Permeable crystalline materials and nano-SiO2 modified cement grout performance and anti-seepage mechanism
-
摘要: 为了提升隧道同步注浆材料的抗渗性能,采用水泥基渗透结晶型防水材料-赛柏斯(CCCW-XYPEX)、纳米SiO2(NS)和水泥为主料,聚羧酸高效减水剂(PCS)为添加剂,基于单因素试验,探究了水灰比(W/C)、PCS掺量、XYPEX掺量与NS掺量对水泥注浆材料的结石率、黏度、凝结时间、力学性能及渗透性能的影响规律。同时,利用XRD、SEM和MIP微观技术,分析了复合注浆材料的水化物相、微观形貌及孔隙结构。结果表明:掺入XYPEX与NS后,水泥浆液的结石率达到100%,并缩短了凝结时间。浆液黏度在W/C和PCS掺量条件下最大下降率分别为50.96%和35.64%。当XYPEX∶NS<3∶1时,NS占据主导地位,浆液黏度上升。W/C从0.4增加到0.5时,试件抗压强度迅速下降。XYPEX掺量小于等于3wt%时,早期强度下降而后期提升。当NS掺量小于等于1wt%时,NS主要提升早期强度。PCS掺量从0.2wt%增加到0.3wt%时,试件的强度有所提升。W/C为0.4和PCS掺量为0.3wt%时,固结体的相对渗透系数最小。XYPEX掺量超过3wt%不利于固结体早期结构发育,NS掺量超过1wt%时,过量的NS则会导致凝胶材料界面尺寸变大,透水性能增加。微观分析表明,复掺3wt%XYPEX与1wt%NS、单掺1wt%NS或3wt%XYPEX均降低了水泥净浆的孔隙率,其中复掺XYPEX与NS减少54.46%。XYPEX和NS通过催化-络合-沉淀能力和纳米填充效应改善了固结体的孔隙结构。Abstract: In order to improve the impermeability of tunnel synchronous grouting materials, the impacts of water-cement ratio (W/C), PCS dosage, XYPEX dosage, and NS dosage on the stone formation rate, viscosity, setting time, mechanical properties, and permeability of cement grout materials were explored based on single-factor experiments, with cementitious capillary crystalline waterproofing materials—XYPEX (CCCW-XYPEX), nano-SiO2 (NS), and cement as the main ingredients, and polycarboxylate superplasticizer (PCS) as an additive. XRD, SEM, and MIP microtechniques were employed to analyze the hydration phases, microscopic morphology, and pore structure of the composite grouting material. The results show that after adding XYPEX and NS, the stone rate of cement slurry reaches 100%, and the setting time is shortened. The maximum decrease rates of slurry viscosity under the conditions of W/C and PCS content are 50.96% and 35.64%, respectively. When XYPEX : NS < 3 : 1, NS dominates and the slurry viscosity increases. When W/C increases from 0.4 to 0.5, the compressive strength of the specimen decreases rapidly. When the content of XYPEX is less than or equal to 3wt%, the early strength decreases and the later strength increases. When the NS content is less than or equal to 1wt%, NS mainly improves the early strength. When the PCS content increases from 0.2wt% to 0.3wt%, the strength of the specimen is improved. When W/C is 0.4 and PCS content is 0.3wt%, the relative permeability coefficient of the consolidated body is the smallest. When the content of XYPEX is more than 3wt%, it is not conducive to the early structural development of the consolidation body. When the NS content exceeds 1wt%, excessive NS will lead to a larger interface size of the gel material and an increase in water permeability. The microscopic analysis shows that the porosity of cement paste is reduced by mixing 3wt% XYPEX and 1wt% NS, single mixing 1wt% NS or 3wt% XYPEX, and the porosity of cement paste is reduced by 54.46% by mixing XYPEX and NS. XYPEX and NS improve the pore structure of the consolidated body through the catalytic-complexation-precipitation ability and nano-filling effect.
-
表 1 水泥和赛柏斯(XYPEX)的化学成分(wt%)
Table 1. Chemical composition of cement and XYPEX (wt%)
Chemical formula CaO SiO2 Fe2O3 Al2O3 SO3 MgO K2O Na2O Else Cement 64.16 22.45 2.38 5.32 1.86 1.24 1.14 — 1.45 XYPEX 46.74 13.50 1.58 3.47 2.42 3.70 1.18 9.30 18.11 表 2 纳米SiO2基本物理性能指标
Table 2. Basic physical properties of nano-SiO2
Color Average particle size/nm Specific surface area/(m2·g−1) SiO2/% White 20 25-200 ≥99.8 表 3 注浆材料试样配合比(wt%)
Table 3. Grouting material sample ratio (wt%)
Number W/C XYPEX dosage/wt% NS dosage/wt% PCS dosage/wt% Remark WXNP-1 0.3 3 1 0.3 The first group WXNP-2 0.35 3 1 0.3 WXNP-3 0.4 3 1 0.3 WXNP-4 0.45 3 1 0.3 WXNP-5 0.5 3 1 0.3 WXNP-6 0.4 0 1 0.3 The second group
Combined with WXNP-3WXNP-7 0.4 1 1 0.3 WXNP-8 0.4 2 1 0.3 WXNP-9 0.4 4 1 0.3 WXNP-10 0.4 3 0 0.3 The third group
Combined with WXNP-3WXNP-11 0.4 3 0.5 0.3 WXNP-12 0.4 3 1.5 0.3 WXNP-13 0.4 3 2 0.3 WXNP-14 0.4 3 1 0.2 The fourth group
Combined with WXNP-3WXNP-15 0.4 3 1 0.25 WXNP-16 0.4 3 1 0.35 WXNP-17 0.4 3 1 0.4 Notes: WXNP represents the blend matrix, WXNP represents the blend matrix, W represents water-cement ratio, X represents XYPEX, N represents nano-silica, and P represents polycarboxylate superplasticizer; W/C represents water cement ratio. 表 4 不同配合比条件下复合浆液结石率测试结果
Table 4. Test results of composite grout stone rate under different mixing ratio conditions
Number Stone rate/% Number Stone rate/% WP 88.57 WXNP-9 100 WXNP-1 100 WXNP-10 100 WXNP-2 100 WXNP-11 100 WXNP-3 100 WXNP-12 100 WXNP-4 100 WXNP-13 100 WXNP-5 100 WXNP-14 100 WXNP-6 100 WXNP-15 100 WXNP-7 100 WXNP-16 100 WXNP-8 100 WXNP-17 100 -
[1] 龚晓南, 郭盼盼. 隧道及地下工程渗漏水诱发原因与防治对策[J]. 中国公路学报, 2021, 34(7): 1-30. doi: 10.3969/j.issn.1001-7372.2021.07.002GONG Xiaonan, GUO Panpan. Prevention and Mitigation Methods for Water Leakage in Tunnels and Underground Structures[J]. China Journal of Highway and Transport, 2021, 34(7): 1-30(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.002 [2] 张聪, 阳军生, 谢亦朋, 等. 富水岩溶越江盾构隧道注浆材料试验与应用研究[J]. 岩石力学与工程学报, 2018, 37(9): 2120-2130.ZHANG Cong, YANG Junsheng, XIE Yiming, et al. Experiment and application for grouting materials for karst under conditions of underground water flow before shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2120-2130(in Chinese). [3] TENG Z L, LIU Y M, ZHOU Y H, et al. Investigation of a new reverse drainage construction and the pressure-reducing effect of a tunnel in a water-rich karst location[J]. Tunnelling and Underground Space Technology, 2024, 145: 105580. doi: 10.1016/j.tust.2023.105580 [4] 吴圣智, 李建, 王明年, 等. 护盾式TBM施工中隧道受力与变形现场试验研究[J]. 岩石力学与工程学报, 2021, (12): 040.WU Shengzhi, LI Jian, WANG Mingnian, et al. Field test on stress and deformation of shield TBM tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, (12): 040(in Chinese). [5] 万泽恩, 李树忱, 赵一民, 等. 富水地层盾构隧道同步注浆惰性充填材料配比与试验研究[J]. 土木工程学报, 2021, 54(7): 123-132.WAN Zenen, LI Shuchen, ZHAO Yimin, et al. Experimental study on mix proportion of inert filling materials for synchronous grouting of shield tunnel in water-ich strata[J]. China Civil Engineering Journal, 2021, 54(7): 123-132(in Chinese). [6] 李康, 谢雄耀, 周彪, 等. 盾构隧道双液同步注浆GPR检测模型试验[J]. 中国公路学报, 2024, 37(3): 330-341.LI Kang, XIE Xiongyao, ZHOU Biao, et al. Model Test Study on GPR Detection for Cement-sodium Silicate Synchronous Grouting in Shield Tunnel[J]. China Journal of Highway and Transport, 2024, 37(3): 330-341(in Chinese). [7] LI S C, WANG P C, YUAN C, et al. Adaptability of polyurethane/water glass grouting reinforcement to subsea tunnels[J]. Construction and Building Materials, 2021, 311: 125354. doi: 10.1016/j.conbuildmat.2021.125354 [8] 刘永超, 袁振宇, 程雪松, 等. 不同注浆材料对隧道漏水漏砂封堵效果试验研究[J]. 岩土工程学报, 2021, 43(S2): 249-252. doi: 10.11779/CJGE2021S2059LIU Yongchao, YUAN Zhenyu, CHENG Xuesong, et al. Experimental study on plugging effect of different grouting materials for water and sand leakage of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 249-252(in Chinese). doi: 10.11779/CJGE2021S2059 [9] 齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2023, 40(3): 1598-1610.QI Meng, PU Yundong, YANG Sen, et al. Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1598-1610(in Chinese). [10] ZHANG C C, GUAN X C, LI J L, et al. Coupling effect of cementitious capillary crystalline waterproof material and exposure environments on self-healing properties of engineered cementitious composites (ECC)[J]. Journal of Building Engineering, 2023, 63: 105471. doi: 10.1016/j.jobe.2022.105471 [11] 张立卿, 余家乐, 王云洋, 等. 渗透结晶水泥基复合材料研究综述[J/OL]. 材料导报, 1-30 [2024-07-18].ZHANG Liqing, YU Jiale, WANG Yunyang, et al. Study on Cementitious Composites with Permeable Crystalline Agent : A Review. Materials Reports, 1-30 [2024-07-18]. (in Chinese). [12] 杨晓华, 郑坤隆, 徐礼笑. 渗透结晶型材料添加剂对水泥浆液性能影响试验[J]. 中国公路学报, 2019, 32(7): 129-135+157.YANG Xiaohua, ZHENG Kunlong, XU Lixiao. Experiment on Effect of Capillary Crystalline Material Additives on Cement Slurry Performance[J]. China Journal of Highway and Transport, 2019, 32(7): 129-135+157(in Chinese). [13] LI H Y, WU Y F, ZHOU A X, et al. Experimental study on self-healing performance of tunnel lining concrete based on response surface methodology[J]. Construction and Building Materials, 2024, 425: 136105. doi: 10.1016/j.conbuildmat.2024.136105 [14] LIU M L, LIU P, WU J, et al. Study on improvement of waterproofing performance of CCCW with silicone waterproof material and waterbased capillary inorganic waterproofer[J]. Construction and Building Materials, 2023, 400: 132842. doi: 10.1016/j.conbuildmat.2023.132842 [15] Estefanía Cuenca, Antonio Tejedor, Liberato Ferrara, A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Construction and Building Materials, 2018, 179, 619-632. [16] M. Roig-Flores, F. Pirritano, P. Serna, L. Ferrara, Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Construction and Building Materials, 2016, 114, 447-457. [17] HU X Y, XIAO J, ZHANG Z D, et al. Effects of CCCW on properties of cement-based materials: A review[J]. Journal of Building Engineering, 2022, 50: 104184. doi: 10.1016/j.jobe.2022.104184 [18] BAI S, YU L B, GUAN X C, et al. Study on the long-term chloride permeability of nano-silica modified cement pastes cured at negative temperature[J]. Journal of Building Engineering, 2022, 57: 104854. doi: 10.1016/j.jobe.2022.104854 [19] ZHOU J, ZHENG K, LIU Z Q, et al. Chemical effect of nano-alumina on early-age hydration of Portland cement[J]. Cement and Concrete Research, 2019, 116: 159-167. doi: 10.1016/j.cemconres.2018.11.007 [20] AMINI K, GHASEMI A, SOLEIMANI AMIRI S, et al. The synergic effects of metakaolin and polycarboxylate-ether on dispersion of graphene oxide in cementitious environments and macro-level properties of graphene oxide modified cement composites[J]. Construction and Building Materials, 2021, 270: 121462. doi: 10.1016/j.conbuildmat.2020.121462 [21] LI G Y, SANTIGIE MORLOR C, LEUNG C, et al. Mechanical properties and fractal analysis of cement mortar incorporating styrene-butadiene rubber latex and carboxylated MWCNTs[J]. Construction and Building Materials, 2021, 309: 125175. doi: 10.1016/j.conbuildmat.2021.125175 [22] 徐鹏, 张轩翰, 明高林, 等. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 119-128.XU Peng, ZHANG Xuanhan, MING Gaolin, et al. Research Progress on Functionalized Nano-modified Cement-based Materials[J]. Materials Reports, 2023, 37(16): 119-128(in Chinese). [23] 李刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基材料性能试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(11): 150-159.LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Experimental Study on Property of Polymer Cement Based Composite Modified by Nano-SiO2[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 150-159(in Chinese). [24] KASHYAP V S, SANCHETI G, YADAV J S. Durability and microstructural behavior of Nano silica-marble dust concrete[J]. Cleaner Materials, 2023, 7: 100165. doi: 10.1016/j.clema.2022.100165 [25] ZHANG A, GE Y, YANG W C, et al. Comparative study on the effects of nano-SiO2, nano-Fe2O3 and nano-NiO on hydration and microscopic properties of white cement[J]. Construction and Building Materials, 2019, 228: 116767. doi: 10.1016/j.conbuildmat.2019.116767 [26] SALEH A N, ATTAR A A, AHMED O K. , et al. Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2. Results in Engineering. 2021, 12, 100303. [27] ZHENG H B, DAI J G, HOU L, et al. Enhanced passivation of galvanized steel bars in nano-silica modified cement mortars[J]. Cement and Concrete Composites, 2020, 111: 103626. doi: 10.1016/j.cemconcomp.2020.103626 [28] 中华人民共和国国家质量监督检验检疫总局. 旋转粘度计检定规程: JJG 1002-2005 [S]. 北京: 中国计量出版社, 2005.General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China. Verification regulation of rotary viscometer : JJG 1002-2005 [S]. Beijing : China Metrology Publishing House, 2005. (in Chinese). [29] 中华人民共和国国家质量监督检验检疫总局. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346-2011 [S]. 北京: 中国标准出版社, 2011.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard consistency water consumption, setting time and stability test method of cement : GB/T 1346-2011 [S]. Beijing: China Standards Publishing House, 2011. (in Chinese). [30] 中华人民共和国住房和城乡建设部. 水泥土配会比设计规程: JGJ/T233-2011 [S]. 北京: 中国建筑工业出版社, 2011.Ministry of Housing and Urban-Rural Development of the People 's Republic of China. Cement-soil aggregate ratio design specification: JGJ/T233-2011 [S]. Beijing : China Construction Industry Press, 2011. (in Chinese). [31] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T70-2009 [S]. 中国建筑工业出版社, 2009.Ministry of Housing and Urban-Rural Development of the People 's Republic of China. Test method standard for basic properties of building mortar : JGJ / T70-2009 [S]. Beijing : China Construction Industry Press, 2009. (in Chinese). [32] GüNEVISI E, ATEWI Y R, HASAN M F. Fresh and rheological properties of glass fiber reinforced self-compacting concrete with nanosilica and fly ash blended[J]. Construction and Building Materials, 2019, 211: 349-362. doi: 10.1016/j.conbuildmat.2019.03.087 [33] MULLER A C A, SCRIVENER K L. A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry[J]. Cement and Concrete Research, 2017, 100: 350-360. doi: 10.1016/j.cemconres.2017.05.024 [34] ZENG Q, Li K F, FEN-CHONG T, et al. Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data[J]. Cement and Concrete Composites, 2012, 34(9): 1053-1060. doi: 10.1016/j.cemconcomp.2012.06.005 [35] YUAN X S, DAI M J, GAO Y J, et al. Effect on mechanical properties and microstructure of high-strength eco-friendly concrete with waste glass powder-eggshell particles[J]. Journal of Building Engineering, 2023, 79: 107871. doi: 10.1016/j.jobe.2023.107871 [36] 鲍玖文, 张洪锐, 方晓龙, 等. 纳米二氧化硅改性再生粗骨料混凝土性能的研究进展[J]. 硅酸盐学报, 2023, 51(8): 2045-2053.BAO Jiuwen, ZHANG Hongrui, FANG Xiaolong, et al. Properties ofRecycled Coarse Aggregate Concrete Modified by Silica Nanoparticles: A Short Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2045-2053(in Chinese). [37] YE Q, ZHANG Z N, KONG D Y, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J]. Construction and Building Materials, 2007, 21(3): 539-545. doi: 10.1016/j.conbuildmat.2005.09.001 [38] ZHANG C C, GUAN X C, LU R W, et al. Effect of cementitious capillary crystalline waterproof material on the various transport properties of cracked cementitious composites[J]. Construction and Building Materials, 2023, 365: 130138. doi: 10.1016/j.conbuildmat.2022.130138
计量
- 文章访问数: 27
- HTML全文浏览量: 24
- 被引次数: 0