留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP加固木柱的轴压损伤性能试验研究

黄俊杰 佘艳华 张鹤凡 何佳明

黄俊杰, 佘艳华, 张鹤凡, 等. CFRP加固木柱的轴压损伤性能试验研究[J]. 复合材料学报, 2024, 41(9): 5110-5124. doi: 10.13801/j.cnki.fhclxb.20240307.003
引用本文: 黄俊杰, 佘艳华, 张鹤凡, 等. CFRP加固木柱的轴压损伤性能试验研究[J]. 复合材料学报, 2024, 41(9): 5110-5124. doi: 10.13801/j.cnki.fhclxb.20240307.003
HUANG Junjie, SHE Yanhua, ZHANG Hefan, et al. Experimental study on axial compressive damage performance of CFRP-reinforced wood columns[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 5110-5124. doi: 10.13801/j.cnki.fhclxb.20240307.003
Citation: HUANG Junjie, SHE Yanhua, ZHANG Hefan, et al. Experimental study on axial compressive damage performance of CFRP-reinforced wood columns[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 5110-5124. doi: 10.13801/j.cnki.fhclxb.20240307.003

CFRP加固木柱的轴压损伤性能试验研究

doi: 10.13801/j.cnki.fhclxb.20240307.003
基金项目: 国家自然科学基金(51408057);住房与城乡建设部科学技术项目(2021-K-086);长江大学创新训练项目(Yz2023008)
详细信息
    通讯作者:

    佘艳华,博士,副教授,硕士生导师,研究方向为工程材料和结构检测 E-mail: syh916@126.com

  • 中图分类号: TU366;TB332

Experimental study on axial compressive damage performance of CFRP-reinforced wood columns

Funds: National Natural Science Foundation of China (51408057); Ministry of Housing and Urban Rural Development Science and Technology Project (2021-K-086); Innovation Training Program of Yangtze University (Yz2023008)
  • 摘要: 为研究碳纤维增强树脂基复合材料(Carbon fiber reinforced polymer,CFRP)加固木柱的轴压损伤性能及破坏机制,对6组不同CFRP缠绕方式的木柱开展了轴向压缩试验并进行了实时声发射(Acoustic emission,AE)监测。分析了不同缠绕层数和不同缠绕角度对CFRP加固木柱破坏形式、力学性能、吸能性能和声发射参数演化规律的影响。结果表明:CFRP的加固能明显改善木材的力学性能,抑制脆性破坏的发生;随着缠绕层数、角度的增大,木柱的极限承载力从112.63 kN提升至161.21 kN,位移延性系数也从1.44提升至1.72;CFRP缠绕层数、角度的增加能够显著提高CFRP加固木柱在轴压损伤过程中的稳定性和吸能能力;根据声发射的振铃计数演化特征可以将CFRP加固木柱的损伤过程分为弹性、压缩屈服和损伤破坏3个阶段;随着缠绕层数、角度的增加,声发射峰值频率逐渐从低频区间(0~80 kHz)向高频区间(160~240 kHz)过渡,损伤形式从大尺度损伤转变为小尺度损伤;不同缠绕方式的木柱声发射能量概率密度均遵循幂律无尺度分布,6种加固方式下,临界指数分别为1.31、1.33、1.36、1.43、1.49、1.57;临界指数随着缠绕层数、角度的增大而增大,CFRP的加固限制了木材内部裂纹的发展,减弱了内部结构的劣化。

     

  • 图  1  木材干燥过程

    Figure  1.  Wood drying process

    图  2  CFRP加固木柱的制备工艺流程

    Figure  2.  Preparation process of CFRP-reinforced wood columns

    CFRP—Carbon fiber reinforced polymer

    图  3  缠绕角度示意图

    Figure  3.  Schematic diagram of winding angle

    图  4  声发射(AE)传感器位置

    Figure  4.  Position of the acoustic emission (AE) sensors

    图  5  加载装置图

    Figure  5.  Loading device diagram

    LVDT1—Linear variable differential transformer-1; LVDT2—Linear variable differential transformer-2

    图  6  CFRP加固木柱的破坏形式

    Figure  6.  Failure forms of CFRP-reinforced wood columns

    图  7  CFRP加固木柱的荷载-位移曲线

    Figure  7.  Load-displacement curves of CFRP-reinforced wood columns

    图  8  CFRP加固木柱的峰值荷载和平均荷载

    Figure  8.  Peak force and mean force of CFRP-reinforced wood columns

    图  9  CFRP加固木柱的压溃效率和比吸能

    Figure  9.  Crush force efficiency and specific energy absorption of CFRP-reinforced wood columns

    图  10  CFRP加固木柱振铃计数、荷载和时间的关系

    Figure  10.  Relationship between ringing count, load and time of CFRP-reinforced wood columns

    图  11  CFRP加固木柱的峰值频率分布密度图

    Figure  11.  Peak frequency distribution density plot of CFRP-reinforced wood columns

    图  12  CFRP加固木柱的声发射能量概率密度分布图

    Figure  12.  Probability density distribution of AE energy of CFRP-reinforced wood columns

    P(E)—Energy probability density; Emin—Lower limit of energy normalisation; k1-k6—Critical indices of AE absolute energy distribution

    图  13  CFRP加固木柱的声发射能量临界指数最大似然估计曲线

    Figure  13.  Maximum likelihood estimation curves of AE energy critical index of CFRP-reinforced wood columns

    表  1  木材的主要力学性能指标

    Table  1.   Main mechanical properties of wood

    Compressive strength parallel to grain/MPaTensile strength parallel to grain/MPaShear strength parallel to grain/MPaBending strength/MPa
    39.2351.354.9467.98
    下载: 导出CSV

    表  2  粘结剂和碳纤维的主要力学性能指标

    Table  2.   Main mechanical properties of impregnation adhesive and carbon fiber

    Material Elastic modulus/GPa Tensile strength/MPa Elongation/%
    Carbon fiber 230 3700 1.8
    Impregnation adhesive 2.5 40 1.5
    下载: 导出CSV

    表  3  试件基本参数

    Table  3.   Specimen basic parameters

    Group No. Specimen No. CFRP winding layers CFRP winding angle/(°) m/g
    1 W-1 204.28
    W-2 201.36
    W-3 210.15
    2 C2W0-1 2 0 218.21
    C2W0-2 221.38
    C2W0-3 215.63
    3 C2W30-1 2 30 219.67
    C2W30-2 226.14
    C2W30-3 223.97
    4 C2W60-1 2 60 229.36
    C2W60-2 221.04
    C2W60-3 230.43
    5 C2W90-1 2 90 229.62
    C2W90-2 224.18
    C2W90-3 219.37
    6 C4W90-1 4 90 239.42
    C4W90-2 245.21
    C4W90-3 236.81
    Notes: "W" stands for wood; "C" stands for CFRP; "C2W30" means CFRP-reinforced wood column, with 2 winding layers and 30° winding angle; m is the mass of the specimen.
    下载: 导出CSV

    表  4  CFRP加固木柱的轴向压缩试验结果

    Table  4.   Axial compression test results of CFRP-reinforced wood columns

    Specimen No. Ultimate bearing
    capacity/kN
    Δmax/mm Δy/mm µ
    W 112.63 2.82 1.96 1.44
    C2W0 124.27 2.91 1.95 1.49
    C2W30 134.61 3.03 2.01 1.51
    C2W60 147.25 2.97 1.88 1.58
    C2W90 158.43 3.11 1.89 1.64
    C4W90 161.21 3.34 1.94 1.72
    Notes: Δmax—Ultimate displacement; Δy—Yield displacement; µ—Displacement ductility factor.
    下载: 导出CSV
  • [1] 谢启芳, 张保壮, 李胜英, 等. 残损木柱受力性能退化试验研究与有限元分析[J]. 建筑结构学报, 2021, 42(8): 117-125.

    XIE Qifang, ZHANG Baozhuang, LI Shengying, et al. Experimental study and finite element analysis on degradation of mechanical properties of damaged timber columns[J]. Journal of Building Structures, 2021, 42(8): 117-125(in Chinese).
    [2] 刘伟庆, 杨会峰. 现代木结构研究进展[J]. 建筑结构学报, 2019, 40(2): 16-43.

    LIU Weiqing, YANG Huifeng. Research progress on modern timber structures[J]. Journal of Building Structures, 2019, 40(2): 16-43(in Chinese).
    [3] 陈成, 程瑞香. 速生杨木改性研究进展[J]. 森林工程, 2014, 30(5): 27-29. doi: 10.3969/j.issn.1001-005X.2014.05.006

    CHEN Cheng, CHEN Ruixiang. Research progress in modified fast growing poplar wood[J]. Forest Engineering, 2014, 30(5): 27-29(in Chinese). doi: 10.3969/j.issn.1001-005X.2014.05.006
    [4] 龚迎春, 蔡芸, 任海青. 我国木结构产业发展机遇与挑战[J]. 林产工业, 2016, 43(7): 6-10. doi: 10.3969/j.issn.1001-5299.2016.07.002

    GONG Yingchun, CAI Yun, REN Haiqing. Opportunity and challenge of wood structure development in China[J]. China Forest Puroducts Industry, 2016, 43(7): 6-10(in Chinese). doi: 10.3969/j.issn.1001-5299.2016.07.002
    [5] MIAO K T, WEI Y, ZHANG S C, et al. Eccentric compression behavior of concrete-filled steel tube columns strengthened by CFRP/steel strip[J]. Engineering Structures, 2023, 287: 116191. doi: 10.1016/j.engstruct.2023.116191
    [6] WANG G F, WEI Y, SHEN C, et al. Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns[J]. Thin-Walled Structures, 2023, 192: 111152. doi: 10.1016/j.tws.2023.111152
    [7] WEI Y, CHEN S, TANG S F, et al. Mechanical response of timber beams strengthened with variable amounts of CFRP and bamboo scrimber layers[J]. Journal of Composites for Construction, 2022, 26(4): 04022038. doi: 10.1061/(ASCE)CC.1943-5614.0001228
    [8] 陈爱军, 贺国京, 蔡郭圣, 等. BFRP筋增强胶合木梁受力性能分析[J]. 中南林业科技大学学报, 2019, 39(3): 107-113.

    CHEN Aijun, HE Guojing, CAI Guosheng, et al. Experimental study on mechanical behaviour of glulam timber beams reinforced with BFRP[J]. Journal of Central South University of Forestry & Technology, 2019, 39(3): 107-113(in Chinese).
    [9] ZHOU A, QIN R Y, CHEUK L C, et al. Bond integrity of aramid, basalt and carbon fiber reinforced polymer bonded wood composites at elevated temperature[J]. Composite Structures, 2020, 245: 112342. doi: 10.1016/j.compstruct.2020.112342
    [10] 魏洋, 严少聪, 陈思, 等. FRP增强重组竹梁受弯性能数值模拟[J]. 复合材料学报, 2019, 36(4): 1036-1044.

    WEI Yang, YAN Shaocong, CHEN Si, et al. Numerical simulation of flexural properties of FRP reinforced recombinant bamboo beams[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1036-1044(in Chinese).
    [11] CUI W Q, FERNANDO D, HEITZMANN M, et al. Manufacture and structural performance of modular hybrid FRP timber thin-walled columns[J]. Composite Structures, 2021, 260: 113506. doi: 10.1016/j.compstruct.2020.113506
    [12] 左宏亮, 李昂, 贾茗睿. 外贴CFRP板对胶合木柱轴压性能的影响[J]. 森林工程, 2023, 39(3): 191-198. doi: 10.3969/j.issn.1006-8023.2023.03.022

    ZUO Hongliang, LI Ang, JIA Mingrui. Effect of CFRP board on axial compression performance reinforced glulam column[J]. Forest Engineering, 2023, 39(3): 191-198(in Chinese). doi: 10.3969/j.issn.1006-8023.2023.03.022
    [13] 阿斯哈, 周长东, 杨礼赣. 复合加固木柱轴压特性试验研究[J]. 土木工程学报, 2021, 54(2): 1-9.

    A Siha, ZHOU Changdong, YANG Ligan. Experimental investigation on axial compression behavior of timber columns strengthened with composite reinforcement method[J]. China Civil Engineering Journal, 2021, 54(2): 1-9(in Chinese).
    [14] 徐杰, 姜绍飞. 纤维布加固墩接木柱轴压试验[J]. 哈尔滨工业大学学报, 2024, 56(2): 77-85.

    XU Jie, JIANG Shaofei. Experimental study on axial compression characteristics of spliced wood columns strengthened with FRP sheets[J]. Journal of Harbin Institute of Technology, 2024, 56(2): 77-85(in Chinese).
    [15] VAHEDIAN A, SHRESTHA R, CREWS K. Bond strength model for externally bonded FRP-to-timber interface[J]. Composite Structures, 2018, 200: 328. doi: 10.1016/j.compstruct.2018.05.152
    [16] BISCAIA H C, CRUZ D, CHASTRE C. Analysis of the debonding process of CFRP-to-timber interfaces[J]. Construction and Building Materials, 2016, 113: 96. doi: 10.1016/j.conbuildmat.2016.03.033
    [17] VAHEDIAN A, SHRESTHA R, CREWS K. Effective bond length and bond behaviour of FRP externally bonded to timber[J]. Construction and Building Materials, 2017, 151: 742. doi: 10.1016/j.conbuildmat.2017.06.149
    [18] RAFTERY G M, HARTE A M, RODD P D. Bonding of FRP materials to wood using thin epoxy gluelines[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 580. doi: 10.1016/j.ijadhadh.2009.01.004
    [19] ZHOU A, TAM L H, YU Z C, et al. Effect of moisture on the mechanical properties of CFRP-wood composite: An experimental and atomistic investigation[J]. Composites Part B: Engineering, 2015, 71: 63-73.
    [20] NIKNEJAD A, MORADI A, BEHESHTI N. Indentation experiments on novel sandwich composite tubes[J]. Materials Letters, 2016, 179: 142-145. doi: 10.1016/j.matlet.2016.05.041
    [21] LI H T, LI X L, FU J H, et al. Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load[J]. Construction and Building Materials, 2023, 399: 132599. doi: 10.1016/j.conbuildmat.2023.132599
    [22] LI Z Q, DONG J, CHEN H Y, et al. Mechanical behaviour and acoustic emission characteristics of basalt fibre mortar rubble under uniaxial cyclic compression[J]. Construction and Building Materials, 2023, 393: 132145. doi: 10.1016/j.conbuildmat.2023.132145
    [23] LIU Z X, HAN Z J, QIN L, et al. Identification of bending fracture characteristics of cement-stabilized coral aggregate in four-point bending tests based on acoustic emission[J]. Construction and Building Materials, 2023, 402: 132999. doi: 10.1016/j.conbuildmat.2023.132999
    [24] GAO D Y, JI D D, GU Z Q, et al. Workability and mechanical properties analysis of hybrid fibers reinforced self-compacting concrete incorporating recycled aggregates based on acoustic emission technique[J]. Structures, 2023, 51: 1722-1741. doi: 10.1016/j.istruc.2023.03.139
    [25] MA G, LI H. Acoustic emission monitoring and damage assessment of FRP-strengthened reinforced concrete columns under cyclic loading[J]. Construction and Building Materials, 2017, 144: 86-98. doi: 10.1016/j.conbuildmat.2017.03.169
    [26] JIANG X, JIANG D Y, CHEN J, et al. Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents[J]. American Mineralogist, 2016, 101(12): 2751-2758. doi: 10.2138/am-2016-5809CCBY
    [27] JIANG X, LIU H, MAIN I G, et al. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors[J]. Physical Review E, 2017, 96(2): 023004. doi: 10.1103/PhysRevE.96.023004
    [28] 李猛, 佘艳华, 贺才豪, 等. 不同温度下的柏木构件顺纹压缩损伤规律研究[J]. 西南林业大学学报(自然科学), 2023, 43(5): 153-163.

    LI Meng, SHE Yanhua, HE Caihao, et al. Experimental study on compression damage law of cypress under different temperatures[J]. Journal of Southwest Forestry University (Natural science), 2023, 43(5): 153-163(in Chinese).
    [29] 李猛, 陈迪, 田康, 等. 不同含水率下木构件起裂荷载试验研究[J]. 森林工程, 2022, 38(4): 69-81. doi: 10.3969/j.issn.1006-8023.2022.04.009

    LI Meng, CHEN Di, TIAN Kang, et al. Experimental study on cracking load of wood members under different moisture content[J]. Forest Engineering, 2022, 38(4): 69-81(in Chinese). doi: 10.3969/j.issn.1006-8023.2022.04.009
    [30] GUO Y, ZHU S L, CHEN Y X, et al. Acoustic emission-based study to characterize the crack initiation point of wood fiber/HDPE composites[J]. Polymers, 2019, 11(4): 701. doi: 10.3390/polym11040701
    [31] 中华人民共和国住房和城乡建设部. 木结构试验方法标准: GB/T 50329—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban Rural Development of the People's Republic of China. Standard for test methods of timber structures: GB/T 50329—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [32] 国家市场监督管理总局, 国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法第9部分: 抗弯强度测定: GB/T 1927.9—2021[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation, National Standardization Administration. Test methods for physical and mechanical properties of flawless small specimens of wood-Part 9: Determination of flexural strength: GB/T 1927.9—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [33] 国家市场监督管理总局, 国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法第11部分: 顺纹抗压强度测定: GB/T 1927.11—2022[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, National Standardization Administration. Test methods for physical and mechanical properties of flawless small specimens of wood-Part 11: Determination of compressive strength along the grain: GB/T 1927.11—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [34] 国家市场监督管理总局, 国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法第14部分: 顺纹抗拉强度测定: GB/T 1927.14—2022[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, National Standardization Administration. Test methods for physical and mechanical properties of flawless small specimens of wood-Part 14: Determination of tensile strength along grain: GB/T 1927.14—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [35] 国家市场监督管理总局, 国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法第16部分: 顺纹抗剪强度测定: GB/T 1927.16—2022[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, National Standardization Administration Test methods for physical and mechanical properties of flawless small specimens of wood-Part 16: Determination of shear strength along the grain: GB/T 1927.16—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [36] 国家市场监督管理总局, 国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2021[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, National Standardization Administration. Test methods for properties of resin casting body: GB/T 2567—2021[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [37] 骆雪, 赵栋梁, 薛振华, 等. 含水率对樟子松细胞壁弹性模量和硬度的影响规律[J]. 西北林学院学报, 2022, 37(5): 218-222.

    LUO Xue, ZHAO Dongliang, XUE Zhenhua, et al. Influence law of moisture content on elastic modulus and hardness of Pinus sylvestris var. mongolica cell wall[J]. Journal of Northwest Forestry University, 2022, 37(5): 218-222(in Chinese).
    [38] 何清慧. 木材干燥基准简易确定法-百度试验法[J]. 木材工业, 1998(6): 38-40.

    HE Qinghui. Simple determination method for wood drying benchmark-100℃ test method[J]. Wood Industry, 1998(6): 38-40(in Chinese).
    [39] LIANG Q Q, UY B, LIEW J Y R. Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects[J]. Journal of Constructional Steel Research, 2006, 62(6): 581-591. doi: 10.1016/j.jcsr.2005.09.007
    [40] FURTOS G, SILAGHI-DUMITRESCU L, PASCUTA P, et al. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition[J]. Journal of Natural Fibers, 2021, 18(2): 285-296. doi: 10.1080/15440478.2019.1621792
    [41] 万志敏, 桂良进, 谢志民, 等. 玻璃-环氧圆柱壳吸能特性的试验研究[J]. 复合材料学报, 1999(2): 16-21. doi: 10.3321/j.issn:1000-3851.1999.02.004

    WAN Zhimin, GUI Liangjin, XIE Zhimin, et al. Experimental study on energy absorption characteristics of glass-epoxy cylindrical shells[J]. Acta Materiae Compositae Sinica, 1999(2): 16-21(in Chinese). doi: 10.3321/j.issn:1000-3851.1999.02.004
    [42] FARHIDZADEH A, MPALASKAS A C, MATIKAS T E, et al. Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features[J]. Construction and Building Materials, 2014, 67: 129-138. doi: 10.1016/j.conbuildmat.2014.05.015
    [43] WILDEMANN V E, SPASKOVA E V, SHILOVA A I. Research of the damage and failure processes of composite materials based on acoustic emission monitoring and method of digital image correlation[J]. Solid State Phenomena, 2016, 243: 163-170.
    [44] GUTENBERG B, RICHTER C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. doi: 10.1785/BSSA0340040185
    [45] 王创业, 常新科, 杜晓娅. 不同尺寸砂岩破坏全过程声发射主频分析[J]. 矿冶工程, 2019, 39(6): 10-14. doi: 10.3969/j.issn.0253-6099.2019.06.003

    WANG Chuangye, CHANG Xinke, DU Xiaoya. Analysis of dominant frequency of acoustic emission through the whole failure process of different size of sandstone[J]. Mining and Metallurgical Engineering, 2019, 39(6): 10-14(in Chinese). doi: 10.3969/j.issn.0253-6099.2019.06.003
    [46] 吴晓娲, 秦四清, 薛雷, 等. 基于震例探讨大地震的物理机制[J]. 地球物理学报, 2016, 59(10): 3696-3710. doi: 10.6038/cjg20161016

    WU Xiaowa, QIN Siqing, XUE Lei, et al. Physical mechanism of major erthquakes by erthquake cases[J]. Chinese Journal of Geophysics, 2016, 59(10): 3696-3710(in Chinese). doi: 10.6038/cjg20161016
    [47] GIRARD L, AMITRANO D, WEISS J. Failure as a critical phenomenon in a progressive damage model[J]. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010(1): P01013.
    [48] CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distributions in empirical data[J]. SIAM review, 2009, 51(4): 661-703. doi: 10.1137/070710111
    [49] SALJE E K H, PLANES A, VIVES E. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping[J]. Physical Review E, 2017, 96(4): 042122. doi: 10.1103/PhysRevE.96.042122
    [50] 王磊, 蒋翔, 肖杨, 等. 钙质砂颗粒的尺寸效应及雪崩动力学特性试验研究[J]. 岩土工程学报, 2021, 43(6): 1029-1038. doi: 10.11779/CJGE202106006

    WANG Lei, JIANG Xiang, XIAO Yang, et al. Experimental research on the size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029-1038(in Chinese). doi: 10.11779/CJGE202106006
    [51] 何佳明, 佘艳华, 李猛. 不同含水率雪松木材损伤声发射参数特性[J]. 东北林业大学学报, 2024, 52(2): 91-96.

    HE Jiaming, SHE Yanhua, LI Meng. Characteristics of acoustic emission parameters of cedar wood damage with different moisture contents[J]. Journal of Northeast Foresrty University, 2024, 52(2): 91-96(in Chinese).
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  112
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-02-02
  • 录用日期:  2024-02-28
  • 网络出版日期:  2024-03-09
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回