Carboxymethyl cellulose-MgCl2 composite based humidity sensor: self-powered, flexible, and multifunctional sensing applications
-
摘要: 湿度传感器在农业、工业生产、精密仪器及人体健康监测等领域有着广泛的应用。针对湿度传感器需要外加电源驱动的问题,本文借鉴原电池原理,将具有湿敏特性的羧甲基纤维素和具有吸湿特性的MgCl2复合物作为敏感层,并用商品化的导电铜胶带和镍胶带作为正、负极,制备自驱动的柔性湿度传感器。通过SEM、EDS对传感器敏感层的微观形貌和表面元素进行表征,通过复阻抗谱分析其湿敏机制,并对其多功能应用进行探索。该传感器敏感层具有良好的亲水性,在接触环境中的水分子后可将其中的MgCl2离子化产生Mg2+、Cl−等载流子,并定向移动而形成输出电压,相对湿度从11%到95%时其响应值可达177%。该传感器可用于人体呼吸频率和呼吸类型检测、土壤湿度和尿不湿湿度检测、手指距离检测、提供电能,显示其在健康监测、环境湿度监测、非接触开关、供能领域的应用潜力。Abstract: Humidity sensors have been widely used in fields of agriculture, industrial production, precision instruments and human health monitoring. To address the problem that humidity sensors need to be driven by an external power source, a self-powered flexible humidity sensor based on the principle of primary battery was proposed in this paper. The carboxymethyl cellulose with moisture-sensitive properties and MgCl2 with moisture-absorbent properties were applied as the sensitive layer. And commercialized conductive copper and nickel adhesive tapes were used as the positive and negative electrodes. The micro-morphology and surface elements of the sensitive layer of the sensor were characterized by SEM and EDS, the moisture sensitivity mechanism was analyzed based on complex impedance spectroscopy, and the multifunctional applications of the sensor was demonstrated. The sensor sensitive layer has good hydrophilicity, which can ionize the MgCl2 in it to produce carriers such as Mg2+ and Cl− after contacting the water molecules in the environment. The directional movement of these carriers can generate output voltage. The response value can reach 177% when the relative humidity changes from 11% to 95%. The sensor can be used for human respiratory frequency and characteristic detection, soil moisture and urinary moisture detection, finger distance detection, and providing electrical energy. Experimental results show its potential for applications in health monitoring, environmental humidity monitoring, non-contact switching, and power-supply areas.
-
Key words:
- humidity sensor /
- self-powered /
- multifunctional /
- carboxymethyl cellulose /
- flexible sensor
-
图 2 (a)不同MgCl2含量的传感器在不同相对湿度下产生的电压值;(b)不同MgCl2含量的传感器在对不同相对湿度的响应-恢复曲线,(c)湿度滞回特性曲线(相对湿度均从11%至95%再到11%)
Figure 2. (a) Output voltage for the sensors with different MgCl2 contents at different relative humidities; (b) Response-recovery curves of sensors with different MgCl2 contents at different relative humidities; (c) Humidity hysteresis characteristic curves (relative humidity from 11% to 95% at to 11%)
-
[1] KIM J, CAMPBELL A S, de AVILA BE, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. doi: 10.1038/s41587-019-0045-y [2] 王贵欣, 裴志彬, 叶长辉. 自供能柔性氧化石墨烯湿度传感器的喷墨印刷制备及性能研究[J]. 无机材料学报, 2019, 34(1): 114-120. doi: 10.15541/jim20180164WANG Guixin, PEI Zhibin, YE Changhui. Inkjet-printing and performance investigation of self-powered flexible graphene oxide humidity sensors[J]. Journal of Inorganic Materials, 2019, 34(1): 114-120 (in Chinese). doi: 10.15541/jim20180164 [3] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(6): 51-56.DAI Y, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes[J]. Journal of Textile Research, 2021, 42(6): 51-56 (in Chinese). [4] 郭倩莹, 王晓, 吴佳糠, 等. 基于丝网印刷的柔性湿度传感器研究[J]. 传感技术学报, 2022, 35(12): 1619-1625.GUO Qianying, WANG Xiao, WU Jiakang, et al. Research of flexible humidity sensor based on screen printing[J]. Chinese Journal of Sensors and Actuators, 2022, 35(12): 1619-1625 (in Chinese). [5] MA L, WU R, PATIL A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring[J]. Advanced Functional Materials, 2019, 29: 1904549. doi: 10.1002/adfm.201904549 [6] DUAN Z, JIANG Y, TAI H. Recent advances in humidity sensors for human body related humidity detection[J]. Journal of Materials Chemistry C, 2021, 9: 14963-14980. doi: 10.1039/D1TC04180K [7] ZHANG X, HE D, YANG Q, et al. Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor[J]. Chemical Engineering Journal, 2022, 433: 133751. doi: 10.1016/j.cej.2021.133751 [8] 黎陈, 胡亮, 聂宝清. 基于复合微凝胶薄膜的柔性电容式湿度传感器研究[J]. 传感技术学报, 2023, 36(10): 1509-1514.LI Chen, HU Liang, NIE Baoqing. Research on flexible capacitive humidity sensor based on composite microgel films[J]. Chinese Journal of Sensors and Actuators, 2023, 36(10): 1509-1514(in Chinese). [9] GUAN X, Hou Z N, WU K, et al. Flexible humidity sensor based on modified cellulose paper[J]. Sensors and Actuators: B. Chemical, 2021, 339: 129879. [10] WANG H, Tang C, XU J. A highly sensitive flexible humidity sensor based on conductive tape and a carboxymethyl cellulose@graphene composite[J]. RSC Advances, 2023, 13(40): 27746-27755. doi: 10.1039/D3RA05232J [11] DUAN Z, ZHAO Q, WANG S, et al. Novel application of attapulgite on high performance and low-cost humidity sensors[J]. Sensors and Actuators: B. Chemical, 2020, 305: 127534. [12] ZHAO F, CHENG H, ZHANG Z, et al. Direct power generation from a graphene oxide film under moisture [J] Advanced Materials, 2015, 27(29): 4351- 4357. [13] ZHANG D, XU Z, YANG Z, et al. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104251. doi: 10.1016/j.nanoen.2019.104251 [14] XU Z, ZHANG D, LIU X, et al. Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor[J]. Nano Energy, 2022, 94: 106881. doi: 10.1016/j.nanoen.2021.106881 [15] LIU B, XIE G, LI C, et al. A chitosan/amido graphene oxide-based self-powered humidity sensor enabled by triboelectric effect[J]. Rare Metals, 2021, 40: 1995-2003. doi: 10.1007/s12598-020-01645-5 [16] SU Y, LI W, YUAN L, et al. Piezoeletric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring [J] Nano Energy, 2021, 89: 106321. [17] WANG D, ZHANG D, LI P, et al. Electrospinning of flexible poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nano-Micro Letters, 2021, 13: 57. doi: 10.1007/s40820-020-00580-5 [18] LI S, ZHANG Y, LIANG X, et al. Humidity-sensitive chemolectric flexible sensors based on metal-air redox reaction for health management[J]. Nature Communications, 2022, 13: 5416. doi: 10.1038/s41467-022-33133-y [19] LIU X, GAO H, WARD J E, et al. Power generation from ambient humidity using protein nanowires[J]. Nature, 2020, 578: 550-554. doi: 10.1038/s41586-020-2010-9 [20] DUAN Z, YUAN Z, JIANG Y, et al. Power generation humidity sensor based on primary battery structure[J]. Chemical Engineering Journal, 2022, 446: 136910. doi: 10.1016/j.cej.2022.136910 [21] ZHAO Q, DUAN Z, WU Y, et al. Facile primary battery-based humidity sensor for multifunctional application[J]. Sensors and Actuators: B. Chemical, 2022, 37: 132369. [22] JIANG Y, DUAN Z, FAN Z, et al. Power generation humidity sensor based on NaCl/halloysite nanotubes for respiratory patterns monitoring[J]. Sensors and Actuators: B. Chemical, 2023, 380: 133396. [23] ZHANG M, DUAN Z, ZHANG B, et al. Electrochemical humidity sensor enabled self-powered wireless humidity detection system[J]. Nano Energy, 2023, 115: 108745. doi: 10.1016/j.nanoen.2023.108745 [24] LI X, GUO Y, MENG J, et al. Self-powered carbon ink/filter paper flexible humidity sensor based on moisture-induced voltage generation[J]. Langmuir, 2022, 38(27): 8232-8240. doi: 10.1021/acs.langmuir.2c00566 [25] GUO Y, XI H, GU Z, et al. A self-powered PVA-based flexible humidity sensor with humidity-related voltage output for multifunctional applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 658: 130700. doi: 10.1016/j.colsurfa.2022.130700 [26] WANG Y, KWOK H, PAN W, et al. Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology[J]. Electrochim Acta, 2019, 319: 947-957. doi: 10.1016/j.electacta.2019.07.049 [27] EUN J, JEON S. Direct fabrication of high performance moisture- driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films[J]. Nano Energy, 2022, 92: 106772. doi: 10.1016/j.nanoen.2021.106772 [28] ZHU P, LIUY, Fang Z, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35: 4834-4842. doi: 10.1021/acs.langmuir.8b04259 [29] DOU Y, TANG C, LU Y. Self-powered, highly sensitive, and flexible humidity sensor based on carboxymethyl cellulose for multifunctional applications[J]. Langmuir, 2023, 39: 17436-17445. doi: 10.1021/acs.langmuir.3c02641 [30] 侯兆楠. 纤维素基复合电解质湿度传感器的研究 [D]. 长春: 吉林大学, 2023.HOU Zhaonan. Research on cellulose-based composite electrolyte humidity sensors [D]. Changchun: Jilin University, 2023 (in Chinese)