, ZHOU J, et al. Microscale Hybrid Additive Manufacturing of Ultra-Fine, Embedded Cu/Ag(shell)–P4VP(core) Grid for Flexible Transparent Electrodes[J]. Advanced Materials Technologies, 2023, 8(8): 2201580. doi: 10.1002/admt.202201580
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-02-19
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-04-08

目录

    /

    返回文章
    返回