留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羧甲基纤维素-MgCl2复合物基自驱动多功能柔性湿度传感器

汪浩祥 汤成莉

汪浩祥, 汤成莉. 羧甲基纤维素-MgCl2复合物基自驱动多功能柔性湿度传感器[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 汪浩祥, 汤成莉. 羧甲基纤维素-MgCl2复合物基自驱动多功能柔性湿度传感器[J]. 复合材料学报, 2024, 42(0): 1-10.
WANG Haoxiang, TANG Chengli. Carboxymethyl cellulose-MgCl2 composite based humidity sensor: self-powered, flexible, and multifunctional sensing applications[J]. Acta Materiae Compositae Sinica.
Citation: WANG Haoxiang, TANG Chengli. Carboxymethyl cellulose-MgCl2 composite based humidity sensor: self-powered, flexible, and multifunctional sensing applications[J]. Acta Materiae Compositae Sinica.

羧甲基纤维素-MgCl2复合物基自驱动多功能柔性湿度传感器

基金项目: 国家自然科学基金 (61704067);嘉兴市公益性研究计划项目(2021AY10066)
详细信息
    通讯作者:

    汤成莉,博士,副教授,硕士生导师,研究方向为柔性传感器,功能材料 E-mail: tcl-lily@zjxu.edu.cn

  • 中图分类号: TB332

Carboxymethyl cellulose-MgCl2 composite based humidity sensor: self-powered, flexible, and multifunctional sensing applications

Funds: National Natural Science Foundation of China (No. 61704067); Public Welfare Project of Jiaxing Science and Technology Bureau (No. 2021AY10066)
  • 摘要: 湿度传感器在农业、工业生产、精密仪器及人体健康监测等领域有着广泛的应用。针对湿度传感器需要外加电源驱动的问题,本文借鉴原电池原理,将具有湿敏特性的羧甲基纤维素和具有吸湿特性的MgCl2复合物作为敏感层,并用商品化的导电铜胶带和镍胶带作为正、负极,制备自驱动的柔性湿度传感器。通过SEM、EDS对传感器敏感层的微观形貌和表面元素进行表征,通过复阻抗谱分析其湿敏机制,并对其多功能应用进行探索。该传感器敏感层具有良好的亲水性,在接触环境中的水分子后可将其中的MgCl2离子化产生Mg2+、Cl等载流子,并定向移动而形成输出电压,相对湿度从11%到95%时其响应值可达177%。该传感器可用于人体呼吸频率和呼吸类型检测、土壤湿度和尿不湿湿度检测、手指距离检测、提供电能,显示其在健康监测、环境湿度监测、非接触开关、供能领域的应用潜力。

     

  • 图  1  自驱动柔性湿度传感器的制备过程示意图

    Figure  1.  Schematic diagram of the preparation process of the flexible sensor and humidity sensing measurement

    图  2  (a)不同MgCl2含量的传感器在不同相对湿度下产生的电压值;(b)不同MgCl2含量的传感器在对不同相对湿度的响应-恢复曲线,(c)湿度滞回特性曲线(相对湿度均从11%至95%再到11%)

    Figure  2.  (a) Output voltage for the sensors with different MgCl2 contents at different relative humidities; (b) Response-recovery curves of sensors with different MgCl2 contents at different relative humidities; (c) Humidity hysteresis characteristic curves (relative humidity from 11% to 95% at to 11%)

    图  3  (a)羧甲基纤维素(CMC)-MgCl2敏感膜表面的SEM图像;(b) CMC-MgCl2敏感膜表面的EDS图谱

    Figure  3.  (a) SEM image of the surface of carboxymethyl cellulose (CMC)-MgCl2 sensitive membrane; (b) EDS mapping of the surface of CMC-MgCl2 sensitive membrane

    图  4  CMC-MgCl2基湿度传感器敏感层在20 s之内的接触角变化

    Figure  4.  Contact angle of the CMC-MgCl2-based sensitive layer of the humidity sensor within 20 s

    图  5  (a) 传感器在不同相对湿度下的重复响应性能; (b)传感器对不同湿度的连续响应值

    Figure  5.  (a-e) Repeatability of the sensor response to different RHs; (b) Continuous response values of the sensor to different RHs

    图  6  CMC-MgCl2基传感器正接合反接的情况下在RH从11%到54%的条件下输出的电压响应-恢复曲线

    Figure  6.  Response and recovery curve of the CMC-MgCl2-based humidity sensor at positive and negative connections

    图  7  CMC-MgCl2基湿度传感器敏感层在RH为11%,54%和95%时的复阻抗曲线

    Figure  7.  The complex impedance spectroscopy plots of CMC-MgCl2-based sensitive layer under RH 11%, 54%, and 95%.

    图  8  CMC-MgCl2基自驱动湿度传感器湿敏机制示意图

    Figure  8.  Schematic diagram of the sensing mechanism for the CMC-MgCl2-based self-powered humidity sensor

    图  9  (a)传感器对不同类型鼻呼吸的电压响应曲线;(b)传感器对不同类型嘴呼吸的电压响应曲线

    Figure  9.  (a) Response curve under different nasal breathing conditions;(b) Response curve under different oral breathing conditions

    图  10  (a)传感器对土壤湿度变化的电压响应曲线;(b)传感器对尿不湿表面湿度变化的电压响应曲线(插图为实验照片)

    Figure  10.  (a) Output voltage curve of the sensor to the soil humidity change; (b) Output voltage curve of the sensor to the diaper humidity change (the insert shows the digital photograph of the experiment)

    图  11  手指距离感知的电压响应曲线(插图为实验照片)

    Figure  11.  Output voltage curve of the finger distance (the insert shows the digital photograph of the experiment)

    图  12  (a) 输出电压和串联传感器个数之间关系曲线(插图为实验照片);(b) 5个串联的湿度传感器电量LED的照片

    Figure  12.  (a) Output voltages of the humidity sensors versus serial numbers; (b) Digital photograph of the LED lighten up by five humidity sensors in series (the insert shows the digital photograph of the experiment)

  • [1] KIM J, CAMPBELL A S, de AVILA BE, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. doi: 10.1038/s41587-019-0045-y
    [2] 王贵欣, 裴志彬, 叶长辉. 自供能柔性氧化石墨烯湿度传感器的喷墨印刷制备及性能研究[J]. 无机材料学报, 2019, 34(1): 114-120. doi: 10.15541/jim20180164

    WANG Guixin, PEI Zhibin, YE Changhui. Inkjet-printing and performance investigation of self-powered flexible graphene oxide humidity sensors[J]. Journal of Inorganic Materials, 2019, 34(1): 114-120 (in Chinese). doi: 10.15541/jim20180164
    [3] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(6): 51-56.

    DAI Y, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes[J]. Journal of Textile Research, 2021, 42(6): 51-56 (in Chinese).
    [4] 郭倩莹, 王晓, 吴佳糠, 等. 基于丝网印刷的柔性湿度传感器研究[J]. 传感技术学报, 2022, 35(12): 1619-1625.

    GUO Qianying, WANG Xiao, WU Jiakang, et al. Research of flexible humidity sensor based on screen printing[J]. Chinese Journal of Sensors and Actuators, 2022, 35(12): 1619-1625 (in Chinese).
    [5] MA L, WU R, PATIL A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring[J]. Advanced Functional Materials, 2019, 29: 1904549. doi: 10.1002/adfm.201904549
    [6] DUAN Z, JIANG Y, TAI H. Recent advances in humidity sensors for human body related humidity detection[J]. Journal of Materials Chemistry C, 2021, 9: 14963-14980. doi: 10.1039/D1TC04180K
    [7] ZHANG X, HE D, YANG Q, et al. Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor[J]. Chemical Engineering Journal, 2022, 433: 133751. doi: 10.1016/j.cej.2021.133751
    [8] 黎陈, 胡亮, 聂宝清. 基于复合微凝胶薄膜的柔性电容式湿度传感器研究[J]. 传感技术学报, 2023, 36(10): 1509-1514.

    LI Chen, HU Liang, NIE Baoqing. Research on flexible capacitive humidity sensor based on composite microgel films[J]. Chinese Journal of Sensors and Actuators, 2023, 36(10): 1509-1514(in Chinese).
    [9] GUAN X, Hou Z N, WU K, et al. Flexible humidity sensor based on modified cellulose paper[J]. Sensors and Actuators: B. Chemical, 2021, 339: 129879.
    [10] WANG H, Tang C, XU J. A highly sensitive flexible humidity sensor based on conductive tape and a carboxymethyl cellulose@graphene composite[J]. RSC Advances, 2023, 13(40): 27746-27755. doi: 10.1039/D3RA05232J
    [11] DUAN Z, ZHAO Q, WANG S, et al. Novel application of attapulgite on high performance and low-cost humidity sensors[J]. Sensors and Actuators: B. Chemical, 2020, 305: 127534.
    [12] ZHAO F, CHENG H, ZHANG Z, et al. Direct power generation from a graphene oxide film under moisture [J] Advanced Materials, 2015, 27(29): 4351- 4357.
    [13] ZHANG D, XU Z, YANG Z, et al. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104251. doi: 10.1016/j.nanoen.2019.104251
    [14] XU Z, ZHANG D, LIU X, et al. Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor[J]. Nano Energy, 2022, 94: 106881. doi: 10.1016/j.nanoen.2021.106881
    [15] LIU B, XIE G, LI C, et al. A chitosan/amido graphene oxide-based self-powered humidity sensor enabled by triboelectric effect[J]. Rare Metals, 2021, 40: 1995-2003. doi: 10.1007/s12598-020-01645-5
    [16] SU Y, LI W, YUAN L, et al. Piezoeletric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring [J] Nano Energy, 2021, 89: 106321.
    [17] WANG D, ZHANG D, LI P, et al. Electrospinning of flexible poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nano-Micro Letters, 2021, 13: 57. doi: 10.1007/s40820-020-00580-5
    [18] LI S, ZHANG Y, LIANG X, et al. Humidity-sensitive chemolectric flexible sensors based on metal-air redox reaction for health management[J]. Nature Communications, 2022, 13: 5416. doi: 10.1038/s41467-022-33133-y
    [19] LIU X, GAO H, WARD J E, et al. Power generation from ambient humidity using protein nanowires[J]. Nature, 2020, 578: 550-554. doi: 10.1038/s41586-020-2010-9
    [20] DUAN Z, YUAN Z, JIANG Y, et al. Power generation humidity sensor based on primary battery structure[J]. Chemical Engineering Journal, 2022, 446: 136910. doi: 10.1016/j.cej.2022.136910
    [21] ZHAO Q, DUAN Z, WU Y, et al. Facile primary battery-based humidity sensor for multifunctional application[J]. Sensors and Actuators: B. Chemical, 2022, 37: 132369.
    [22] JIANG Y, DUAN Z, FAN Z, et al. Power generation humidity sensor based on NaCl/halloysite nanotubes for respiratory patterns monitoring[J]. Sensors and Actuators: B. Chemical, 2023, 380: 133396.
    [23] ZHANG M, DUAN Z, ZHANG B, et al. Electrochemical humidity sensor enabled self-powered wireless humidity detection system[J]. Nano Energy, 2023, 115: 108745. doi: 10.1016/j.nanoen.2023.108745
    [24] LI X, GUO Y, MENG J, et al. Self-powered carbon ink/filter paper flexible humidity sensor based on moisture-induced voltage generation[J]. Langmuir, 2022, 38(27): 8232-8240. doi: 10.1021/acs.langmuir.2c00566
    [25] GUO Y, XI H, GU Z, et al. A self-powered PVA-based flexible humidity sensor with humidity-related voltage output for multifunctional applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 658: 130700. doi: 10.1016/j.colsurfa.2022.130700
    [26] WANG Y, KWOK H, PAN W, et al. Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology[J]. Electrochim Acta, 2019, 319: 947-957. doi: 10.1016/j.electacta.2019.07.049
    [27] EUN J, JEON S. Direct fabrication of high performance moisture- driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films[J]. Nano Energy, 2022, 92: 106772. doi: 10.1016/j.nanoen.2021.106772
    [28] ZHU P, LIUY, Fang Z, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35: 4834-4842. doi: 10.1021/acs.langmuir.8b04259
    [29] DOU Y, TANG C, LU Y. Self-powered, highly sensitive, and flexible humidity sensor based on carboxymethyl cellulose for multifunctional applications[J]. Langmuir, 2023, 39: 17436-17445. doi: 10.1021/acs.langmuir.3c02641
    [30] 侯兆楠. 纤维素基复合电解质湿度传感器的研究 [D]. 长春: 吉林大学, 2023.

    HOU Zhaonan. Research on cellulose-based composite electrolyte humidity sensors [D]. Changchun: Jilin University, 2023 (in Chinese)
  • 加载中
计量
  • 文章访问数:  129
  • HTML全文浏览量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-04
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回